
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:13, No:2, 2019

65


Abstract—Software bug localization is one of the most costly

tasks in program repair technique. Therefore, there is a high claim for
automated bug localization techniques that can monitor programmers
to the locations of bugs, with slight human arbitration. Spectrum-
based bug localization aims to help software developers to discover
bugs rapidly by investigating abstractions of the program traces to
make a ranking list of most possible buggy modules. Using the
Apache Commons Math library project, we study the diagnostic
accuracy using our spectrum-based bug localization metric. Our
outcomes show that the greater performance of a specific similarity
coefficient, used to inspect the program spectra, is mostly effective
on localizing of single line bugs.

Keywords—Software testing, fault localization, program spectra.

I. INTRODUCTION

DENTIFYING, localizing and repairing bugs are the vital
activities of software development. While software testing

forms the main activity for identifying program bugs, software
repairing is the process of finding and correcting the buggy
program portions. The bug localization process mentions to
the problem of detecting buggy program portions given the
failures of test execution. It has been recognized as one of the
expensive parts of the repairing process, which justify the vital
research effort for automated bug localization action [1].

Buggy statements in software code may lead the program
failures such as crack or incorrect results and outcomes in the
software development lifecycle. The task to decide and
discover the buggy statements is called bug localization. In a
software system, it will be very time consuming for the
software developer to locate the buggy statements because of
containing thousands of lines of code. Researchers have
designed effective ways to find the buggy statement through
bug localization approaches [1].

One of the popular in software repairing approaches is
Spectrum-based Bug Localization (SBBL). In SBBL, the
statement execution record (program spectra) of passing and
failing test cases are examined to support program developers
to locate the buggy statements. SBBL metrics have been
designated to rank the buggy statements in program code
according to their suspicious scores. In SBBL, statements with
the highest score calculated by the SBBL metric will be
ranked first as it is the most suspiciousness that might be the
buggy statement. On the other hand, the statement with the
lowest score is the safest statement as it is most not likely to

Cherry Oo is with University of Computer Studies, Mandalay, Myanmar
(corresponding author, e-mail: cherryoo@ucsm.edu.mm).

Hnin Min Oo is with University of Computer Studies, Mandalay,
Myanmar (e-mail: hninminoo@ucsm.edu.mm).

be the buggy statement. Through this ranking, software
developer can examine the top ranking statement first to locate
the buggy statement rather than checking statement by
statement from the beginning until the end of the program
code.

The performance of SBBL metric is determined by how
high it ranks the buggy statement based on the suspicious
score calculated from the SBBL metric. In this paper, we
analyze on single line bugs in Apache Commons Math Library
project using our spectrum-based metric. In particular, the
paper makes the following contributions:
• The first study is the comparison the bug-localization

ability of our approach with Ochiai, Tarantula, and
Jaccard. For the subjects studied, our study shows that,
our approach consistently outperforms these techniques,
performing it the best techniques known for bug
localization on these subjects.

• The second study is a description of our approach in terms
of suspicious ranking for their suspiciousness that
provides a way to compare it with the Ochiai, Tarantula,
and Jaccard techniques, as well as other future techniques
[11].

The remaining of this paper is organized as follow: Section
II outlines the background of Spectrum-based Bug
Localization (SBBL), followed by methodology in Section III.
We discussed our experimental results in Section IV and some
related works in Section V and we concluded the paper in
Section VI.

II. PRELIMINARIES

A. Background

As input, a bug localization technique takes a buggy
program and its test suite that contains at least one failing test,
and as output, it produces a ranked list of suspicious statement
locations, such as blocks or statements. In this paper, we use
program statements as the locations [13].

Given a bug localization technique and a buggy program
with a single-line buggy statement, a numerical measure of the
quality of the technique can be computed as follows: (1) run
the bug localization technique to compute the sorted list of
suspicious program statements; (2) use a metric proposed in
the literature to evaluate the effectiveness of a technique [13].

B. Failures, Errors, and Bugs

A program bug is a failure, error, fault, or flaw in a software
that produces an unexpected or incorrect outcome. The bug
repairing process regularly uses proper tools or techniques to
identify bugs, and some computer systems find or repair

Cherry Oo, Hnin Min Oo

Bug Localization on Single-Line Bugs of Apache
Commons Math Library

I

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:13, No:2, 2019

66

various bugs during operations since the 1950s.
Most of the bugs arise from errors and mistakes made in

program source code, or program components. A small
number of bugs are caused by compilers because incorrect
code are produced by compilers. A buggy program can
contain a large number of bugs that seriously interfere with its
functionality. Bugs can affect errors that may have ripple
effects. Bugs may have subtle effects or cause the program to
freeze or crash the computer system.

C. Program Spectra

At run-time, program spectra are collected as the records
that provide an exact observation on the lively behavior of
program for different parts of a program, it classically consists
of a number of flags or counters. In this paper, we work with
statement hit spectra [2].

A hit spectrum of the program statement consists of a
counter for every single statement of the program source code
that indicates in a particular run whether or not that statement
was executed [2].

D. Spectrum-Based Bug Localization

Two types of information are employed by the SBBL
technique and they are gathered during program testing,
clearly outcomes of testing and program spectra. While a
program spectrum is a data collection, the testing outcome
related with records whether each test case is failed or passed
[16].

Given a buggy program P = {S1, S2, . . ., Sj} with j
statements and executed by i test cases T = {T1, T2, . . . , Ti}.
The testing outcomes of all test cases are recorded as spectra
information of the program in form of a matrix. The
component in the ith row and jth column of the matrix denotes
the spectra information of statement Sj , by test case Ti , with
1 indicating Sj is executed, and 0 otherwise [16].

Fig. 1 Buggy program example

TABLE I
TEST-SUITE FOR EXAMPLE BUGGY PROGRAM

Test
Case

Input Expected
Output

Actual
Output a b

Test1 3 5 -2 -2

Test2 5 3 -2 -2

Test3 4 0 4 -4

Test4 0 4 -4 -4

Test5 1 1 0 0

An example is shown in above. Fig. 1 shows a buggy

program that contains six statements {S1, S2, S3, S4, S5, S6},
but we do not consider some statements that contain opening
and closing curly bracket ({}). Table I shows five test cases

{T1, T2, T3, T4, T5} to test the buggy program. Specifically,
four test cases among them pass and T3 gives rise to failed run.
The coverage information for each statement is recorded as a
matrix. Finally, a coverage information matrix is generated by
mean of the gathered information. The matrix is listed as
Table II.

TABLE II

Coverage Information

Test
Case

Statement Error
Status S1 S2 S3 S5

T1 1 1 0 1 0

T2 1 1 0 1 0

T3 1 1 1 0 1

T4 1 1 1 0 0

T5 1 1 0 1 0

In Table II, Si represents a statement of a buggy program; Ti

represents a test case. (Si, Ti)=1 represents Si is covered by test
case Ti; on the contrary, (Si, Ti) = 0 represents Si is not covered
by test case Ti [15]. ErrorStatus denotes the program
execution result of a test case, (Error Status, Ti) = 1 means the
execution effect of Ti is fail whereas (Error Status, Ti)= 0
means pass. In addition, a11, a10, a01 and a00 are coverage
statistics result of statement in program execution. For an
execution of a statement with a test case, only one of these
four symbols can be assigned by value 1, e.g, a11=1 means this
statement is covered by this test case and the result is fail. In
Table I, a11, a10, a01 and a00 are the sum of the result value of a
program execution with each test case respectively [14]. For
example, (S1, a10) = 4 means S1 is covered 4 times in total by
test case set T = (T1, T2, T3, T4, T5). For gathering
aforementioned information accurately and rapidly, our study
utilizes program instrumentation technique to obtain
execution. Furthermore, one of the most popular unit testing
tools- JUnit [20] is used to input test case.

Previous studies have identified some coefficients, such as
Ochiai, and Tarantula, as the best metric to be used for SBBL.
For example, a popular bug localization technique, Ochiai is
defined as follows [2]

))()((*))()((

)(

10110111

11

jajajaja

ja
s j


 (1)

A program statement with higher suspicious value is a

higher likelihood to be buggy. Therefore, the statements are
sorted according to their suspiciousness in descending order
after assigning the suspicious values to all program statements
[10]. Repairing techniques begin from top to bottom of the
ranking list. To identify the buggy statements, an effective
method should be able as top in the ranking list as possible
[16].

III. METHODOLOGY

SBBL techniques inform buggy statements only after
examining a large number of lines or code elements. This
section presents our approach to locate the buggy statements

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:13, No:2, 2019

67

from Apache Commons Math Project. There are two steps in
our approach:
(1) Program spectrum information gathering. The statement

coverage information and its execution result associated
with certain test case set will be gathered.

(2) Calculate the suspicious value. For a program statement,
the suspicious value is calculated by purposed bug
localization method, respectively.

A. Apache Commons Math Library

The Apache Commons is a project of the Apache Software
Foundation. The purpose is to provide reusable, open source
Java software [8]. Commons Math is distributed under the
terms of the Apache License, Version 2.0. Apache Commons
Math consists of mathematical functions, structures
representing mathematical concepts (like complex numbers,
polynomials, vectors, etc.), and algorithms that we can apply
to these structures (root finding, optimization, curve fitting,
computation of intersections of geometrical figures, etc.).
Apache Commons Math Library consists of 106 bugs in total.
Among them, 26 bugs are single line bugs. We apply our
spectrum-based ranking metric to localize the single line bugs
in Apache Commons Math Library. In debugging process, we
can repair single line bugs with some patterns such as, one line
removal, one line addition, or one line replacement.

B. Program Spectrum Information Gathering

Program spectrum or coverage information reflects a certain
face of a program execution. More specifically, coverage
information shows whether a program unit is executed during
execution with a certain test case. This information has been
widely used in software testing, and it also can be used for
fault localization. While program unit can be defined
variously, such as statement, basic block, predicate, method
and path, etc. In our study, statement coverage information is
utilized since it is simple to calculate, and most important of
all, the benefit of statement coverage is its ability to be used
for statement-level bug localization. In addition, the
corresponding execution result is also collected.

Our approach collected spectra information such as a11,
a10, a01 and weight for each buggy statement while other
SBBL techniques collected spectra information such as a11,
a10, a01 and a00. We use weight value instead of a00 because
the number of test cases is required and it is important whether
each buggy statement is passed or failed by test cases [17]. So,
we find that the weight values depend on

}1|{  Sjpweighti (2)

In (2), p means the number of test cases which pass on each

statement Sj. We calculate the suspiciousness of each buggy
statement using the collected spectra information.

C. Calculating the Suspiciousness

Spectrum-based bug localization methods generally
calculate the suspicious value by using collected information,
such as a11, a10, a01 and a00 (but we did not use this one).
Researchers have proposed many formulas for calculating the

suspicious value, and program units are ranked by the value to
predict the probability of containing fault. Our SBBL metric
is:

j
j weightjajaja

ja
s




)()()(

)(

011011

11 (3)

In the above equation, a11 means the case which discovers
bug when statement is passed. a10 means the case which does
not discover bug when statement is passed. a01 means the case
which discovers bug when statement is not passed and weightj
means the number of test case which passes on each statement.

IV. EMPIRICAL EVALUATION

Our experiments were performed on Intel(R) Core(TM) i3-
6100U CPU @2.30GHz machine with 4.00 GB of RAM.

The effectiveness of SBBL technique is determined by the
set of failed and passed test cases. Using two sets of test cases
to locate, bugs may not be the most efficient approach [14].
We explore the following research questions:
RQ1: How the effectiveness of existing bug localization
methods in the same program associated with test case set?
RQ2: How the effectiveness of our proposed method
compared with some existing automatic bug localization
methods.

We apply our SBBL technique to Apache Commons Math
Library project, and check the output ranked list of single-line
bugs identified as likely bug locations.

Fig. 2 Ranked list of single-line bugs using our metric

Fig. 2 shows the results of our method on single-line bugs

from Apache Commons Math Library project. We made the
localization of 26 single-line bugs by our method. We
localized 10 out of 26 single-line bugs in rank one.

A. Evaluation Metric

For evaluating a bug localization technique, one important
principle is to measure its effectiveness, such as statements
that are inspected by programmers to locate the bugs. Also, a
test set, when executed against the same program but in two
altered environments, may result in two different sets of test
cases [14]. To evaluate the effectiveness of our approach, we
considered the following two metrics: mean reciprocal rank
(MRR), and top N rank. MRR and top N rank are widely used

1 1 1 1 12 1 1

92

18 1 2 2 12 1

84

3 1 6 1 7 6 3

108

6 0 6

M
A

T
H

2
M

A
T

H
5

M
A

T
H

10
M

A
T

H
11

M
A

T
H

20
M

A
T

H
27

M
A

T
H

30
M

A
T

H
32

M
A

T
H

33
M

A
T

H
34

M
A

T
H

41
M

A
T

H
57

M
A

T
H

58
M

A
T

H
59

M
A

T
H

63
M

A
T

H
69

M
A

T
H

70
M

A
T

H
75

M
A

T
H

80
M

A
T

H
82

M
A

T
H

85
M

A
T

H
94

M
A

T
H

96
M

A
T

H
10

1
M

A
T

H
10

4
M

A
T

H
10

5

R
an

k

Bug ID

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:13, No:2, 2019

68

to evaluate bug localization techniques [7], [18].
Top-N: This metric counts the number of successfully

localized within Top-N (N=1, 3, 5, 10) ranked results. If the
bug localization techniques share the same score, we use the
average position to present bug location. Higher Top-N
denotes more effective bug localization [19].

Mean Reciprocal Rank (MRR): The reciprocal rank of a
query is the reciprocal of the position for the first buggy
statement in the results that is ranked as suspicious. MRR is
the mean of the reciprocal ranks of the results of a set of
statements, Q, and it can be calculated as follows:





||

1

1

||

1 Q

i irankQ
MRR (4)

MRR covers the overall quality of ranked suspicious

statements. Larger values of all metrics indicate better
accuracy [18].

B. Experimental Results

For RQ1, Fig. 2 shows the results of our proposed method.
Both our metric and Ochiai metric got the top one position for
10 bugs, but Ochiai localized 12 bugs within top three and 17
bugs within top ten ranking list while our metric localized 14
bugs within top three and 19 bugs within top ten ranking list.

Fig. 3 Rank Level Comparison of Ochiai and Our Metric

TABLE III
Top-N and MRR Comparison with other approaches

Approach Top-1 (%) Top-3 (%) Top-5 (%) Top-10 (%) MRR

Ochiai 38.5 46.2 46.2 65.4 0.47

Tarantula 0.00 3.85 3.85 7.69 0.04

Jaccard 0.00 0.00 0.00 11.54 0.03

Our Metric 38.5 53.9 53.9 73.1 0.49

For RQ2, Table III shows the results of our proposed

method and other methods, i.e., Ochiai, Tarantula, and Jaccard
[2], [3], [5], [9]. Both our metric and Ochiai metric produced
for 10 bugs in Top-1, but Ochiai produced only 46.2%
average rate in Top-3 and 65.4% in Top-10 level and got 0.47
in MRR while our metric produced 53.9% in Top-3 and
73.1% in Top-10 and got 0.49 in MRR. According to the
results, our metric outperforms other metrics such as Ochiai,
Tarantula and Jaccard. So, our approach is more effective than
others in localizing for single-line bugs.

V. RELATED WORK

Spectrum-based bug localization is the representative
among the bug localization approaches [12]. Spectrum-based
bug localization is the approach which estimates the
relationship between the information about passed test cases
failed test cases and the hit spectra information of statements

[6]. If failed, test case occurs in the runtime, this case means
that the statement contains a bug.

Spectrum-based bug localization means how to discover the
bug location by using coverage information of a11, a10, a01,
and a00. For example, it assumes that five test cases hit 3rd
statements 3 times. If one test case among them is failed, this
statement is likely to contain a bug relatively. However, if all
test cases are passed, suppose that this statement is not likely
to contain a bug. There are some representative algorithms
such as Ochiai and Tarantula. Each algorithm calculates
suspicious ratio respectively [15].

Abreu et al. [3] proposed a metric, called Ochiai, to get
better effectiveness for bug localization techniques and then to
enhance its diagnostic quality, they proposed a combination
framework that is SBBL with a model-based debugging. The
model-based approach is used for refining the ranking
obtained from the spectrum-based method. Furthermore,
Abreu et al. [4] also proposed a fault localization method to
solve the multiple faults problem. For root cause analysis on
the J2EE platform, Chen et al. [5] proposed a framework and
it is targeted at large, dynamic Internet services, such as search
engines and web-mail services. Jones et al. developed the
Tarantula tool for the C language and works with spectra
information [9].

In terms of early spectrum-based methods, only failed

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:13, No:2, 2019

69

information is utilized for locating bugs. Based on these
methods, the later studies obtain the better results by means of
using both the passing and failing test cases. SBBL method
uses different metric to evaluate the probability of containing a
bug of a unit of the program, and a ranking list is produced to
highlight program units which strongly correlate with failures
[16]. At present, many formulas of SBBL have already been
proposed, typical SBBL methods include Ochiai, Jarccard,
Tarantula, and so on.

VI. CONCLUSION

We conclude that the superior performance of our metric is
in localizing single bugs in Apache Commons Math Library
project. In this paper, we propose an effective spectrum-based
bug localization for single-line Java bugs. We evaluated our
approach on 26 real bugs. In our approach, we only need to
study SBBL metrics from two collections (i.e., a11, a10). A
statement executed by more failed test cases has higher
possibility to be buggy so that it is observed to have the most
significant outcome on the effectiveness of a metric. The
experimental results showed that our approach outperforms
existing three SBFL techniques significantly with low
overhead.

In future work, we plan to study the localization of other
single-line bugs, from large scale real-world Java programs.

REFERENCES
[1] Abreu, R., Zoeteweij, P., Golsteijn, R. and Van Gemund, A.J., 2009. A

practical evaluation of spectrum-based fault localization. Journal of
Systems and Software, 82(11), pp.1780-1792.

[2] Abreu, R., Zoeteweij, P. and Van Gemund, A.J., 2006, December. An
evaluation of similarity coefficients for software fault localization. In
Dependable Computing, 2006. PRDC'06. 12th Pacific Rim International
Symposium on (pp. 39-46). IEEE.

[3] Abreu, R., Zoeteweij, P. and Van Gemund, A.J., 2007, September. On
the accuracy of spectrum-based fault localization. In Testing: Academic
and Industrial Conference Practice and Research Techniques-Mutation
(Taicpart-Mutation 2007) (pp. 89-98). IEEE.

[4] Abreu, R., Zoeteweij, P. and Van Gemund, A.J., 2009, November.
Spectrum-based multiple fault localization. In Proceedings of the 2009
IEEE/ACM International Conference on Automated Software
Engineering (pp. 88-99). IEEE Computer Society.

[5] Chen, M.Y., Kiciman, E., Fratkin, E., Fox, A. and Brewer, E., 2002,
June. Pinpoint: Problem determination in large, dynamic internet
services. In null (p. 595). IEEE.

[6] Fu, W., Yu, H., Fan, G., Ji, X. and Pei, X., 2017, November. A Test
Suite Reduction Approach to Improving the Effectiveness of Fault
Localization. In Software Analysis, Testing and Evolution (SATE), 2017
International Conference on (pp. 10-19). IEEE.

[7] Gharibi, R., Rasekh, A.H. and Sadreddini, M.H., 2017, October.
Locating relevant source files for bug reports using textual analysis. In
Computer Science and Software Engineering Conference (CSSE), 2017
International Symposium on (pp. 67-72). IEEE.

[8] Hall, T., Zhang, M., Bowes, D. and Sun, Y., 2014. Some code smells
have a significant but small effect on faults. ACM Transactions on
Software Engineering and Methodology (TOSEM), 23(4), p.33.

[9] Jones, J.A. and Harrold, M.J., 2005, November. Empirical evaluation of
the tarantula automatic fault-localization technique. In Proceedings of
the 20th IEEE/ACM international Conference on Automated software
engineering (pp. 273-282). ACM.

[10] Laghari, G., Murgia, A. and Demeyer, S., 2016, August. Fine-tuning
spectrum based fault localisation with frequent method item sets. In
Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering (pp. 274-285). ACM.

[11] Le, T. D. B., Lo, D. and Li, M., 2015, September. Constrained feature

selection for localizing faults. In 2015 IEEE International Conference on
Software Maintenance and Evolution (ICSME) (pp. 501-505). IEEE.

[12] Le, T. D. B., Oentaryo, R. J. and Lo, D., 2015, August. Information
retrieval and spectrum based bug localization: better together. In
Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering (pp. 579-590). ACM.

[13] Pearson, S., Campos, J., Just, R., Fraser, G., Abreu, R., Ernst, M.D.,
Pang, D. and Keller, B., 2017, May. Evaluating and improving fault
localization. In Proceedings of the 39th International Conference on
Software Engineering (pp. 609-620). IEEE Press.

[14] Schneidewind, N., Montrose, M., Feinberg, A., Ghazarian, A., McLinn,
J., Hansen, C., Laplante, P., Sinnadurai, N., Zio, E., Linger, R. and
Wong, E., 2010. IEEE Reliability Society Technical Operations Annual
Technical Report for 2010. IEEE Transactions on Reliability, 59(3),
pp.449-482.

[15] Wong, W.E., Qi, Y., Zhao, L. and Cai, K.Y., 2007, July. Effective fault
localization using code coverage. In Computer Software and
Applications Conference, 2007. COMPSAC 2007. 31st Annual
International (Vol. 1, pp. 449-456). IEEE.

[16] Xie, X., Chen, T.Y., Kuo, F.C. and Xu, B., 2013. A theoretical analysis
of the risk evaluation formulas for spectrum-based fault localization.
ACM Transactions on Software Engineering and Methodology
(TOSEM), 22(4), p.31.

[17] Xu, Y., Yin, B., Zheng, Z., Zhang, X., Li, C. and Yang, S., 2019.
Robustness of spectrum-based fault localisation in environments with
labelling perturbations. Journal of Systems and Software, 147, pp.172-
214.

 Youm, K.C., Ahn, J. and Lee, E., 2017. Improved bug localization based [18]
on code change histories and bug reports. Information and Software
Technology, 82, pp.177-192.

 Zhang, M., Li, X., Zhang, L. and Khurshid, S., 2017, July. Boosting [19]
spectrum-based fault localization using PageRank. In Proceedings of the
26th ACM SIGSOFT International Symposium on Software Testing and
Analysis (pp. 261-272). ACM.

[20] JUnit, http://www.junit.org.

