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 
Abstract—In this paper, we show shallow water in a tin box as an 

analogous simulation tool for high-speed aerodynamics education and 
research. It is customary that we use a water tank to create shallow 
water flow. While a flow in a water tank is not necessarily uniform and 
is sometimes wavy, we can visualize a clear supercritical flow even 
when we move a body manually in stationary water in a simple 
shallow tin box. We can visualize a blunt shock wave around a moving 
circular cylinder together with a shock pattern around a diamond 
airfoil. Another interesting analogous experiment is a hydrodynamic 
shock tube with water and tea. We observe the contact surface clearly 
due to color difference of the two liquids those are invisible in the real 
gas dynamics experiment. We first revisit the similarities between 
high-speed aerodynamics and shallow water hydraulics. Several 
educational and research experiments are then introduced for 
engineering students. Shallow water experiments in a tin box simulate 
properly the high-speed flows. 
 

Keywords—Aerodynamics compressible flow, gas dynamics, 
hydraulics, shock wave. 

I. INTRODUCTION 

 IGH-SPEED aerodynamics is analogous to a shallow 
water flow and there were many experimental researches 

on the analogy. Shallow water is used because of its simplicity. 
Shock wave is easily replaced by hydraulic jump. In this paper, 
we follow the contents of several eminent textbooks on gas 
dynamics [1]-[9] and apply the shallow water analogy to 
several high-speed aerodynamic flows in a tin box for 
engineering students. 

The shallow water analogy has its own long history. In this 
paper, we revisit the supersonic flows around a circular 
cylinder [10] and diamond airfoil [11]. We primarily focus on 
the Mach number and the Froude number analogy and the 
viscous effect is assumed to be negligible although this is not 
the case in reality [12].  

The under expanded nozzle exit flow is modeled by a flow 
from a pipe into a shallow water. This method also creates a 
Mach disc pattern in the shallow water [13]. 

The dam-break problem in hydraulics [14] is the Riemann 
problem in gas dynamics. We can simulate this hydraulic shock 
tube by a shallow water in a conventional plastic box [15]. 

II. HIGH-SPEED AERODYNAMICS MODELED BY SHALLOW 

WATER HYDRAULICS REVISITED 

A. Bernoulli’s Equation 

The energy equation for a compressible flow is given by 
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where h is the specific enthalpy, 0h the specific total enthalpy, 

and u the velocity.  
Bernoulli’s equation for a horizontal uniform water flow 

becomes 
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where g is the gravitational acceleration, 0h the total head, p

the static pressure, and z the height form the bottom. In 
hydraulics, 0h is the specific energy and often represented by 

the symbol E . Static pressure becomes 
 

     zhgp             (3) 
 

where h is the water depth. From (3), (2) becomes 
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Equations (1) and (4) are similar and these equations give the 

basis of the hydrodynamic analogy of compressible flow. 

B. Isentropic Flow 

Equation (1) is modified as follows: 
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where M is the Mach number, T the static temperature, 0T the 

total temperature, and  the ratio of specific heats. The Mach 

number is given by 
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where  RTa  is the acoustic velocity and R the gas 

constant. 
Equation (4) becomes 
 

    20

2

1
1 Fr

h

h
          (7) 

 

Desktop High-Speed Aerodynamics by Shallow Water 
Analogy in a Tin Box for Engineering Students 

Etsuo Morishita 

H



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:12, No:12, 2018

1093

 

 

where Fr is the Froude number, and it is defined as follows: 
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where  ghc  is the wave velocity of shallow water.  

We might regard the shallow water flow as a hypothetical 
gas flow of 2 . In this case (7) is identical to (5) when 

FrM  . Although the ratio of specific heats  is not modeled 

accurately, (7) becomes the basis of the hydraulic analogy of 
high-speed flows. 

The energy and isentropic relations for gas flows are 
transformed to those of shallow water flows as: 
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where the right-hand-side hh /0 represents the ratio of water 

depth. The temperature and the density ratios of gas flows are 
given by the depth ratio, and the pressure ratio is given by the 
square of the depth ratio, respectively, in the shallow water 
flow. 

C. Laval Nozzle 

A horizontal open channel flow with a rectangular cross 
section and a varying width is a hydrodynamic Laval nozzle. 
Bernoulli’s and the continuity equations are 
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where Q is the volumetric flow rate and w the width of the 

channel. From (12) and (13), we can show 
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The Froude number can be expressed analytically as a 

function of */ ww from (14) which differs from gas dynamics 
[16]. 

D. Shock Wave and Hydraulic Jump 

The pressure ratio across a normal shock wave is  
 

    1
1

2
1 2

1

1

2 


 M
p

p


         (15) 

 
The equivalent equation for a hydraulic jump becomes 
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is the average force by pressure per unit width of a channel, 1 
the shock upstream and 2 the shock downstream.  

Fig. 1 shows the ratio of (15) with 2,7.1,4.1 , and that of 

(16). As the upstream Mach number increases, the hydraulic 
jump pressure ratio becomes higher than that of the 
hypothetical gas of 2 . So the hydraulic analogy of 

compressible flows is not necessarily accurate quantitatively 
where the nonlinear phenomena are dominant. 

 

 

Fig. 1 Normal shock wave and hydraulic jump pressure ratio 
 
The oblique shock conditions for compressible flows 

become 
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where  is the shock angle and  the flow deflection angle.  

The maximum attached shock angle max and the sonic shock 

angle *  at 12 M become [3] 
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For the hydraulic jump, we can derive equations: 
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The sonic condition * at 12 Fr for a given 1Fr is obtained 

numerically from (25). The sonic wedge angle * is then 

calculated by (24). 
A different form of (24) becomes 
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The maximum deflection angle max for an attached 

hydraulic jump is obtained by differentiating (26) by  . The 

condition becomes 
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Equation (27) is solved numerically to obtain max  and 

we can determine max from (24) and/or (26).  

Fig. 2 shows the oblique shock wave and hydraulic jump 

relationship. For air, we get  5.61:7.22:1:: *2 M ; 
 7.64:0.23:924.0:: max2 M at 2M . For water, we get

 2.57:4.18:1:: *2 Fr ;  5.64:6.19:84.0:: max2 Fr

at 2Fr . The oblique hydraulic jump is similar to an oblique 
shock wave of 7.1 , although the flow deflection angles *
at the sonic condition are different. 

Fig. 3 shows (24) with * from 12 Fr in (25) and max from 

(27).  
 

 

Fig. 2 Oblique shock wave and hydraulic jump at 2 FrM  
 

 

Fig. 3 Oblique hydraulic jump 
 
We get      
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when the upstream Froude number 1Fr increases toward 

infinity in in (26).  
The velocity components in the x- and y-directions behind 

the oblique shock wave become: 
 

     











1

2

2

12

122

sin
coscos

h

h

V
VVV x

      (29) 

0

5

10

15

20

25

0 10 20 30 40 50 60 70 80 90


[d
e
g.
]

 [deg.]

=1.4

=1.7

=2.0

max *

shock wave       M1=2

hydraulic jump Fr1=2

 

M1
M2

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90
 [deg.]


[d
eg
.]

Fr1‐>infinity

1.1

1.5

2 [=Fr1]

3

4
5

10

20

50

max*

6



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:12, No:12, 2018

1095

 

 

     



tan

sin 21
22

x
y

VV
VV


          (30) 

 

where 1V is the uniform flow velocity and 2V the velocity behind 

the shock wave. We can derive the shock polar equation from 
(23), (29) and (30) by eliminating the angle   as follows 
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where we define the symbols for brevity in (31) as: 
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The characteristic Froude number is defined as 
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Fig. 4 Shock polar for hydraulic jump 
 
We can draw the shock polar either from (29) and (30) by 

changing  or (31) as shown in Fig. 4. When we increase the 

upstream Mach number toward infinity 
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Therefore, we can show from (31) that the shock polar in this 
case becomes a circle which passes the origin that is different 
from gas dynamics: 
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The locus of the maximum flow deflection max  from (27) 

and the sonic condition * from 12 Fr  from (25) are also 

shown in Fig. 4. From the definition, we get 
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We can also determine the locus of the sonic condition *  as 

a cross point of (31) and (36) =1 in Fig. 4. 
 

 

Fig. 5 Total head loss through an oblique hydraulic jump 
 
The critical velocity changes as is the case for the total head 

through a hydraulic jump in (37) and Fig. 5 while it is constant 
in gas dynamics because the total enthalpy is conserved.  
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The total energy is actually conserved also in hydraulics as: 
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temperature. However, the temperature difference across the 
hydraulic jump of m102010  hhh  in water is negligible 

due to the heat capacity of water as is expected: 
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E. Prandtl-Meyer Expansion 

The continuity and the momentum equations for a 
two-dimensional steady flow become [2] 
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where n is the streamline width, s the streamline coordinate. 
We can derive the following equation from (39) and (40): 
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where is the flow direction. The irrotational condition is given 
by 
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We introduce the Prandtl-Meyer angle   as: 
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The sum and the difference of (44) and (45) become 
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We have the Riemann invariant as: 
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Thus we have 
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Equations (50) and (51) are the same as those of a 

hypothetical gas of  =2. 

F. Linearized Supersonic Flow 

The continuity and the momentum equations in hydraulics 
are  
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where  vu,v is the velocity vector in the yx  coordinate.. 

We introduce the two-dimensional velocity potential   as: 
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The steady continuity equation becomes 
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The steady momentum equation is obtained from (53) with 

(52) as: 
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gdhVdV                 (57) 
 

where 22 vuV  v . From (57) 

 

 22

22

1
yxd

c

h
dh           (58) 

 

   yxyxxxyx c

h

xc

h

x

h  







2

22

22

1    (59) 

 

   yyyxyxyx c

h

yc

h

y

h  







2

22

22

1
   (60) 

 
From (55), (59) and (60), we have the full potential equation 

which is exactly the same as that of gas dynamics [9]. 
 

    02 2222  yyyxyyxxxx cc      (61) 

 
The linearized form of (61) becomes 
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From the pressure coefficient pC for 2  and   FrM

[11], we get with (11) 
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where u is the uniform velocity Equation (63) may be 

redefined with (17)  in the hydraulics style as 
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For the small disturbances denoted by dash,  

 

hhh    

 

uuu    

 

vv   
 

    0

22

2
hhh

g

vuu





  

 
We neglect the higher terms and 
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Thus we have 
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Equation (62) may have a solution as: 
 

     yxfu               (66) 
 
where is the disturbance potential [2] and 
 

    12  Fr           (67) 
 

The boundary condition on the body surface becomes 
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Equation (65) with (68) becomes 
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Equation (69) gives the same formula as that of gas 

dynamics. 

G. Hydraulic Fanno Flow 

A horizontal open channel flow in a rectangular cross section 
with friction is an equivalent to Fanno flow in gas dynamics. 
We assume that the width of the channel is infinite and the flow 
is two-dimensional. The continuity and the momentum 
equations become 
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where t is the time,  the friction, and 
 

    
fCu 2

2

1               (72) 

 
where fC is the average friction coefficient along the flow 

passage and it is therefore a constant. For a steady flow, (70) 
and (71) become 
 

    .const**  huuhq         (73) 
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where q is the volumetric flow rate per unit width. From (73) 
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and (74), 
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We can integrate (75) as: 
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Finally we get the following equation [17]. 
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where 

    xxL  **               (79) 
 
The factor four comes from the definition of the pipe friction 

coefficient   
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In hydraulics, Manning’s formula becomes 
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where i is the channel gradient, n the roughness factor and the 
width of a rectangular channel is assumed to be infinite. For a 
horizontal rectangular channel of infinite width, we may put 
hydraulically  
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where l is the channel length, p the pressure loss, h the 

head loss, and h4 the hydraulic diameter. From (81) and (82), 
we may equate the channel gradient i to the head gradient as: 
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Thus we get 
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From (83) with (80), we have the friction coefficient fC as a 

function of the water depth h . 
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We have for the Manning’s case [18], [19] 
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When the Froude number goes to infinity, we get 
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For Fanno flow, we have [3] 
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The density ratio */  is equivalent to the depth ratio */ hh .  

When the Mach number approaches to infinity, we have 
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The density ratio of gas remains finite for M infinity while 
the depth ratio of water goes to zero for Fr infinity, see Fig. 6. 

 

 

Fig. 6 Fanno flow */  and horizontal open channel flow */ hh  

 

 

Fig. 7 Fanno flow M and horizontal open channel flow Fr  
 
Equations (77), (78), and (86)-(89) are shown in Figs. 6 and 7. 

From Figs. 6 and 7, the similarity is clearly visible between 
Fanno flow and the horizontal open channel flow with friction, 
although the values are very different. The choke condition is 
reached only at the exit both in hydraulics and gas dynamics. 
Both the sub- and the super-critical flows change the Mach 
number as well as the Froude number toward the sonic and/or 
critical condition. Total head decreases downstream while 
entropy increases. In hydraulics, however, the term entropy is 
less common. This could be due to the fact that loss is 
negligible to the heat capacity of water [11]. 

H. Shock Tube Analogy by Hydraulics 

The shock tube experiment in gas dynamics might be 
simulated by the hydrodynamic shock tube, i.e., the dam-break 

problem of water depth 1h and 4h as shown in Fig. 8. 
 

 

Fig. 8 Hydrodynamic shock tube initial condition 
 

 

Fig. 9 Moving hydraulic jump 
 

Fig. 9 shows the moving hydraulic jump where 1h is the 

stationary water depth, 2h the moving water depth, 2u the flow 

velocity, and W the hydraulic jump wave velocity.  
The continuity and the momentum equations in the moving 

frame of reference become 
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From (90) and (91) 
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where 
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We get 12 / hh from (93) and the same solution is obtained as 

(16). From (90): 
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Fig. 10 Hydraulic jump and expansion after dam break 
 

Along the characteristics C from the stationary region 4 in 
Fig. 10, the Riemann invariant P becomes [2] 
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and we get from (97) 
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Along the expansion characteristics C , we have 
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where t is the time, and x the coordinate. The characteristics 

C  form the stationary region 4 have the same values of the 
Riemann invariant P  in (97), and cross the each characteristics 

C with the Riemann invariant cuQ 2 . This means that u

and c are constant along the same characteristic line C  [9], 
and we get 
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From (99) and 32 uu  , we have 
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From (95) and (104), we can derive 
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From (105), 12 / hh is obtained for a given 14 / hh . The 

hydrodynamic shock tube, i.e., the dam-break problem solution 
is shown in Fig. 11. 

 

 

Fig. 11 Hydrodynamic shock tube solution 

III. HIGH-SPEED FLOW ANALOGUE IN A TIN BOX 

A. Under Expanded Nozzle in a Shallow Water 

We frequently observe the high-speed analogies of shallow 
water supercritical flow.  

Fig. 12 shows a circular hydraulic jump in a tin box cover. 
Many engineering students are rather awed when they learn that 
this circle is an equivalent of a shock wave of supersonic flow. 

Fig. 13 is a flow from an extensible tap in Fig. 12 touched on 
a tin box cover. The surrounding water depth is about 4 mm. 
This flow is similar to that of an under expanded nozzle. The jet 
free boundary is formed by the circumferential water head. 
First, a water flow from the tap expands to the super-critical 
condition and then turns by the surrounding head, i.e. the 
ambient pressure by forming the barrel shock, and then forms a 
first pair of oblique shock waves. The flows on the both sides of 
the center line turn inward and develop the second pair of 
oblique shock wave and a character x-like pattern is formed. 

When the flow rate is decreased from the condition in Fig. 13 
and/or the downstream head is increased, a Mach disc appears 
as in Fig. 14. 

In gas dynamics, we need a supersonic wind tunnel to test 
these phenomena and the experiment requires very expensive 
measurement equipment. In a tin box experiment, however, we 
can visualize the nozzle exit flow easily and understand the 
flow physics precisely. It is therefore very valuable for 
engineering education in general. 

There are explanations on the nozzle exit flow in the text 
book of gas dynamics [7], and most simply one can describe the 
flow in Fig. 13 by the one expansion wave from the nozzle exit 
with one reflected shock from the constant pressure boundary. 
The Mach disc in Fig. 14 is also explained by Saad [7] as 
“downstream of this pattern, the flow is rotational and consists 
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of subsonic and supersonic regions.” 
 

 

Fig. 12 Hydraulic jump in a tin box cover 
 

 

Fig. 13 Under expanded nozzle flow in a shallow water 
 

 

Fig. 14 Mach disc in a shallow water 

B. Diamond Airfoil 

Fig. 15 shows a diamond airfoil of 3/1/ c  moving 
manually with a bar in a tin box with 5 mm water depth where 
c  is the chord and the thickness. The semi apex angle is 
about 16.9 degrees. From two movie shots with time lapse 0.1 
second, the Froude number is approximately 3.2Fr                   

( 3.2M  ). The oblique shock wave angle form the leading 
edge in Fig. 15 appears about 45 . This result coincides with 

that shown in Fig. 3. Although this experiment requires only a 
tin box and a model diamond airfoil, we can physically observe 
the oblique shock waves form the leading and the trailing 
edges. The Prandtl-Mayer expansion wave is also visible form 
the two apexes although it is not quite clear.  

We apply the shock-expansion method to the experiment in 
Fig. 15 and obtain the result shown in Fig. 16 where the 
interaction between the shocks and the expansion fans is 
simplified.  

We assume that the two characteristic lines C+ form the apex 
interact with the front and rear shock waves once, respectively, 
while continuous interactions take place physically. The first 
characteristic line C+ represents the flow turned five degrees 
from the initial expansion, and the second characteristic line C+ 

is the flow turning another five degrees to the end of the 
expansion. The shock waves are weakened by the expansion 
fans and the inclination of the shock waves approach to that of 
the Mach wave. The front shock wave decreases the inclination 
to the downstream while the second one increases the wave 
angle by the interaction. 

We can estimate the water depth ratio 1/ hh , the Froude 

number Fr and the pressure coefficient Cp as shown in Figs. 
17-19 from the shock expansion method. The linearized 
pressure coefficient is also shown in Fig. 19. While the 
expansion is relatively well predicted by the linear theory, the 
shock side is underestimated by the linear theory. This is due to 
the apex angle of the diamond airfoil. 

The surface tension wave is also observed and this is very 
different from gad dynamics. So the hydrodynamic analogy has 
its own limitation as known from many decades ago [5].  

Hatch conducted detailed measurements of diamond and 
circular arc airfoils of both 6% thickness by hydraulic analogy 
[11]. The diamond airfoil is shown in Fig. 20 and the maximum 
thickness locates at 30% chord.  

 

 

Fig. 15 Diamond airfoil in a tin box of 5mm water depth 
  3.2MFr  (Photo by D. Yamagishi) 
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Fig. 16 Diamond airfoil by shock-expansion method   3.2MFr  

 

 

Fig. 17 Water depth ratio 1/ hh by shock-expansion method 

3.2Fr  
 

 

Fig. 18 Froude number Fr by shock-expansion method 3.2Fr  
 

 

Fig. 19 Pressure coefficient pC  3.2Fr  

 

Fig. 20 Diamond airfoil [11] 
 

 

Fig. 21 Diamond airfoil shock wave inclined angle   

 

 

Fig. 22 Surface pressure coefficient of diamond airfoil 53.41 Fr  

 

 

Fig. 23 Surface pressure coefficient of 6 % circular arc airfoil

26.41 Fr  

 
Hatch measured the shock angles from the photos as shown 

in Fig. 21 where the theoretical formulas are also shown for 
water and gas. The experimental results ostensibly agree with 
the formula for air 4.1 while the theoretical  for water by 

(24) is slightly higher than that of experiment. The theory, 
however, well predicts the physical aspect of the oblique 
hydraulic jump. 

Fig. 22 shows the pressure coefficient obtained by Hatch 
[11] which is higher than that of the ideal theoretical 
predictions although the expansion side shows better results. 

The linear and the shock-expansion theories are applied to a 
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circular arc airfoil in a supersonic flow. The hydraulic 
experiment by Hatch [11] is shown in Fig. 23. The 
experimental results are larger than those of the theoretical ones, 
and this is possibly due to the viscous effect. 

C. Circular Cylinder 

Figs. 24 (a) and (b) show a detached shock wave (hydraulic 
jump) around a moving circular cylinder in a tin box of 5 mm 
water depth in 0.2 seconds. We can estimate the approximate 
shock stand-off distance from the picture. 

The empirical formula for the shock stand-off distance for a 
circular cylinder in supersonic air flow [20] is shown in Fig. 25. 
The present experiments ostensibly agree with the formula for 
air flow, but care must be taken that the hypothetical specific 
ratio =2 is different from that of air, and the present 
experiment is not intended for a precise measurement. Fig. 25 
gives higher value than that of experiments for air [2], [21]. 

 

 

(a) t = 0 [s] 
 

 

(b) t = 0.2 [s] 

Fig. 24 Detached shock wave around a moving circular cylinder in a 

tin box of 5mm water depth   4.2MFr  (Photo by D. Yamagishi) 

 

 

Fig. 25 Shock stand-off distance 

D. Riemann Problem 

A shock tube analysis is called the Riemann problem in gas 
dynamics. The equivalent phenomenon is a dam break in 
hydraulics.  

We can conduct a desktop dam breaking experiment by a 
plastic box. A semi-transparent plastic box of about 270 mm 
bottom length x 75 mm depth x 80 mm bottom width is 
prepared. The cross section is trapezoidal with 90 mm opening. 
The box is filled with shallow water, and a balsa gate covered 
by a cloth seal is inserted to produce a water level difference as 
shown Fig. 26 (t=0) where the high side depth is about 12 mm 
and the lower side depth is about 6 mm, respectively. Water in 
the left hand side is colored by drips of soy source. We also 
tested tea in the past experiment [15]. The gate is quickly 
moved upward manually and the dam breaking phenomena is 
recorded as a movie of which several scenes are shown in Figs. 
26 (a’)-(d’). 

The eperiment is compared to the analytical solution of the 
Riemann problem and the numerical method of characteristics 
in Figs. 26 (a)-(d). In the analytical solution, the reflected 
hydraullic jump from the rght wall is considered while the 
reflection of expansin wave from the left wall is not included 
which the numericall method of characteristics incorporates 
automatically. 

Just after the gate is open, the right-running hydraulic jump 
and the left-running expansion wave are formed, respectively. 
The contact surface is clearly visible in this experiment which 
is very difficult to visualize in the gas experiment. The moving 
hydraulic jump is not clear but we can see it as a movie. 

Because the left wall is closer, the expansion wave reaches to 
the wall first as (c) and (c’) in Fig. 26. Analytical, numerical 
and experimental results are not necessarily identical for the 
arrival time, but the same physics are observed. 

The hydraulic jump reaches to the right wall as in (d) and (d’) 
of Fig. 26, and reflected to the contact surface as (e) and (e’) in 
Fig. 26. In theory, the contact surface stands still after the 
reflected shock wave passes. In reality the contact surface is not 
stationary possibly due to the reflected expansion wave from 
the left hand side.  

This desktop dam break experiment is a very good tool to 
study the real shock tube although it does not necessarily give 
the accuracy of the measurement. Students see the shock wave, 
the expansion wave and even the colored contact surface and 
reach the quick understanding of the Riemann problem. 

IV. CONCLUSION 

The shallow water analogy of high-speed aerodynamics is 
revisited and several experiments are proposed for engineering 
students. The theoretical analogical comparisons are described 
for the isentropic flow, the normal shock and oblique waves, 
the Prandtl-Meyer expansion, the full potential equation, the 
linearized supersonic flow, and the method of characteristics. 
The under expanded nozzle and the Mach disc are observed 
easily and the supersonic external flows around a circular 
cylinder and a diamond airfoil are tested in a shallow tin box. A 
desktop Riemann problem is also introduced, and it is 
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interesting to note that the contact surface is easily visualized 
for engineering students’ comprehension. 

 

 

 

 

(a) t =0 [s]                (a’) time 00:94   t=0 [s] 

 

 

(b) t=0.1 [s]                 (b’) time 01:04    t=0.1 [s] 

 

 

(c) t =0.196 [s] expansion to the left wall          (c’) time 01:12 t=0.18 [s] expansion to the left wall 

 

 

(d) t =0.621 [s] shock to the right wall              (d’) time 01:56 t=0.62 [s] shock to the right wall 

 

 

(e) time 01:96 t=1.02 [s] contact surface to shock ]m[2025.00675.0  x   (e’) t =0.996 [s] contact surface to shock ]m[2025.00675.0  x  

Fig. 26 Hydraulic Riemann problem (a)~(e): theory and MOC, (a’)~(e’): experiment 
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