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Abstract—The primary focus of this paper is the generation of
energy-optimal speed trajectories for heterogeneous electric vehicle
platoons in urban driving conditions. Optimal speed trajectories are
generated for individual vehicles and for an entire platoon under
the assumption that they can be executed without errors, as would
be the case for self-driving vehicles. It is then shown that the
optimization for the “average vehicle in the platoon” generates similar
transportation energy savings to optimizing speed trajectories for
each vehicle individually. The introduced approach only requires the
lead vehicle to run the optimization software while the remaining
vehicles are only required to have adaptive cruise control capability.
The achieved energy savings are typically between 30% and 50%
for stop-to-stop segments in cities. The prime motivation of urban
platooning comes from the fact that urban platoons efficiently utilize
the available space and the minimization of transportation energy in
cities is important for many reasons, i.e., for environmental, power,
and range considerations.

Keywords—Electric vehicles, energy efficiency, optimization,
platooning, self-driving vehicles, urban traffic.

I. INTRODUCTION

W ITH the confluence of self-driving cars and a

smart transportation infrastructure, the opportunity

of embedding algorithms into vehicles to optimize their

operations is an obvious choice. One goal of such an algorithm

could be minimizing the transportation energy utilized by a

vehicle. Also, in [1], it is shown that by adding a sufficient

portion of autonomous vehicles executing these embedded

algorithms, the effect of stop-and-go waves in highways can

be minimized, at least in dense traffic, benefiting not only the

optimized but also the surrounding vehicles.

This paper explores vehicle-embedded algorithms that

minimize energy usage by electric vehicles (EVs) in urban

platoons from stop-to-stop segments. While the approach taken

can theoretically be applied to any type of vehicle, this paper

is limited to electric drive systems. The proposed concept

analyzes the expended battery energy for a heterogeneous mix

of vehicles driving through a typical urban scenario, i.e., from

stop-to-stop. To do so, the vehicles in the mix, the distance

to be covered, and the desired average speed between two

stops are taken into account. The proposed optimization then

generates an optimal speed-versus-time trajectory that satisfies

the given constraints and will minimize the transportation

energy for the platoon of electric vehicles. In order to perform

this optimization, the lead vehicle needs to be aware of all

vehicles in the platoon. The optimization algorithm uses these

parameters and drive segment information to generate the
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energy-optimal speed profiles that will be executed by the

platoon.

The concept of urban platooning analyzed in this paper is

important for three main reasons. First, a speed profile that is

realizable for all vehicles in the platoon which also minimizes

the overall transportation energy can be generated. Second,

vehicles that are not equipped with the transportation energy

optimization algorithm or are not fully autonomous but are

only equipped with adaptive cruise control are capable of

joining the platoon and, therefore, obtaining energy savings.

Finally, in dedicated lanes of traffic such as high-occupancy

vehicle (HOV) lanes or bus lanes, platoons are capable of

providing efficient space usage.

A number of studies have shown that heavy-duty vehicle

(HDV) platooning can generate savings in fuel consumption.

The improvement obtained in each study can vary depending

on the testing procedure chosen. In [2], the improvement

obtained varied from 3.8-7.7%, while improvements between

7-16% were observed in [3]. Results shown in the literature

also show savings for both, leading vehicle (4-5%) and

following vehicles (10-14%) [4]. Platoon of heavy-duty hybrid

vehicles have also been studied, where an additional 11% of

improvement could be achieved in comparison to platoons of

vehicles equipped with regular internal combustion engines

(ICEs) [5].

Platoons of electric vehicles have been studied as well.

However, in general, these studies tend to focus more on

the communication technologies utilized between vehicles [6]

and systems to control the execution of these platoons [7].

A different approach to vehicle platoons is analyzed in [8],

which studies a wireless power transmission system to charge

electric vehicle batteries at low speeds without stopping the

vehicle while the EVs move in a platoon formation.

In contrast to the aforementioned work, the platoons

analyzed in this paper are constituted of small, personal

vehicles. In addition, instead of optimizing the energy

consumption for long segments (highway operation), we focus

on the urban and suburban scenarios, where stops due to traffic

lights and stop signs are inevitable.

The numerical optimization of speed profiles between

stops for vehicles equipped with internal combustion engines

has already been studied based on extensive on-road and

dynamometer testing of a number of vehicles [9]. Guidelines

for how a driver should operate the vehicle were then created;

however, in some cases, these guidelines differed significantly,

even for similar vehicles. Energy-optimal speed trajectories

for large vehicles were also considered in [10]. However, the

analysis was based on vehicles equipped with ICEs where their

efficiency and its dependency on speed and torque were not
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taken into account.
From the results obtained in this paper, it is noticeable

how either, utilizing the speed profile generated for an

average vehicle in the platoon or each vehicle executing

its own optimal speed trajectory produce significant savings

in transportation energy. However, by utilizing the average

vehicle model, all vehicles in the platoon are capable of

executing the optimal trajectory, i.e., the possibility of a

vehicle not being able to execute its optimal trajectory due

to the presence of another (slower) vehicle in front of it is

eliminated.
The energy optimization for urban scenarios usually focuses

on generating savings and reduction of emissions by reducing

speed variations and idling times. This is frequently done by

calculating speeds for which the probability of green lights

when approaching signalized intersections based on traffic

light controller information is maximized [11], [12]. In some

cases, multiple available no-stop speed profiles are analyzed

in order to choose the one that utilizes the minimum amount

of energy [13].
This paper is structured as follows: in Section II, the model

for power flow and energy of a single electric vehicle and

for a platoon of EVs is introduced. Section III starts by

describing a speed-optimization scheme used to minimize the

transportation energy of a vehicle. It then provides simulations

for different scenarios of the single vehicle case followed by

simulations for a platoon of vehicles where the impact caused

by the size and average speed of the platoon as well as the

length of the optimized segment are analyzed. Section IV

provides conclusions and future research topics.

II. THE MODEL

A. Single Vehicle Analysis
In order to calculate the energy used to execute a speed

trajectory by a platoon of vehicles, one needs to be able

to calculate the energy usage of each individual vehicle.

The individual energy of a vehicle can be calculated by

considering all power-absorbing components, i.e., air drag,

rolling resistance, variations in kinetic energy, and hill

climbing. Based on models presented in [14], the sum of all

power-absorbing components provides us with the power at

the wheel of single vehicle Pw, as shown in (1). The analysis

presented in this paper assumes a flat surface, i.e., no hill

climbing. To calculate the power at the wheel, one needs

to know the vehicle and environmental parameters, such as

mass m, frontal drag coefficient Cd, cross-sectional area A,

rolling resistance coefficient fr, air density ρ, and gravitational

acceleration g. The vehicle mass includes the driveline inertia,

which appears as a constant additional mass, i.e., a single gear

transmission is assumed [15]. The velocity of the vehicle is

denoted by v(t) and its acceleration by v̇(t).

Pw(t) = mv(t)v̇(t) + 1/2CdAρv(t)
3 +mgfrv(t) (1)

Based on (1), it is possible to obtain a discretized equation

for the energy at the wheel of the vehicle Ew,n as shown in

(2).

Ew,n =
m

2

(
v2n+1 − v2n

)
+

1

2
CdAρv

3
nΔt+mgfrvnΔt (2)

Fig. 1 Typical characterization of efficiencies.

where n is the index of a discretized time segment. The

acceleration of the vehicle is approximated by the difference

in kinetic energy at each segment.

The energy at the battery Eb,n for forward motion and

regenerative braking, i.e., reverse power flow, is then given

by (3):

ΔEb,n =

{
ηfrw(T, ω)

−1Ew,n for Ew,n ≥ 0

ηreg(T, ω) Ew,n for Ew,n < 0
(3)

where ηfrw(T, ω) and ηreg(T, ω) are the efficiency of the

vehicle for forward power flow and reverse power flow,

respectively. T is the torque of the motor, and ω is its

rotational speed. The efficiency values correspond to the

complete powertrain, including the mechanical drivetrain and

battery efficiencies which have very little variations under

different power levels. Fig. 1 shows a typical characterization

of efficiency. Note that at T and ω equal to zero the efficiencies

are also equal to zero.

Therefore, by adding all discretized energy segments, the

total energy drained from the battery E is given by (4), where

N is the final discrete time-segment, i.e., when the vehicle

reaches a stop.

E =

N∑
n=1

ΔEb,n (4)

B. Platoon Analysis

Having the model for the energy utilized by a single vehicle,

the total energy utilized by the platoon is then given by the

summation of every vehicle in the mix. Assuming a group of

M vehicles with energy consumption Em, m = {1, ...,M},

the total energy of the platoon Ep is given by (5):

Ep =
M∑

m=1

Em (5)

With the aforementioned assumption, the energy of the

platoon can be expressed as shown in (6).

Ep =
M∑

m=1

( N∑
n=1

αm

(
v2n+1−v2n

)
+βmv3nΔt+γmvnΔt

)
(6)

where:

αm =
mm

2
(7)
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βm =
1

2
Cd,mAmρ (8)

γm = mmgfr,m (9)

Assuming all vehicles in the platoon move at the same speed

at all times, we have:

Ep =
N∑

n=1

( M∑
m=1

αm

)(
v2n+1 − v2n

)
+

( M∑
m=1

βm

)
v3nΔt

+
( M∑

m=1

γm

)
vnΔt

(10)

Substituting the inner summations with constants (A, B,

and C), the total energy can be expressed as the energy of a

vehicle with its parameters equivalent to the summation of the

parameters of all individual vehicles.

Ep =
N∑

n=1

A
(
v2n+1 − v2n

)
+Bv3nΔt+ CvnΔt (11)

Dividing Ep by M provides the energy consumption for an

“average vehicle in the platoon”, i.e.,

Eavg =
Ep

M
=

N∑
n=1

A

M

(
v2n+1 − v2n

)
+

B

M
v3nΔt+

C

M
vnΔt

(12)

In (12), the expressions A/M , B/M , C/M correspond to

the average platoon vehicle coefficients related to mass, airdrag

and rolling resistance.

III. SIMULATIONS

A. Optimization Problem

In order to minimize the transportation energy between two

consecutive stops, one needs to accelerate and decelerate the

vehicle utilizing the most efficient operating points of the

drivetrain. An optimization problem can be formulated in order

to find a speed profile that minimizes the energy consumption

of a vehicle.

The aforementioned optimization problem can be set as

shown in (13).

min
vn

N∑
n=1

ΔEb,n

s.t.
N∑

n=1

vn
N

= vavg

0 ≤ vn ≤ vmax

dmax ≤ vn+1 − vn
Δt

≤ amax ∀ n ∈ {1, ..., N − 1}

dmax ≤ −vn
Δt

≤ amax if n = N

(13)

where vavg is the desired average speed, vmax is the maximum

allowed speed, dmax is the maximum allowable deceleration,

and amax is the maximum allowable acceleration.

The optimization problem can then be solved by a nonlinear

programming (NLP) algorithm, as the one used in MATLAB’s

fmincon.

B. Speed Profiles

In most cases, vehicle platoons are analyzed for large

vehicles moving at high speeds [2]- [4]. In contrast, the mix

of vehicles utilized in the simulations shown in this paper

consist of five types of small, personal EVs. The parameters

of each one are listed in Table I. The parameter sets are based

on the vehicles Tesla Model S, Nissan Leaf, Honda Fit, Fiat

500e, and BMW i3. For each vehicle, a scaled version of

the efficiency map shown in Fig. 1 was used as its efficiency

characterizations.

Fig. 2 shows a typical speed profile (blue) and the generated

optimal speed profile (orange) for a vehicle type 4 in a

short segment (500m). It also shows the vehicle’s energy

consumption for such segment as well as its efficiency

for each scenario. For the purpose of this paper, typical

speed trajectories were generated by scaling and averaging

stop-to-stop segments from the FTP 75 urban cycle [16].

Segments with significant speed variations were not considered

since speed variations are a known cause of unnecessary

energy usage [11]. This approximation of typical speed profiles

maintains the initial acceleration close to typical acceleration

values in urban scenarios, e.g., around 1.35m/s2 when the

final velocity is 10m/s [17].

In contrast to short optimized segments, for longer traveled

distances, there are multiple periods of coasting. The vehicle

accelerates and coasts repeatedly before the final slowdown,

i.e., when the vehicle reaches a complete stop. This behavior

can be seen in the simulation shown in Fig. 3 which

corresponds to a 1000-meter segment executed by the same

vehicle type 4.

C. Urban Platoon

Building upon the concept of energy-optimal speed profiles

for a single vehicle shown in Section III-B, multiple

simulations were performed where the number and types of

vehicles in the platoon, segment length, and average speed

were varied to study the viability of an urban platoon. The

obtained results are shown below.

In order to analyze the energy savings generated by an urban

platoon, the concept of a dedicated lane of traffic where EVs

can execute their optimal speed trajectories is assumed. This

approach may take advantage of existing HOV lanes or bus

lanes. The concept of an urban platoon for optimized EVs is

important due to the difference in characteristics between each

vehicle as well as its efficient usage of space of such dedicated

lanes. Due to the difference in vehicle parameters, it is likely

that the optimal speed trajectory for a type of vehicle may not

be the optimal trajectory, or even be infeasible, for another

vehicle.

To analyze the energy savings of a heterogeneous mix of

platoon vehicles, a random group of uniformly distributed EVs

of the types shown in Table I is assumed. The total energy

consumed by the mix of vehicles is calculated for the cases

where each vehicle is executing a typical speed trajectory, each

vehicle is executing an optimal trajectory based on its own

characteristics, and a scenario where the vehicles execute a

trajectory optimized for an average vehicle in the platoon. As
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TABLE I
VEHICLE PARAMETER SETS UTILIZED IN SIMULATIONS

Vehicle Mass (kg) Frontal area (m2) Drag coefficient Max. acceleration
(m/s2)

Max. deceleration
(m/s2)

Vehicle type 1 2,018 2.8 0.24 8 2.5
Vehicle type 2 1,525 2.27 0.29 4.6 2
Vehicle type 3 1,475 2 0.28 2 1.5
Vehicle type 4 1,351 2.25 0.311 4.8 2
Vehicle type 5 1,390 2.38 0.3 5 2

(a)

(b)

(c)

Fig. 2 (a) Typical and optimal speed trajectories, (b) corresponding
cumulative energy consumption, and (c) efficiencies over a 500-meter

segment.

shown in Section II-B, the average vehicle in the platoon has

average rolling resistance, air drag coefficient, cross-sectional

area, and mass. It is important to note that the values for

maximum acceleration and deceleration obey (14) and (15)

amax = min(amax,m) ∀ m ∈ {1, ...,M} (14)

dmax = min(dmax,m) ∀ m ∈ {1, ...,M} (15)

where M is the total number of vehicles in the platoon. In

(a)

(b)

Fig. 3 (a) Typical and optimal speed trajectories and (b) corresponding
cumulative energy consumption over a 1000-meter segment.

order to generate the optimal speed trajectory for the average

vehicle model, it is assumed that basic infrastructure and traffic

flow information is available. In other words, the vehicles

know the parameter set of each vehicle in the platoon as well

as the distance to the next stop.

It is important to note that due to the difference in

parameters between each vehicle in the platoon, vehicles

would coast by decelerating at different rates. By optimizing

the speed profile for the average vehicle in the platoon, during

the coasting segment of the generated trajectory, some vehicles

may be coasting, some may be braking and regenerating

energy, while others may be applying small amounts of power

to the wheels. However, the optimized trajectory is still capable

of reducing the overall energy consumption.

Fig. 4 shows the total energy utilized by the platoon in

a 500-meter segment (blue/left axis) and for a 1000-meter

segment (orange/right axis) as a function of the number of

vehicles in it. The assumption that all vehicles start executing

the optimal speed profile at the same instant as well as that all

vehicles are capable of perfectly following the optimal speed
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Fig. 4 Total energy spent by vehicles in a platoon for a 500m segment.

Fig. 5 Improvement in total energy spent by vehicles in a platoon for a
500m segment.

trajectory is made. It is noticeable how either, utilizing the

speed profile generated for an average vehicle in the platoon

or each vehicle executing its own optimal speed trajectory

produce significant savings in transportation energy.

Fig. 5 shows the percentage savings in energy transportation

for both scenarios, i.e., utilizing the average model and each

vehicle individually optimizing its speed trajectories. For the

realizations shown in Fig. 4 and 5, the savings obtained while

using the speed profile optimized for an average vehicle are,

on average, 3.65% inferior to individually optimizing each

vehicle for the 500-meter segment (blue/left axis). For the

1000-meter segment, the difference is equal to 4.36%. Since

optimizing every vehicle individually would likely generate a

non-realizable platoon due to different cruising speeds, it is

clear that the concept of an urban platoon provides a great

opportunity for reducing transportation energy in a scenario

where stops are necessary.

The impact that the segment length has on transportation

energy savings was also analyzed. Fig. 6 shows the energy

consumption for a platoon of 10 randomly chosen vehicles

with an average speed of 10 m/s for segments varying from

500 m to 1000 m. The respective savings obtained are shown

in Fig. 7. It is clear that the savings produced by either,

individually optimizing each vehicle or optimizing the speed

profile for an average vehicle in the platoon maintain relatively

constant savings, with little changes based on the segment

length.

Similarly, Fig. 8 shows the energy cost for a platoon of

10 randomly chosen vehicles in a segment of 500 m with

Fig. 6 Total energy spent by 10 randomly chosen vehicles in a platoon for
different segment lengths with an average speed of 10 m/s.

Fig. 7 Improvement in total energy spent by 10 randomly chosen vehicles in
a platoon for different segment lengths with an average speed of 10 m/s.

their average speed varying from 6 to 11 m/s. Fig. 9 shows

the improvement obtained in each scenario. As in the results

obtained in the previous case, the energy savings stayed

relatively constant across the velocities tested with the average

vehicle in the platoon and the individually optimized vehicles.

The impact of the reduction in air drag caused by the

formation of a platoon is not analyzed in this paper. The work

shown in [3] shows that these savings can exceed 15% for large

vehicles at high speeds. The savings are expected to be much

lower for small vehicles moving at lower speeds; however, the

difference in air drag may reduce the gap in savings between

the individually optimized vehicles and the average vehicle in

the platoon that is shown in Fig. 5, 7 and 9.

IV. CONCLUSION

In this paper, we presented an optimization scheme to

generate energy-optimal speed trajectories as well as an

analysis of vehicle platoons in urban scenarios, i.e., platoons

of vehicles executing such energy-optimal speed trajectories

between two stops. It is shown that comparing the optimal

speed trajectory generated for a single vehicle with typical

speed trajectories seen in urban traffic, savings of more than

50% can be achieved. It is also shown that these savings

can be carried over to platoons of EVs in dedicated lanes

of traffic. The urban platoon can reach savings of almost

50% in typical urban and suburban stop-to-stop drive segments

when compared to typically-seen speed profiles. This, in turn,

corresponds to a range increase of almost 100%. The savings
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Fig. 8 Total energy spent by 10 randomly chosen vehicles in a platoon for
different average speeds in a 500-meter segment.

Fig. 9 Improvement in total energy spent by 10 randomly chosen vehicles in
a platoon for different average speeds in a 500-meter segment.

are dependent on the vehicles that constitute the platoon, but

consistent results were obtained for a number of randomly

assigned mixes of vehicles in the platoon. Therefore, urban

platoons for self-driving EVs can improve their range due to

lower energy expenditure, reduce the demand from the grid

caused through vehicle charging, and lower their operating

cost. Consequently, an effect on emissions and thereby, global

warming could be also achieved.

It is also shown that the urban platoons are capable of

producing savings that are close to the ones seen by each

vehicle optimizing its own speed profile, a difference of less

than 5% for the realizations shown in this paper. Even though

it is not analyzed in this paper, the reduction in air drag

seen by vehicles caused by all vehicles moving in unison,

i.e., performing the same trajectory, would certainly reduce

the difference in savings between both cases. Of course, this

requires short distances between vehicles, which is possible

with connected vehicle approaches.

In order to realize the urban platoon, basic communication

between vehicles is assumed. A vehicle that is generating

an optimal speed profile for a platoon of vehicles needs

to be aware of the parameter set of all vehicles present in

the platoon. It is also necessary for the vehicles to have

basic awareness about the road infrastructure; i.e., the vehicle

needs to know the distance between two consecutive stops as

well as the maximum speed allowed for such segment. This

information could be easily retrieved from traffic applications

that utilize geopositioning systems such as Google Maps or

Waze.

The idea of an urban platoon presented in this paper

can be implemented through different approaches. One such

approach could be every vehicle exchanging its parameter set

and each individual vehicle would then generate an optimal

speed profile to be executed. A second and perhaps less

computationally intensive strategy would be only the first

vehicle in queue generating an optimal speed profile for the

average vehicle in the platoon and all other vehicles follow

its lead by using adaptive cruise control or another distance

control scheme. The second approach would also allow more

vehicles to join the platoon after it has already started where

the only impact would be the average vehicle model not

considering all vehicles in the mix.
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