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Abstract—Electricity markets throughout the world have
undergone substantial changes. Accurate, reliable, clear and
comprehensible modeling and forecasting of different variables
(loads and prices in the first instance) have achieved increasing
importance. In this paper, we describe the actual state of the
art focusing on reg-SARMA methods, which have proven to be
flexible enough to accommodate the electricity price/load behavior
satisfactory. More specifically, we will discuss: 1) The dichotomy
between point and interval forecasts; 2) The difficult choice between
stochastic (e.g. climatic variation) and non-deterministic predictors
(e.g. calendar variables); 3) The confrontation between modelling
a single aggregate time series or creating separated and potentially
different models of sub-series. The noteworthy point that we would
like to make it emerge is that prices and loads require different
approaches that appear irreconcilable even though must be made
reconcilable for the interests and activities of energy companies.

Keywords—Forecasting problem, interval forecasts, time series,
electricity prices, reg-plus-SARMA methods.

I. INTRODUCTION

ASTRATEGIC objective of companies operating in energy

markets is to have accurate forecasts that, by reducing

uncertainty in predicting the effects of management, can

lead to substantial improvements in efficiency in operations,

reduction of maintaining costs and increased reliability of

power supply.

Over the last few decades, there are many references to the

efforts improving the accuracy of short term load forecasting.

The classical linear regression is a popular tool to investigate

the relationship between a set of regressors and load so as to

forecast the load, on the basis of the values of the predictors.

Model’s parameters are estimated by applying the ordinary

least squares technique, which involves the minimization of

the sum of squared deviations (residuals) between observed

expected values given the fitted model.

The goal of this paper is to discuss forecasting issues

within the framework of the Reg-SARMA approach for short

term forecasting of hourly electricity load. In the first stage,

estimated loads are derived from a classical linear regression

model (CLR) with non-stochastic predictors. In stage two, the

residuals of stage one are examined by means of Box-Jenkins

processes ( [2]), to ascertain whether they are random, or

whether they still bear patterns that can be used to improve

fitting and enhance forecast accuracy. In this regard, we

have ascertained ( [1]) that the Reg-SARMA approach is not

only effective in eliminating the harmful presence of serial

dependence between regression residuals, but also easy to
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implement and satisfactory with respect of the predicted loads.

In many respects, there remain some specific problems.

The present paper proceeds as follows. After presenting

the Reg-SARMA approach, Section II outlines the dichotomy

between point and interval forecasts and analyzes the difficult

choice between stochastic and non-deterministic regressors.

Section III discusses thecomparison between modelling a

unique hourly time series or creating separated and potentially

different models (one of each hour) of multiple time series to

be analyzed separately. Finally, Section IV contains concluding

remarks and future research.

II. REG-SARMA APPROACH

The proposed model has the following form

Yt = β0 +
m∑
j=1

βjXt,j + et, (1)

where Lt is the hourly electric price/load expressed in MWh
and Xt,j , j = 1, 2, · · · ,m are the regressors or predictors.

Each βj is a parameter that measures how Yt is related to the

j-th predictor: ∂Yt/∂Xt,j = βj . Thus, coefficients measure

the marginal effects of the predictor variables. One way to

interpret β0 is that it coincides with the expected price/load

when all dummy variables are in their respective reference

category. Each combination of 0/1 gets its own regression

surface, still parallel to each other. The addend et is an

unobserved residual that accounts for disturbing factors other

than the variation in the Yt that predictors do not explain. we

assume that the unobservable residuals follow a multiplicative

SARMA process

et = [φ∗ (B)]
−1

θ∗ (B) at (2)

where B is the usual backward shift operator Bjzt = zt−j

and

φ∗ (B)=1−φ∗
1B−φ∗

2B
2−· · ·−φ∗

p∗Bp∗
;

θ∗ (B)=1−θ∗1B−θ∗2B
2−· · · − θ∗q∗B

q∗ (3)

are polynomials in B. The polynomials are constrained so

that the roots of φ∗(B) = 0 and θ∗(B) = 0 have magnitudes

strictly greater than one, with no single root common to both

polynomials, that is, only processes which are stationary and

invertible are considered. Because of the massive presence of

binary variables in the regressors, the process in (2) does not

include difference operators. The “burden of non-stationarity”

is placed entirely on the orthogonal polynomials used as

regressors. See [15].

Expression (2) may be considered as special case of the

standard ARMA (p∗, q∗) by taking p∗= p+sP , q∗= q+sQ.
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The integer s is the seasonal period. Note that some of the

φ∗s and θ∗s could be put equal to zero. The errors ats are

independent and identically distributed random variables with

zero mean and finite variance σ2
a.

The substitution of et in (1) with the process in (2) yields

Yt = β0 +
m∑
i=1

βiXt,i +

p∗∑
j=1

φ∗et−j +

q∗∑
j=1

θ∗at−j + at . (4)

The estimated residuals can be written as

êt =
(
Yt − Ŷt

)
=

p∗∑
j=1

φ∗
j êt−j −

q∗∑
j=1

θ∗jat−j + at,

t = 1, 2, · · · , n . (5)

Let us suppose for the moment that p∗ and q∗ are given.

The estimation of the ARMA parameters can be carried out

by optimizing the log-likelihood function of (5) provided that

the ats were Gaussian random errors. Let ẽt, t = 1, 2, · · · , n
be the estimates produced by the ARMA (p∗, q∗) process

ẽt =

p∗∑
j=1

φ̂∗
j êt−j −

q∗∑
j=1

θ̂∗jat−j + at, t = 1, 2, · · · , n . (6)

The ẽts can be substituted into (4) yielding

ẽt =

p∗∑
j=1

φ̂∗
j ẽt−j −

q∗∑
j=1

θ̂∗j ãt−j , t = 1, 2, · · · , n . (7)

where

ãt=

⎧⎪⎪⎨⎪⎪⎩
0 t=p∗, p∗ − 1, · · ·

ēt−
p∗∑
j=1

φ̂∗
j ēt−j−

q∗∑
j=1

θ̂∗j ãt−j t=p∗+1, p∗+2,· · · (8)

In practice, what is done is to use the one-step-ahead

forecast ẽt+1 as an estimate of the unknown et and set

the unknown error at+1 to its expected value of zero. The

essence of the Reg-SARMA approach consists of the ordinary

least squares applied to the estimation of the original model

inclusive of the pseudo-regressors derived from residuals and

errors observed at the first regression stage.

Ŷt = β̂0 +

m∑
i=1

β̂iXt,i +

p∗∑
j=1

φ̂∗
j êt−j +

q∗∑
j=1

θ̂∗j ãt−j . (9)

Reg-SARMA equation (9) is a revised CLR model that

should yield better statistics than the CLR model (1). See

[11], [8] and [14]. One problem is still open. Since we ignore

the orders of autoregressive-moving average components,

the modelling procedure (5) should be repeated for each

reasonable value of p∗ and q∗. Let us assume that there is a true

SARMA process for the time series: (p0, 0, q0)× (P 0, 0, Q0)s
and fix the constraints 0 ≤ p ≤ p, 0 ≤ q ≤ q, 0 ≤ P ≤
P , 0 ≤ Q ≤ Q, where p, q, P , P are chosen beforehand trying

to make sure the intervals include the true orders

p0 ≤ p, q0 ≤ q, P 0 ≤ P , Q0 ≤ Q . (10)

One method used to locate a good solution is a trawling

search through the p · q · P ·Q possible processes. In general,

brute-force methods are unmanageable for extremely long time

series because of the computational complexity. If p = 4, q =
4, P = 3, Q = 3 then considering all possible processes

involves estimating 400 different processes. Actually, the

obstacle is more apparent than real. Improvements in computer

technology and reductions in hardware costs allow us to

consider the trawling search solution attractive for much more

research and real-world applications than in the past.

Through extensive experimentation, [12] and [13] showed

that GLS-type schemes allow the analyst to perform a

generalized least squares estimation without the cumbersome

computational difficulties associated with the inversion of large

size variance-covariance matrices.

A. Point and Interval Forecasts

Energy companies are strongly affected by uncertain

price/load conditions, as they are exposed to the different

risks from liberalized energy markets in combination with

important and, to a large extent, irreversible investments.

Price/load predictions, however, are usually expressed as

point forecasts that give little guidance as to their accuracy,

whereas, the planning process needs to take into account the

entire probability distribution of future prices/loads or at least

intervals that have a pre-specified nominal coverage rate i.e. a

given probability of containing the future prices/loads. The

expanded relationship (9) can produce predictions of new

values Ŷn,H = (Ŷn+1, Ŷn+2, · · · , Ŷn+H) given by

Ŷn,H =ZH γ̂ with ZH =[XH |EH |AH ] , γ̂ t=
[
β̂|φ̂|θ̂

]
(11)

where H is the number of prices/loads to be foreseen

(lead time), XH is a [H × (m + 1)] matrix of the H
predetermined values of the predictors, intercept included

for t = n, (n + 1), · · · , H . EH is a (H × p∗) matrix

constructed by using the predicted values of the least squares

residuals fitted by the selected SARMA process. Each column

of EH is a lagged instance of ẽt at lags 1, 2, · · · , p∗ and

t = n, (n + 1), · · · , H . Analogously, AH is a (H × q∗)
matrix constructed by using the estimated errors of selected

SARMA process. Each column of AH is a lagged instance

of ãt at lags 1, 2, · · · , q∗ and t = n, (n + 1), · · · , H . The

values of (11) serve to compute the diagnostic statistics for

the new models. Load forecasting is necessary, but it is at

least as important to provide an assessment of the uncertainty

associated with forecasts. The usual method of evaluate the

uncertainty associated with forecasts requires the computation

of marginal prediction intervals at each individual horizon.

However, Marginal intervals are overly optimistic, and may

therefore be misleading since H marginal 100(1 − α)%
predictions give a probability lower than the nominal level

(1− α)% for the joint H intervals.

Managers of electric power and light systems are frequently

confronted with decision problems that require assessing the

set of possible upper/lower bounds that demand of electricity

will follow over time and there are many well-known

methods for computing simultaneous forecast intervals. Given

the availability of H future values, a simple strategy is
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to determine two bands such that, under the condition

of independent Gaussian distributed random errors, the

probability of consecutive future loads Ln+h, h = 1, 2, · · · , H
lying simultaneously within their respective range is at least

is (1−α)

P

[
H⋂

h=1

(
Y 1
h,α ≤ Yn+h ≤ Y 2

h,α

)] ≥ (1− α). (12)

where Y 1
h,α = Yn,h − cασh, Y 2

h,α = Yn,h + cασh and σh is

the standard deviation of the forecast error at the h-th time

horizon. We propose the hyper-cuboid region[
Ŷn+h ± σ̂h t

( α

2H
,n−ν

)]
, h = 1, 2, · · · , H . (13)

where ν = m + 1 is the number of estimated parameters,

cα = t(α/2H,n−ν) is the α/2H percentage point of the t
distribution having (n−ν) degrees of freedom. Further, Ŷn+h=

β̂
t
X∗

n+h. The estimate of σh is

σ̂h= σ̂e

√√√√n+1

n
+

m∑
i=1

m∑
j=1

ai,j
(
Xh,i−X̄i

) (
Xh,i−X̄i

)
. (14)

Here σ̂e is the estimated mean square error of the regression

and X̄i is the mean of the i-th predictor. The quantity ai,j

is the (i,j) element of the inverse matrix of the unscaled

variance-covariance matrix of the predictors

ai,j =
n∑

t=1

Xt,iXt,j − nX̄iX̄j , i, j = 1, 2, · · · ,m (15)

The intervals (13) give the box-shaped region in

H-dimensional space that circumscribes the exact confidence

ellipsoid of minimum volume. Forecasting the regression

term would not present particular difficulties if regressors

have a perfectly predictable nature. In the case of stochastic

regressors, things change radically as several other sources of

uncertainty must be taken into account.

B. Stochastic and Non-Deterministic Predictors

The preceding discussion assumes that the future values

ZH are known without errors or can be forecast perfectly

or almost perfectly, ex ante. If, on the contrary, ZH or part

of it must themselves be forecast then formula (14) has to

be modified to incorporate the uncertainty in forecasting the

elements of ZH . Reference [10] [Section 4.6.4] observes that

firm analytical results for the correct forecast variance for this

case remain to be derived except for simple special cases. For

example, formula (14) may lead to a serious underestimate

of the forecast standard error, if, as is not uncommon in

practice, the uncertainty about the future value of predictors

is of the same order of magnitude as the uncertainty about the

regression residuals.

To keep the problem of estimating (1) tractable, we

may use deterministic exogenous variables so we know

exactly what they will be at any future time (e.g. calendar

variables, polynomials or sinusoids in time). This choice is

also suggested by the fact that non-deterministic exogenous

regressors, which must also be forecast, is one of the possible

causes of inefficiency in prediction intervals. See [3] [Section

6.5].

Predictors such as sociological and demographic factors,

temperature, relative humidity, solar radiation, wind speed,

cloud cover, etc. should be ignored because they are unusable

in aggregation at large regional scale. Additionally, prediction

of changes in social and climate factors raises the question

of whether these variables are predictable and, if they are,

whether predictability can be achieved for changes at an hourly

time step (see, for example, [6] and [4]).

Additionally, if one or more predictors must, themself, be

forecast, then the formula for forecast variances would have

to be modified to incorporate the uncertainty in forecasting

those predictors that are not known perfectly, ex ante. This

will vastly complicate the computation, in particular for

taking into account relationships between the errors in the

process generating the predictors and the errors in the process

generating the loads (see [7]). Many authors view this problem

as simply intractable. See [10] [p. 127-128]. In any event,

indicators for the climate could be introduced at the cost

of setting load forecasting into a more general framework

of a system of time series regression equations (some based

on atmospheric physics) that are outside the scope of this

discussion. The undeniable influences of climatic variations

are captured implicitly by the joint action of a polynomial

trend and calendar dummies. The selected SARMA process

serves to compute, standing at time n, forecast Ŷn+k of the

price at day n+k, k = 1, 2, · · · , H which are optimum in the

sense of quadratic loss, conditional on an information set In =
{Y1, Y2, · · · , Yn}, i.e. Ŷn+k = E(Yn+k|In), k = 1, 2, · · · , H .

It turns out that, under reasonably weak conditions, the optimal

forecast is the expected value of the series being forecast,

conditional on available information. See [5] [p. 172].

III. CONFRONTATION BETWEEN SINGLE OR MULTIPLE

TIME SERIES MODELS

The prediction of hourly electricity demand follows two

directions of research. First, the 24 observations are combined

to make a single consecutive time series. In contrast, given

the large amount of data which is generally available, it is

possible the treating of each hour as a separate time series

such that 24 different models are estimated. Of course, the

same applies for the different hourly time bands. One defect

that emerges from the use of a single time series is that we

work on long time series (27′972 hourly observations) See for

example [15]. On the other hand, dealing with, for example

daily time series (one for each hour) reduces the length of the

sequences, but the recency effect is attenuate. Many studies

state that produces and consumes remember the past and this

implies that the electricity price/load in previous period will

matter in decision today.

Research have to decide whether to use the data as a

single consecutive sequence or to develop a separate model

for different hours of the day or different time-bands. One of

the advantages of working with a single time series is that

it exploits the correlation between hourly trends. For what

concerns the loads the presence of serial correlation reveals
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that there is additional information in the data that has not

been exploited in the classical linear regression model. See

[9] [Ch. 17]. This is a fact that of which we are fully aware

as in model (1) we have omitted to account for short-run

effects on electricity demand. It follows that, given the heavy

serial correlation in the data, we need to find a way to

incorporate that information into the regression model itself.

With regard to prices, offers are made on groups of hours that

imply correlation between hours. For a number of reasons,

global models are not satisfactory. For instance, they may

require modeling complicated intra-day patterns in the hourly

sequences. On the other hand, an hour by hour modeling may

need to estimate too many parameters. If we work on multiple

time series, the model is simplified and it becomes sensitive to

the hourly rate, moreover, the presence of dummies is reduced.

For the purposes of the prediction of the day-head it becomes

an aggregate of the forecast of the hours. On the basis of these

considerations, it is reasonable to conclude that an effective

analysis for short-term price/load forecasting should consider

splitting the total time series into sub-series, to be modelled

separately from other time-bands.

IV. CONCLUSION

We have worked with hourly time series both of prices and

loads preferring a one model formulation for the latter and

a multimodel formulation for the former. This view seems to

be much more in line with the functioning of the electricity

market in which the demand for and supply of electricity

follows different paths. However, prices and loads do not

necessary require different statistical approaches; actually, a

common model can favor deeper and more careful analysis of

the relationships between production and consumption. We are

convinced that even though the models usually described in the

literature are irreconcilable, they must be made reconcilable

for the interests and activities of energy companies. As a future

research, we plan to study a reg-VARMA model that contains

both loads and prices.
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