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 
Abstract—Software bug localization is one of the most costly 

tasks in program repair technique. Therefore, there is a high claim for 
automated bug localization techniques that can monitor programmers 
to the locations of bugs, with slight human arbitration. Spectrum-
based bug localization aims to help software developers to discover 
bugs rapidly by investigating abstractions of the program traces to 
make a ranking list of most possible buggy modules. Using the 
Apache Commons Math library project, we study the diagnostic 
accuracy using our spectrum-based bug localization metric. Our 
outcomes show that the greater performance of a specific similarity 
coefficient, used to inspect the program spectra, is mostly effective 
on localizing of single line bugs.  

 
Keywords—Software testing, fault localization, program spectra.  

I. INTRODUCTION 

DENTIFYING, localizing and repairing bugs are the vital 
activities of software development. While software testing 

forms the main activity for identifying program bugs, software 
repairing is the process of finding and correcting the buggy 
program portions. The bug localization process mentions to 
the problem of detecting buggy program portions given the 
failures of test execution. It has been recognized as one of the 
expensive parts of the repairing process, which justify the vital 
research effort for automated bug localization action [1].  

Buggy statements in software code may lead the program 
failures such as crack or incorrect results and outcomes in the 
software development lifecycle. The task to decide and 
discover the buggy statements is called bug localization. In a 
software system, it will be very time consuming for the 
software developer to locate the buggy statements because of 
containing thousands of lines of code. Researchers have 
designed effective ways to find the buggy statement through 
bug localization approaches [1]. 

One of the popular in software repairing approaches is 
Spectrum-based Bug Localization (SBBL). In SBBL, the 
statement execution record (program spectra) of passing and 
failing test cases are examined to support program developers 
to locate the buggy statements. SBBL metrics have been 
designated to rank the buggy statements in program code 
according to their suspicious scores. In SBBL, statements with 
the highest score calculated by the SBBL metric will be 
ranked first as it is the most suspiciousness that might be the 
buggy statement. On the other hand, the statement with the 
lowest score is the safest statement as it is most not likely to 
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be the buggy statement. Through this ranking, software 
developer can examine the top ranking statement first to locate 
the buggy statement rather than checking statement by 
statement from the beginning until the end of the program 
code.  

The performance of SBBL metric is determined by how 
high it ranks the buggy statement based on the suspicious 
score calculated from the SBBL metric. In this paper, we 
analyze on single line bugs in Apache Commons Math Library 
project using our spectrum-based metric. In particular, the 
paper makes the following contributions: 
• The first study is the comparison the bug-localization 

ability of our approach with Ochiai, Tarantula, and 
Jaccard. For the subjects studied, our study shows that, 
our approach consistently outperforms these techniques, 
performing it the best techniques known for bug 
localization on these subjects. 

• The second study is a description of our approach in terms 
of suspicious ranking for their suspiciousness that 
provides a way to compare it with the Ochiai, Tarantula, 
and Jaccard techniques, as well as other future techniques 
[11]. 

The remaining of this paper is organized as follow: Section 
II outlines the background of Spectrum-based Bug 
Localization (SBBL), followed by methodology in Section III. 
We discussed our experimental results in Section IV and some 
related works in Section V and we concluded the paper in 
Section VI.  

II. PRELIMINARIES 

A. Background 

As input, a bug localization technique takes a buggy 
program and its test suite that contains at least one failing test, 
and as output, it produces a ranked list of suspicious statement 
locations, such as blocks or statements. In this paper, we use 
program statements as the locations [13]. 

Given a bug localization technique and a buggy program 
with a single-line buggy statement, a numerical measure of the 
quality of the technique can be computed as follows: (1) run 
the bug localization technique to compute the sorted list of 
suspicious program statements; (2) use a metric proposed in 
the literature to evaluate the effectiveness of a technique [13]. 

B. Failures, Errors, and Bugs 

A program bug is a failure, error, fault, or flaw in a software 
that produces an unexpected or incorrect outcome. The bug 
repairing process regularly uses proper tools or techniques to 
identify bugs, and some computer systems find or repair 

Cherry Oo, Hnin Min Oo 

Bug Localization on Single-Line Bugs of Apache 
Commons Math Library 

I 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:13, No:2, 2019

66

 

 

various bugs during operations since the 1950s.  
Most of the bugs arise from errors and mistakes made in 

program source code, or program components. A small 
number of bugs are caused by compilers because incorrect 
code are produced by compilers. A buggy program can 
contain a large number of bugs that seriously interfere with its 
functionality. Bugs can affect errors that may have ripple 
effects. Bugs may have subtle effects or cause the program to 
freeze or crash the computer system. 

C. Program Spectra 

At run-time, program spectra are collected as the records 
that provide an exact observation on the lively behavior of 
program for different parts of a program, it classically consists 
of a number of flags or counters. In this paper, we work with 
statement hit spectra [2].  

A hit spectrum of the program statement consists of a 
counter for every single statement of the program source code 
that indicates in a particular run whether or not that statement 
was executed [2]. 

D. Spectrum-Based Bug Localization 

Two types of information are employed by the SBBL 
technique and they are gathered during program testing, 
clearly outcomes of testing and program spectra. While a 
program spectrum is a data collection, the testing outcome 
related with records whether each test case is failed or passed 
[16]. 

Given a buggy program P = {S1, S2, . . ., Sj} with j 
statements and executed by i test cases T = {T1, T2, . . . , Ti}. 
The testing outcomes of all test cases are recorded as spectra 
information of the program in form of a matrix. The 
component in the ith row and jth column of the matrix denotes 
the spectra information of statement Sj , by test case Ti , with 
1 indicating Sj is executed, and 0 otherwise [16]. 

 

 

Fig. 1 Buggy program example 
 

TABLE I  
TEST-SUITE FOR EXAMPLE BUGGY PROGRAM 

Test 
Case 

Input Expected 
Output 

Actual 
Output a b 

Test1 3 5 -2 -2 

Test2 5 3 -2 -2 

Test3 4 0 4 -4 

Test4 0 4 -4 -4 

Test5 1 1 0 0 

 
An example is shown in above. Fig. 1 shows a buggy 

program that contains six statements {S1, S2, S3, S4, S5, S6}, 
but we do not consider some statements that contain opening 
and closing curly bracket ({}). Table I shows five test cases 

{T1, T2, T3, T4, T5} to test the buggy program. Specifically, 
four test cases among them pass and T3 gives rise to failed run. 
The coverage information for each statement is recorded as a 
matrix. Finally, a coverage information matrix is generated by 
mean of the gathered information. The matrix is listed as 
Table II. 

 
TABLE II 

Coverage Information 

Test 
Case 

Statement Error 
Status S1 S2 S3 S5 

T1 1 1 0 1 0 

T2 1 1 0 1 0 

T3 1 1 1 0 1 

T4 1 1 1 0 0 

T5 1 1 0 1 0 

 
In Table II, Si represents a statement of a buggy program; Ti 

represents a test case. (Si, Ti)=1 represents Si is covered by test 
case Ti; on the contrary, (Si, Ti) = 0 represents Si is not covered 
by test case Ti [15]. ErrorStatus denotes the program 
execution result of a test case, (Error Status, Ti) = 1 means the 
execution effect of Ti is fail whereas (Error Status, Ti)= 0 
means pass. In addition, a11, a10, a01 and a00 are coverage 
statistics result of statement in program execution. For an 
execution of a statement with a test case, only one of these 
four symbols can be assigned by value 1, e.g, a11=1 means this 
statement is covered by this test case and the result is fail. In 
Table I, a11, a10, a01 and a00 are the sum of the result value of a 
program execution with each test case respectively [14]. For 
example, (S1, a10) = 4 means S1 is covered 4 times in total by 
test case set T = (T1, T2, T3, T4, T5). For gathering 
aforementioned information accurately and rapidly, our study 
utilizes program instrumentation technique to obtain 
execution. Furthermore, one of the most popular unit testing 
tools- JUnit [20] is used to input test case. 

Previous studies have identified some coefficients, such as 
Ochiai, and Tarantula, as the best metric to be used for SBBL. 
For example, a popular bug localization technique, Ochiai is 
defined as follows [2] 
                                      

))()((*))()((
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A program statement with higher suspicious value is a 

higher likelihood to be buggy. Therefore, the statements are 
sorted according to their suspiciousness in descending order 
after assigning the suspicious values to all program statements 
[10]. Repairing techniques begin from top to bottom of the 
ranking list. To identify the buggy statements, an effective 
method should be able as top in the ranking list as possible 
[16]. 

III. METHODOLOGY 

SBBL techniques inform buggy statements only after 
examining a large number of lines or code elements. This 
section presents our approach to locate the buggy statements 
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from Apache Commons Math Project. There are two steps in 
our approach: 
(1) Program spectrum information gathering. The statement 

coverage information and its execution result associated 
with certain test case set will be gathered. 

(2) Calculate the suspicious value. For a program statement, 
the suspicious value is calculated by purposed bug 
localization method, respectively. 

A. Apache Commons Math Library 

The Apache Commons is a project of the Apache Software 
Foundation. The purpose is to provide reusable, open source 
Java software [8]. Commons Math is distributed under the 
terms of the Apache License, Version 2.0. Apache Commons 
Math consists of mathematical functions, structures 
representing mathematical concepts (like complex numbers, 
polynomials, vectors, etc.), and algorithms that we can apply 
to these structures (root finding, optimization, curve fitting, 
computation of intersections of geometrical figures, etc.). 
Apache Commons Math Library consists of 106 bugs in total. 
Among them, 26 bugs are single line bugs. We apply our 
spectrum-based ranking metric to localize the single line bugs 
in Apache Commons Math Library. In debugging process, we 
can repair single line bugs with some patterns such as, one line 
removal, one line addition, or one line replacement. 

B. Program Spectrum Information Gathering 

Program spectrum or coverage information reflects a certain 
face of a program execution. More specifically, coverage 
information shows whether a program unit is executed during 
execution with a certain test case. This information has been 
widely used in software testing, and it also can be used for 
fault localization. While program unit can be defined 
variously, such as statement, basic block, predicate, method 
and path, etc. In our study, statement coverage information is 
utilized since it is simple to calculate, and most important of 
all, the benefit of statement coverage is its ability to be used 
for statement-level bug localization. In addition, the 
corresponding execution result is also collected.  

Our approach collected spectra information such as a11, 
a10, a01 and weight for each buggy statement while other 
SBBL techniques collected spectra information such as a11, 
a10, a01 and a00. We use weight value instead of a00 because 
the number of test cases is required and it is important whether 
each buggy statement is passed or failed by test cases [17]. So, 
we find that the weight values depend on 

 

}1|{  Sjpweighti                                  (2) 
 
In (2), p means the number of test cases which pass on each 

statement Sj. We calculate the suspiciousness of each buggy 
statement using the collected spectra information. 

C. Calculating the Suspiciousness 

Spectrum-based bug localization methods generally 
calculate the suspicious value by using collected information, 
such as a11, a10, a01 and a00 (but we did not use this one). 
Researchers have proposed many formulas for calculating the 

suspicious value, and program units are ranked by the value to 
predict the probability of containing fault. Our SBBL metric 
is: 
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In the above equation, a11 means the case which discovers 
bug when statement is passed. a10 means the case which does 
not discover bug when statement is passed. a01 means the case 
which discovers bug when statement is not passed and weightj 
means the number of test case which passes on each statement. 

IV. EMPIRICAL EVALUATION 

Our experiments were performed on Intel(R) Core(TM) i3-
6100U CPU @2.30GHz machine with 4.00 GB of RAM. 

The effectiveness of SBBL technique is determined by the 
set of failed and passed test cases. Using two sets of test cases 
to locate, bugs may not be the most efficient approach [14]. 
We explore the following research questions: 
RQ1: How the effectiveness of existing bug localization 
methods in the same program associated with test case set? 
RQ2: How the effectiveness of our proposed method 
compared with some existing automatic bug localization 
methods.  

We apply our SBBL technique to Apache Commons Math 
Library project, and check the output ranked list of single-line 
bugs identified as likely bug locations. 

 

 

Fig. 2 Ranked list of single-line bugs using our metric 
 
Fig. 2 shows the results of our method on single-line bugs 

from Apache Commons Math Library project. We made the 
localization of 26 single-line bugs by our method. We 
localized 10 out of 26 single-line bugs in rank one. 

A. Evaluation Metric 

For evaluating a bug localization technique, one important 
principle is to measure its effectiveness, such as statements 
that are inspected by programmers to locate the bugs. Also, a 
test set, when executed against the same program but in two 
altered environments, may result in two different sets of test 
cases [14]. To evaluate the effectiveness of our approach, we 
considered the following two metrics: mean reciprocal rank 
(MRR), and top N rank. MRR and top N rank are widely used 
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to evaluate bug localization techniques [7], [18]. 
Top-N: This metric counts the number of successfully 

localized within Top-N (N=1, 3, 5, 10) ranked results. If the 
bug localization techniques share the same score, we use the 
average position to present bug location. Higher Top-N 
denotes more effective bug localization [19].  

Mean Reciprocal Rank (MRR): The reciprocal rank of a 
query is the reciprocal of the position for the first buggy 
statement in the results that is ranked as suspicious. MRR is 
the mean of the reciprocal ranks of the results of a set of 
statements, Q, and it can be calculated as follows: 

 





||

1

1

||

1 Q

i irankQ
MRR                                         (4) 

 
MRR covers the overall quality of ranked suspicious 

statements. Larger values of all metrics indicate better 
accuracy [18]. 

B. Experimental Results 

For RQ1, Fig. 2 shows the results of our proposed method. 
Both our metric and Ochiai metric got the top one position for 
10 bugs, but Ochiai localized 12 bugs within top three and 17 
bugs within top ten ranking list while our metric localized 14 
bugs within top three and 19 bugs within top ten ranking list. 

 

 

Fig. 3 Rank Level Comparison of Ochiai and Our Metric 
 

TABLE III 
Top-N and MRR Comparison with other approaches 

Approach Top-1 (%) Top-3 (%) Top-5 (%) Top-10 (%) MRR 

Ochiai 38.5 46.2 46.2 65.4 0.47 

Tarantula 0.00 3.85 3.85 7.69 0.04 

Jaccard 0.00 0.00 0.00 11.54 0.03 

Our Metric 38.5 53.9 53.9 73.1 0.49 

 
For RQ2, Table III shows the results of our proposed 

method and other methods, i.e., Ochiai, Tarantula, and Jaccard 
[2], [3], [5], [9]. Both our metric and Ochiai metric produced 
for 10 bugs in Top-1, but Ochiai produced only 46.2% 
average rate in Top-3 and 65.4% in Top-10 level and got 0.47 
in MRR while our metric produced 53.9% in Top-3 and 
73.1% in Top-10 and got 0.49 in MRR. According to the 
results, our metric outperforms other metrics such as Ochiai, 
Tarantula and Jaccard. So, our approach is more effective than 
others in localizing for single-line bugs. 

V. RELATED WORK 

Spectrum-based bug localization is the representative 
among the bug localization approaches [12]. Spectrum-based 
bug localization is the approach which estimates the 
relationship between the information about passed test cases 
failed test cases and the hit spectra information of statements 

[6]. If failed, test case occurs in the runtime, this case means 
that the statement contains a bug.  

Spectrum-based bug localization means how to discover the 
bug location by using coverage information of a11, a10, a01, 
and a00. For example, it assumes that five test cases hit 3rd 
statements 3 times. If one test case among them is failed, this 
statement is likely to contain a bug relatively. However, if all 
test cases are passed, suppose that this statement is not likely 
to contain a bug. There are some representative algorithms 
such as Ochiai and Tarantula. Each algorithm calculates 
suspicious ratio respectively [15]. 

Abreu et al. [3] proposed a metric, called Ochiai, to get 
better effectiveness for bug localization techniques and then to 
enhance its diagnostic quality, they proposed a combination 
framework that is SBBL with a model-based debugging. The 
model-based approach is used for refining the ranking 
obtained from the spectrum-based method. Furthermore, 
Abreu et al. [4] also proposed a fault localization method to 
solve the multiple faults problem. For root cause analysis on 
the J2EE platform, Chen et al. [5] proposed a framework and 
it is targeted at large, dynamic Internet services, such as search 
engines and web-mail services. Jones et al. developed the 
Tarantula tool for the C language and works with spectra 
information [9]. 

In terms of early spectrum-based methods, only failed 
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information is utilized for locating bugs. Based on these 
methods, the later studies obtain the better results by means of 
using both the passing and failing test cases. SBBL method 
uses different metric to evaluate the probability of containing a 
bug of a unit of the program, and a ranking list is produced to 
highlight program units which strongly correlate with failures 
[16]. At present, many formulas of SBBL have already been 
proposed, typical SBBL methods include Ochiai, Jarccard, 
Tarantula, and so on.  

VI. CONCLUSION 

We conclude that the superior performance of our metric is 
in localizing single bugs in Apache Commons Math Library 
project. In this paper, we propose an effective spectrum-based 
bug localization for single-line Java bugs. We evaluated our 
approach on 26 real bugs. In our approach, we only need to 
study SBBL metrics from two collections (i.e., a11, a10). A 
statement executed by more failed test cases has higher 
possibility to be buggy so that it is observed to have the most 
significant outcome on the effectiveness of a metric. The 
experimental results showed that our approach outperforms 
existing three SBFL techniques significantly with low 
overhead.  

In future work, we plan to study the localization of other 
single-line bugs, from large scale real-world Java programs. 
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