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Dimension Free Rigid Point Set Registration in
Linear Time

Jianqin Qu

Abstract—This paper proposes a rigid point set matching
algorithm in arbitrary dimensions based on the idea of symmetric
covariant function. A group of functions of the points in the set are
formulated using rigid invariants. Each of these functions computes a
pair of correspondence from the given point set. Then the computed
correspondences are used to recover the unknown rigid transform
parameters. Each computed point can be geometrically interpreted as
the weighted mean center of the point set. The algorithm is compact,
fast, and dimension free without any optimization process. It either
computes the desired transform for noiseless data in linear time, or
fails quickly in exceptional cases. Experimental results for synthetic
data and 2D/3D real data are provided, which demonstrate potential
applications of the algorithm to a wide range of problems.

Keywords—Covariant point, point matching, dimension free, rigid
registration.

I. INTRODUCTION

POINT set matching is a fundamental problem in

computer vision. Rigid point set matching, particularly

in low-dimensional setting like 2D and 3D has been studied

intensively in the literature, e. g. [1]- [3]. Recent research

has focused on non-rigid deformations, e.g. [4]. In this paper,

we study the classical problem of matching point sets in R
d

related by rigid transforms. One viewpoint taken here is the

emphasis on scalability to higher dimensions, which differs

substantially from the past literature.

Point matching in dimensions higher than three sounds

impractical for real world applications. However, this is not

necessarily the case. A justification for point set registration

in higher dimensions is detailed by [5], where three typical

matching problems are formulated and solved by affine

registration in higher dimension.

Let P = {p1, · · · , pn} and Q = {q1, · · · , qn} denote two

point sets in R
d. The sizes of the two point sets are assumed

to be equal. We also assume that there exists an unknown

permutation on n points such that

qπ(i) = Rpi + t, (1)

for some unknown rigid transform matrix R and a translation

vector t ∈ R
d.

The main difficulty for point set matching is the unknown

correspondence and outlier rejection. Once the correspondence

is known and outliers rejected, the optimum transform could

be easily solved in closed form. Without knowing the

correspondence, an approach for solving the registration often

has to resort to iterative optimization, such as iterative closest

point (ICP) [2]. It is well known that local optimums are
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usually difficult to avoid and that convergence to the true

solution is generally not guaranteed. On the other hand, it

is sufficient to solve the transform by knowing only a few

correspondences rather than knowing all correspondences. The

minimum number of known correspondence for solving a

typical transform (i.e. rigid, affine, projective etc) is just O(d),
where d is the dimension.

To compute a correspondence from the given point set

P and Q, the first correspondence could be easily obtained

by computing the mean centers of the sets. However one

correspondence is insufficient to solve the transform in R
d

for d > 1 (R1 is trivial and excluded from our discussion).

The centers provide a good start, but the key step is going on

to mine more correspondences from this start.

In this paper, we propose a rigid registration algorithm for

arbitrary dimension that avoids optimization. The algorithm

could be extended to similarity transform trivially. To be

succinct, our discussion assumes rigid transform. The mean

center of a point set is computed first, as the centers

of two point sets correspond to each other. Thus the

first correspondence is obtained. Based on the only known

correspondence of centers, a set of functions are constructed,

each function computes one more correspondence. Such

function could be interpreted as the weighted mean center

of the point set with rigid invariant weight. Once enough

correspondences are computed, the transform is solved from

the computed correspondences. In the rare case that all the

computed correspondences are coincidental, our algorithm

fails quickly.

The main contributions of this paper are

• A novel rigid registration algorithm which scales to

arbitrary dimension that is guaranteed to recover the exact

rigid transformation in the absence of noise except for

some rare cases.

• A set of symmetric and covariant functions to generate

more correspondences based on rigid invariant weight and

initial few known correspondence. Geometrically, each

function computes a weighted mean center for the point

set.

• It is shown experimentally that, the proposed algorithm

performs well also with noisy data at low noise level.

II. PREVIOUS WORK

Rigid registration is a fundamental problem in computer

vision with substantial literature on this subject. It is beyond

the scope of this paper to provide even a brief survey on this

subject. However, most of the algorithms in literature require
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optimization when the correspondences are not known, like

[2], [4].

Spectral algorithms [6], [1], [7] make up the most

important class of registration algorithms that do not

require optimization. However, the spectral algorithms require

the eigen-structure of some symmetric matrix to be rich

enough to provide discriminating features for computing

correspondences. Furthermore, they require computing the

eigenvectors of a n × n matrix, where n is the number of

points. In general, the time complexity for spectral algorithms

is O(n3). In contrast, the algorithm we describe below will

recover the exact solution for a pair of point sets without

optimization or other computationally expensive steps such as

computing eigenvectors.

Matching by secondary moments for rigid point sets is

similar to spectral methods. The eigen-structure of the d × d
moment matrix is used instead. Due to the symmetry of the

moment matrix, often the solution is not unique. The true

solution must be checked against 2d−1 candidates. Obviously

it does not scale well to higher dimension.

Some algebraic methods do not require optimization. The

most relevant literature might be [8]- [10], which addressed the

same problem as ours on 2D and 3D respectively. Although

they addressed affine registration problem, their solutions

ultimately resort to rigid(orthogonal) registration. The method

proposed by [8], [9] uses complex number representation for

both 2D points/rotation, and relies on the algebraic structure

of complex field in R
2. The method proposed in [10] relies

on quaternion representation and its algebraic structure. The

two methods could hardly be generalized to higher dimensions

due to the algebraic structure involved. Our method is based

on geometric invariant and covariant function, which scales to

higher dimension naturally.

Wang et al. [11] described a dimension free affine point

set matching through subspace invariance, based on the

QR factorization with column pivoting for the rank-deficient

matrixes. Their algorithm does not require optimization, whose

time complexity is O(n2).

III. RIGID REGISTRATION FROM RIGID COVARIANT

FUNCTIONS

In order to determine the rigid transform T : R
d �→ R

d

between two point sets P,Q ∈ R
d, the minimum number of

known correspondences required is⌈
d

2

⌉
+ 1 (2)

where d is the dimension. The centers of the two sets

correspond to each other, which is easily found to serve as

one pair of correspondence. So the problem is to find out d/2
more (non-collinear) correspondences.

A. Symmetric Covariant Function

Let P = {p1, · · · , pn} denote a set of points in R
d,

T : Rd �→ R
d denote a transform, we introduce a function

f(p1, · · · pn) ∈ R
d which satisfies

f(Tp1, · · ·Tpn) = Tf(p1, · · · , pn) (3)

and

f(· · · , pi · · · pj · · · ) = f(· · · , pj · · · pi · · · ) i �= j (4)

i.e. f is covariant with regard to T , and it is symmetric

with regard to commutation of its variables.. The point pf =
f(p1, · · · , pn) is transform covariant.

For rigid and affine transform, the simplest covariant and

symmetric function might be

fc(p1, · · · pn) = 1

n
(p1 + · · ·+ pn) (5)

which is the mean center of the point set.

Generally, let us consider functions of the following form,

which can be interpreted as the weighted center of the set:

f(p1, · · · , pn) =
∑n

i=1 ϕ(ri)pi∑n
i=1 ϕ(ri)

(6)

where ri is a rigid invariant associated with pi, ϕ ≥ 0 is the

weight function. Geometrically, f is the weighted mean center

over all points in P . It is evident that such function f in (6)

satisfies (3) and (4).

The specific forms for the function ϕ(r) and invariant r may

vary. For our purpose, we just need to consider the following.

Let pc denote the mean center of the point set. Obviously

pc is a rigid covariant point. A natural choice for r would be

r = |pi − pc| (7)

i.e. the distance between pi to pc, which is shown to be rigid

invariant.

Now let us consider the function ϕ(r). In principle, ϕ(r)
could be any function provided that ϕ(r) ≥ 0. In practice, we

expect ϕ(r) to be simple and easily computable. When the

data is noisy, different choices of ϕ(r) may vary regarding

noise sensitivity. The most common choice for ϕ is power

function, i.e.

ϕ(r) = rk(k ≥ 0) (8)

It is easy to verify that for the special case of k = 0, (6) is

equivalent to the mean center.

Another choice for ϕ is Gaussian function,

ϕ(r) = e−
(r−ρk)2

2∗σ2 k = 1, 2, 3 · · · (9)

where σ and ρk are constants. When σ approaches infinity, (6)

approaches the mean center. The value for ρk can be arbitrary

in principle, but a good candidate set would be {ri : i = 1..n},

which is the set of distances from each point to the center.

A simpler choice for ϕ is the indicator function:

ϕ(r) = χE(r) (10)

where χE is the indicator function of a specific set E ⊂
(0,+∞). It means Eq. (6) gives the mean center of a subset

of P selected by χE based on r. In practice, E should be

selected based on {ri}, e.g. E = [rm,+∞), where rm denotes

the median of the set {ri : i = 1..n}.

When two or more rigid covariant points are available, we

have more freedom to choose the invariant r in addition to

the distance from a point to each covariant point, e.g. the

distance from a point to the line (plane) through the two(three)
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Fig. 1 An example case in R
2 where our method fails

covariant points. More covariant points can be generated from

the additional invariants; again, more additional invariants can

be generated from more covariant points in turn. The number

of covariant points grows like a snowball.

B. Compute Correspondence from Covariant Function

The function f which satisfies the covariant and symmetric

conditions as in (3) and (4) can be used to compute

correspondence points. If P and Q are related by a rigid

transform T , then the point pf = f(p1, · · · , pn) and qf =
f(q1, · · · , qn) are related by the same transform, i.e.

qf = Tpf (11)

It means that the two points pf and qf computed by the

function f are in correspondence.

Usually we can expect that a different function f would

compute a different pair of correspondence. Thus with a set

of functions f1, · · · fk we can get k pairs of points with known

correspondences. The rigid transform could be recovered from

the known k(> d/2) correspondences.

Notice that in the extreme case when all the points in P have

equal distances from the center, any function ϕ would compute

the same point as the mean center. Fig. 1 shows such a case

in R
2. In such particular case, the method always fails. For

the following discussion, we assume that the computed points

from various f are not coincident. This assumption is generally

true for irregular shapes and point set encountered in many real

world problems. It should be noted that the proposed scheme

should not be used for datasets where all the pf coincide. In

practice, however, such datasets rarely occur.

C. Solve the Transform from Computed Correspondence

Once enough (non-collinear) point correspondences are

computed, solving the rigid transform between the two

sets becomes straightforward. For R
d, Singular Value

Decomposition (SVD) can be used to solve the transform. For

R
3, Horn’s [12] method can be used.

Now we summarize the proposed rigid registration

algorithm as following:

Steps for matching rigid point sets.

1) Compute the mean center for both point sets P and Q,

and computer the distance between each point and the

mean center for both P and Q. If all the distances are

equal, return with failure.

2) For each function ϕ(r) and associated f ,

compute the associated correspondence points

pf = f(p1, · · · , pn), qf = f(q1, · · · , qn), until

sufficient (≥ d/2) number of (non-collinear) points in

each set are computed.

3) Based on the computed correspondence points, solve the

rigid transform. Once the transform is solved, solve the

correspondence from the transform.

D. Complexity and Discussion

The time complexity of Step 1 and Step 2 is O(n), where

n is the size of set. The computation for Step 3 could be

performed in O(n log n) time, or O(n) time if techniques like

Fast Gauss Transform (FGT) [13], [14] are used. The total

complexity of the algorithm is O(n) or O(n log n).
In the particular case of R

3, when r is chosen as the

distance from the center, and the weight function is chosen as

ϕ(r) = rk, k = 0, 1, 2, 3, it could be shown that our method is

mathematically equivalent to the one proposed by [10]. Thus

it can be seen as a special case of our method. The freedom of

choice for ϕ(r) and invariant r makes our method much more

flexible and scalable. The implementation of our algorithm

is more straightforward, compared to the quaternion based

algorithm in [10].

The method could be generalized to similarity transforms

trivially. Similarity and rigid transform differ by just a scaling

factor. The scaling factor could easily be determined by:

s =

√∑n
i=1 |qi − qc|2∑n
i=1 |pi − pc|2 (12)

Once the scaling factor is obtained, similarity transform

could be reduced to rigid transform where our method applies.

IV. EXPERIMENTS

In this section, we present experimental results for the rigid

registration algorithm described above. We experimented with

real data in 2D/3D, and synthetic data in 2D/3D/4D. We

carried out the experiments on various ϕ(r). Power functions

ϕ(r) = rk, k = 1..d are used as the weight for the results

presented below, as the performance for the other choices of

ϕ(r) heavily depends on specific parameter settings.

A. Experiments with Random Generated Synthetic Data

To show the proposed method works in arbitrary

dimensions, we use synthetic data in dimensions of d =
2, 3, 4. In these experiments, Randomly generated point sets

containing 400 points in R
d are used. Noise of various levels

is added to the generated point sets.

P = {p1, · · · , p400} represents 400 points randomly

generated in the domain [−2, 2]d. We also randomly generate

an orthogonal matrix R and translational vector t. The

transformed point set Q = {q1, · · · , q400} is produced by:

qi = R(xi + nδ
i ) + t (13)

where nδ
i is a randomly generated noise vector with its

components generated independently. The experiments use

uniform random noise (within ±δ% of the true values xi). We

experimented with four different values of δ, δ = 0, 0.5, 1, 1.5.
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TABLE I
2D EXPERIMENTS DATA WITH UNIFORM NOISE. FOR EACH NOISE

SETTING, WE RAN 1000 INDEPENDENT TRIALS. THE MEAN ERRORS

ARE LISTED WITH STANDARD DEVIATIONS SHOWN IN PARENTHESIS

Noise→ Error
↓

0% 0.5% 1.0% 1.5%

‖RR−R‖2 0(0) 0.07(0.23) 0.12(0.29) 0.16(0.30)
‖tt− t‖2 0(0) 0.006(0.022) 0.010(0.021) 0.015(0.029)

TABLE II
3D EXPERIMENTS DATA WITH UNIFORM NOISE. FOR EACH NOISE

SETTING, WE RAN 1000 INDEPENDENT TRIALS. THE MEAN ERRORS

ARE LISTED WITH STANDARD DEVIATIONS SHOWN IN PARENTHESIS

Noise→ Error
↓

0% 0.5% 1.0% 1.5%

‖RR−R‖2 0(0) 0.043(0.18) 0.068(0.20) 0.10(0.22)
‖tt− t‖2 0(0) 0.004(0.017) 0.006(0.017) 0.008(0.019)

The Frobeniu norm of difference ‖RR − R‖2 and ‖tt −
t‖2 are computed, RR and tt denote the computed matrix

and translation respectively. For each noise setting, 1000

independent trials (different P,Q and (R, t) for each trial)

are executed, and the results for 2D/3D/4D in terms of mean

errors and standard deviations is tabulated in Table I,II andIII

respectively.

The result shows that the proposed method indeed recovers

the exact transformation when no noise is present. The error

increases with the noise level elevated, but may be still

sufficiently small within an acceptable range depending on

the accuracy need of specific applications.

We have implemented the algorithm using MATLAB

without any optimization. The algorithm runs quite efficiently

and for each trial, it takes about ten seconds to finish on a

DELL computer with a 2 GHZ processor.

B. Experiments with Real Data

For matching real 2D image data, feature points are selected

manually in random order. Then the correspondences are

estimated using the proposed algorithm. Fig. 2 shows the

matching results where the original leaf images were rotated

by a large angle. The original images are part of the archive

[15].

Fig. 3 shows the registration of 3D point set. A sub-sampled

version of roughly 1000 points of Stanford Bunny [16] dataset

is used. The target point sets are obtained by applying an

artificially generated transformation matrix to the original

point set plus Gaussian noise. Then the rigid transform are

solved. Several pairs of correspondences computed from the

solved transform matrix are labelled.

TABLE III
4D EXPERIMENTS WITH UNIFORM NOISE. FOR EACH NOISE SETTING,

WE RAN 1000 INDEPENDENT TRIALS. THE MEAN ERRORS ARE LISTED

WITH STANDARD DEVIATIONS SHOWN IN PARENTHESIS

Noise→ Error
↓

0% 0.5% 1.0% 1.5%

‖RR−R‖2 0(0) 0.06(0.21) 0.12(0.28) 0.18(0.34)
‖tt− t‖2 0(0) 0.005(0.020) 0.010(0.025) 0.015(0.030)

(a)

(b)

Fig. 2 Example of 2D matching leaf images with a rotation of large angles

Fig. 3 A 3D matching example of a subsampled points from Standford
Bunny, for clarity only several pairs of correspondence computed by the

proposed algorithm are connected by line

V. CONCLUSION AND FUTURE WORK

We have proposed a novel rigid registration algorithm

for matching feature points in arbitrary dimension related

by an unknown rigid transformation. Given two sets of

points in R
d, the algorithm recovers both the unknown

rigid transformation and the correspondence except for some

rare cases. The proposed algorithm requires no optimization

process, therefore, it does not suffer from the usual problem

of local optimum. The algorithm is fast, with a linear

time complexity. Furthermore, the geometric motivations

behind the proposed algorithm are both clear and transparent.

The idea of generating more correspondences from known

correspondences and invariant weight function presented in

the paper may provide a new perspective for point set

matching. Experimental results with real and synthetic data

demonstrating that the proposed algorithm performs as well

on noisy data when the noise level is low.

A major drawback of the algorithm is that the sizes of

the two point sets must be equal, which means there is no

outliers in the point sets. For many practical application, an

extra outlier rejection step is necessary to apply the proposed
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algorithm. Outlier rejection is a nontrivial problem that most

of the current methods are suffering. It will be our future

direction to match point sets with outliers or occlusion. The

relation between the weight function and noise sensitivity of

the algorithm needs further study.
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