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An Efficient Collocation Method for Solving the
Variable-Order Time-Fractional Partial Differential
Equations Arising from the Physical Phenomenon

Haniye Dehestani, Yadollah Ordokhani

Abstract—In this work, we present an efficient approach for
solving variable-order time-fractional partial differential equations,
which are based on Legendre and Laguerre polynomials. First, we
introduced the pseudo-operational matrices of integer and variable
fractional order of integration by use of some properties of
Riemann-Liouville fractional integral. Then, applied together with
collocation method and Legendre-Laguerre functions for solving
variable-order time-fractional partial differential equations. Also, an
estimation of the error is presented. At last, we investigate numerical
examples which arise in physics to demonstrate the accuracy of the
present method. In comparison results obtained by the present method
with the exact solution and the other methods reveals that the method
is very effective.

Keywords—Collocation method, fractional partial differential
equations, Legendre-Laguerre functions, pseudo-operational matrix
of integration.

I. INTRODUCTION

I n recent decades, fractional calculus has emerged that

many phenomena in various branches of science such as

bioengineering, biology, economics, medicine, earthquake,

colored noise, signal processing, electromagnetism,

electrochemistry, dynamic of viscoelastic materials, continuum

and statistical mechanics, solid mechanics, fluid-dynamic

traffic model and seepage flow in porous media [1]-[15].

Many researchers have been attention to solve fractional

differential equations, fractional integro-differential equations

and fractional partial differential equations such as, Kumar

and Agrawal [16], have been used an approximate method

for numerical solution of fractional differential equations, Liu

et al. [17], have been solved space fractional Fokker-Planck

equation, Keshavarz et al. [18], presented Bernoulli wavelet

operational matrix to solve the fractional order differential

equations, Kazem et al. [19], introduced fractional-order

Legendre functions for solving fractional-order differential

equations, Chen et al. [20] applied generalized fractional-order

Legendre functions to solving fractional partial differential

equations with variable coefficients, Wang et al. [21] have been

solved fractional partial differential equations numerically

by Haar wavelet method, Authors in [22] introduced new

approximations for solving the Caputo-type fractional partial

differential equations, Zhou and Xu [23] have been used

the third kind Chebyshev wavelets collocation method for
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solving the time-fractional convection diffusion equations

with variable coefficients, readers who are interested in

learning more about this topic can refer to [24]-[28].

Recently, variable-order fractional derivative and integration

field have received considerable attention, which is created

from constant-order fractional derivative and integration.

Variable-order fractional derivative introduced in several

physical branches [29]-[32]. In this context, the proposed

equations are variable-order fractional differential equations,

variable-order fractional partial differential equations and

variable-order fractional functional boundary value problems,

which are dealing with by different methods such as

spline finite difference [33], cubic spline approximation

[34], Legendre wavelets [35] and other numerical methods

introduced in [36]-[41].

June 18, 2018

A. Applications

Fractional order partial differential equations appear in

many physical phenomena such as:

• fractional order mobile-immobile advection-dispersion

model, which is appeared to simulate solute transport

in watershed catchments and rivers. Schumer et

al. [42] considered the following fractional-order

mobile-immobile model for the total concentration:

∂C

∂t
+ β

∂γC

∂tγ
= −V

∂C

∂x
+

∂2C

∂x2
, 0 < γ < 1,

where C denotes the solute concentration in the total

(mobile + immobile) phase, and β > 0 is the

fractional capacity coefficient. Here V > 0 and

D > 0 are the velocity and dispersion coefficient for

the mobile phase. The time drift term ∂C
∂t describes

the motion time and thus helps to distinguish the

status of particles conveniently. When γ → 1, the

fractional-order advection-dispersion equation reduces

to the advection-dispersion equation with a retardation

factor β + 1. For more information can refer to [43],

which explained the properties of four fractional-order

advection-dispersion equation (fADE) models. Recently,

numerical and analytical solution of variable order

fractional mobile-immobile advection-dispersion model

(vofMIAD) considered in various article for instance,

Jiang et al. in [40] presented a new numerical method to

obtain the approximation solution for the time vofMIAD
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model based on reproducing kernel theory and collocation

method, Zhang et al. in [41], [44] applied numerical

analysis for solving vofMIAD equation, Ma et al. [45]

have been used Jacobi spectral collocation method for

the time vofMIAD and for more information can see in

[46], [47].

• The first and still most significant soliton (solitary waves)

systems arose prior to the 1970s in the context of

outstanding problems in applied science. Foremost among

these are the Korteweg-de Vries (KdV) equation, the

sine-Gordon (SG) equation and the nonlinear Schrodinger

(NLS) equation. SG equation appeared in augmenting the

linear wave equation with following elementary form [48]

∂2u

∂x2
− ∂2u

∂t2
= sin(u),

where normalizing units have been used to measure x, t,
and u. This equation has many physical applications

including the propagation of crystal defects, domain

walls in ferromagnetic and ferroelectric materials, a

one-dimensional model for elementary particles, the

propagation of splay waves on a biological (lipid)

membrane, self-induced transparency of short optical

pulses and the propagation of quantum units of

magnetic flux (called fluxons) on long Josephson

(super-conducting) transmission lines [48], [49]. In the

continuum limit the problem is reduced to dynamical

equations with fractional derivatives resulting from the

fractional power of the long-range interaction. Fractional

SG and wave-Hilbert nonlinear equations have been

found for classical lattice dynamics. In the other words,

the dynamics on the 1D lattice can be equivalent to

the corresponding fractional nonlinear equation in the

long-wave limit [50]. We consider the time fractional SG

with the following form

∂2u

∂x2
− ∂γu

∂tγ
= sin(u), 1 < γ < 2.

Numerical and analytical methods have been existed

for solving this equation such as diagonally implicit

Runge-Kutta-Nystrom [51], reproducing kernel Hilbert

space method [52], variational homotopy perturbation

method [53] and implicit RBF meshless approach [54].

B. The Main Goal of This Paper

This paper is to develop a collocation method, Legendre

pseudo-operational matrix and Laguerre pseudo-operational

matrix of the variable-order fractional integration for

solving variable-order time fractional partial differential

equations. Also, by using proposed method, we investigate

the approximate solution of the variable fractional order

of mobile-immobile advection-dispersion model and SG

equation. By using the pseudo-operational matrix and

collocation points, we have a system of nonlinear algebraic

equations with unknown Legendre-Laguerre coefficients.

The plan of this paper is listed as follows. In Section II,

we present some necessary definitions of the variable-order

fractional calculus. In Section III, introduce some properties of

Legendre-Laguerre functions. In Section IV, we derive integral

pseudo-operational matrixes of the integer and variable

fractional order for Legendre-Laguerre functions. In Section

V, consider a brief description of the collocation method. In

Section VI, the error analysis is given. In Section VII, we

apply the proposed method to some problems and report our

numerical finding and conclusions are drawn in Section VIII.

The advantages of the proposed approach are:

1) According to physics models the time of the occurrence

of an event doesn’t have fix domain. So for approximate

the time functions in the problem, we applying the

Laguerre polynomials, which defined in [0,∞).
2) We introduce a new technique to obtain the operational

matrices. In the calculation of these operational matrices,

less approximation is used.

3) By using a few terms of Legendre-Laguerre functions

approximate solution converges to the exact solution.

II. PRELIMINARIES

We give some basic definitions and properties of the

variable-order fractional calculus theory.

Definition 1: The Riemann-Liouville variable-order

fractional integral operator with order γ(x, t) > 0 of u(x, t)
is defined as [29], [30]

I
γ(x,t)
t u(x, t) =

1

Γ(γ(x, t))

∫ t

0

(t− s)γ(x,t)−1u(x, s)ds,

where t > 0 and Γ(.) is Gamma function.

Based on the above definition, variable-order fractional

integration has a following useful property:

I
γ(x,t)
t tβ =

{
Γ(β+1)

Γ(β+γ(x,t)+1) t
β+γ(x,t), β > −1,

0, otherwise.

Definition 2: The fractional derivative of u(x, t) in the

Caputo sense is defined as [55], [56]

0D
γ(x,t)
t u(x, t) = I

q−γ(x,t)
t Dq

tu(x, t)

=
1

Γ(q − γ(x, t))

∫ t

0

(t− s)q−γ(x,t)−1 ∂
qu(x, s)

∂sq
ds,

for q − 1 < γ(x, t) ≤ q, t > 0 and q ∈ N .

It has a following useful property:

0D
γ(x,t)
t tβ =

{
Γ(β+1)

Γ(β−γ(x,t)+1) t
β−γ(x,t), q ≤ β ∈ N,

0, otherwise.

III. LEGENDRE-LAGUERRE FUNCTIONS

In this paper, we need to introduce two-variable functions

to deal with variable-order time fractional partial differential

equations. Consider

ψmn(x, t) = Pm(x)Ln(t), (x, t) ∈ Ω = [0, 1]× [0,∞),

m = 0, 1, · · · ,M, n = 0, 1, · · · , N.

where the shifted Legendre polynomials are defined on the

interval [0, 1] and the Laguerre polynomials are defined on

the interval [0,∞]. So that, shifted Legendre and Laguerre
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polynomials are denoted by Pm(x), m = 0, 1, · · · ,M, and

Ln(t), n = 0, 1, · · · , N, respectively [57], [58].

The Legendre-Laguerre functions are orthogonal with

respect to the weight function w(x, t) = e−t in the interval Ω
with the orthogonal property∫ ∞

0

∫ 1

0

w(x, t)ψmn(x, t)ψij(x, t)dxdt =
1

2m+ 1
δmiδnj .

(1)

where δmi and δnj are the Kronecker functions. A function

f(x, t), which is integrable in Ω can be expanded as

f(x, t) =
∞∑

m=0

∞∑
n=0

fmnψmn(x, t),

where

fmn = (2m+ 1)

∫ ∞

0

∫ 1

0

w(x, t)f(x, t)ψmn(x, t)dxdt. (2)

Then, we have truncated series for f as

f(x, t) �
M∑

m=0

N∑
n=0

fmnψmn(x, t) = PT (x)FL(t), (3)

where

F =

⎡
⎢⎢⎢⎣

f00 f01 · · · f0N
f10 f11 · · · f1N

...
...

. . .
...

fM0 fM1 · · · fMN

⎤
⎥⎥⎥⎦ ,

P (x) = [P0(x), P1(x), · · · , PM (x)]T (4)

L(t) = [L0(t), L1(t), · · · , LN (t)]T .

IV. PSEUDO-OPERATIONAL MATRICES OF LEGENDRE AND

LAGUERRE POLYNOMIALS

In this section, we introduce the integral pseudo-operational

matrix of the integer and variable fractional order for Legendre

and Laguerre polynomials.

A. Integral Pseudo-Operational Matrix of the Integer Order

To calculate the integral pseudo-operational matrix of

the integer order of Legendre polynomials use the Taylor

polynomials, which defined as follows [59]

Ti(x) = xi, i = 0, 1, · · · ,M.

The following relation holds among these polynomials and

Legendre polynomials:

P (x) = D1T (x), (5)

where

T (x) = [1, x, x2, · · · , xM ]T ,

D1 = [d1ij ](M+1)×(M+1),

d1ij =

{
(−1)i+j(i+j)!
(i−j)!(j!)2 , i ≥ j,

0 otherwise,
, i, j = 0, 1, · · · ,M.

D1 is the transformation matrix of the Legendre polynomials

to the Taylor polynomials. Then, by integrating P (x), we

obtain the pseudo-operational matrix of Legendre polynomials∫ x

0

P (s)ds =

∫ x

0

D1T (s)ds = D1

∫ x

0

T (s)ds

= xD1H1T (x) = xD1H1D
−1
1 P (x)

= xQ1P (x),

where Q1 = D1H1D
−1
1 is the pseudo-operational matrix of

the Legendre polynomials and

H1 =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0
0 1

2 0 · · · 0
0 0 1

3 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
M+1

⎤
⎥⎥⎥⎥⎥⎦ .

Also, we can write L(t) in the matrix form as follows

L(t) = D2T (t), (6)

where

T (t) = [1, t, t2, · · · , tN ]T ,

D2 = [d2ij ](N+1)×(N+1),

d2ij =

{
(−1)j(i)!
(i−j)!(j!)2 , i ≥ j,

0 otherwise.
, i, j = 0, 1, · · · , N.

D2 is the transformation matrix of the Laguerre polynomials

to the Taylor polynomials. Then, by integrating L(t), we

achieve the pseudo-operational matrix of integer integration

of Laguerre polynomials∫ t

0

L(s)ds =

∫ t

0

D2T (s)ds = D2

∫ t

0

T (s)ds

= tD2H2T (t) = tD2H2D
−1
2 L(t) = tQ2L(t),

where Q2 = D2H2D
−1
2 is the pseudo-operational matrix of

the Laguerre polynomials and

H2 =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0
0 1

2 0 · · · 0
0 0 1

3 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
N+1

⎤
⎥⎥⎥⎥⎥⎦ .

B. Integral Pseudo-Operational Matrix of the Variable
Fractional Order

In this section, the pseudo-operational matrix of

variable-order fractional integration of Laguerre polynomials

by use of some properties of Riemann-Liouville fractional

integral and Taylor polynomials is derived. First, we obtain

the pseudo-operational matrix of variable-order fractional

integration with order γ(x, t) > 0 of Taylor polynomials as

I
γ(x,t)
t T (t) = tγ(x,t)θ

γ(x,t)
N T (t), (7)
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where

θ
γ(x,t)
N =

⎡
⎢⎢⎢⎢⎣

Γ(1)
Γ(1+γ(x,t)) 0 0 0

0 Γ(2)
Γ(2+γ(x,t)) 0 0

...
...

. . .
...

0 0 0 Γ(N+1)
Γ(N+1+γ(x,t))

⎤
⎥⎥⎥⎥⎦ .

Also, to deal with the problem, we need to

I
γ(x,t)
t tT (t) = t1+γ(x,t)θ̂

γ(x,t)
N T (t), (8)

where

θ̂
γ(x,t)
N =

⎡
⎢⎢⎢⎢⎣

Γ(2)
Γ(2+γ(x,t)) 0 0 0

0 Γ(3)
Γ(3+γ(x,t)) 0 0

...
...

. . .
...

0 0 0 Γ(N+2)
Γ(N+2+γ(x,t))

⎤
⎥⎥⎥⎥⎦ .

Theorem 1: Let L(t) be the Laguerre polynomials vector

defined in (4) and q − 1 < γ(x, t) ≤ q ∈ Z+.
The pseudo-operational matrix of variable-order fractional

integration of Laguerre polynomials expressed as

I
γ(x,t)
t L(t) = tγ(x,t)ξ

γ(x,t)
N L(t), (9)

where ξ
γ(x,t)
N = D2θ

γ(x,t)
N D−1

2 .
Proof: By using the pseudo-operational matrix of

variable-order fractional integration of Taylor polynomials in

(7) and transformation matrix of the Laguerre polynomials to

the Taylor polynomials in (6), we have

I
γ(x,t)
t L(t) = I

γ(x,t)
t D2T (t) = tγ(x,t)D2θ

γ(x,t)
N T (t)

= tγ(x,t)D2θ
γ(x,t)
N D−1

2 L(t)

= tγ(x,t)ξ
γ(x,t)
N L(t),

ξ
γ(x,t)
N is called the pseudo-operational matrix of

variable-order fractional integration for the Laguerre

polynomials.

V. APPLICATIONS AND RESULTS

This section is devoted to the study of variable-order time

fractional partial differential equations as

F (D
γ(x,t)
t u(x, t),

∂2u(x, t)

∂x2
,
∂2u(x, t)

∂t2
, (10)

∂u(x, t)

∂x
,
∂u(x, t)

∂t
, u(x, t)) = g(x, t),

q − 1 < γ(x, t) ≤ q, 0 ≤ x ≤ 1, t > 0,

with initial conditions

u(x, 0) = f0(x),
∂u(x, 0)

∂t
= f1(x),

and boundary conditions

u(0, t) = ϕ0(t), u(1, t) = ϕ1(t).

So that, u(x, t) is an unknown function, the known functions

f0(x), f1(x), ϕ0(t), ϕ1(t), and g(x, t) are defined on interval

Ω. Also, q = max(x,t)∈Ω{γ(x, t)} and q ∈ Z+.

For this problem assume that, the highest order of derivative

respect to x and t is 2. Therefore, we obtain the following

approximate functions as

∂4u(x, t)

∂x2∂t2
� PT (x)UL(t), (11)

where unknown matrix U define as follows

U =

⎡
⎢⎢⎢⎣

u00 u01 · · · u0N

u10 u11 · · · u1N

...
...

. . .
...

uM0 uM1 · · · uMN

⎤
⎥⎥⎥⎦ .

Therefore, to approximate other functions, we use the integral

pseudo-operational matrix of the integer and variable fractional

order. By integrating of the above equation with respect to t
and substituting initial condition into it, we obtain

∂3u(x, t)

∂x2∂t
� tPT (x)UQ2L(t) + f ′′

1 (x), (12)

integrating (12) with respect to t

∂2u(x, t)

∂x2
� t2PT (x)UQ2Q̂2L(t) + tf ′′

1 (x) + f ′′
0 (x), (13)

where∫ t

0

sL(s)ds =

∫ t

0

sD2T (s)ds = D2

∫ t

0

sT (s)ds (14)

= t2D2Ĥ2T (t) = t2D2Ĥ2D
−1
2 L(t)

= t2Q̂2L(t),

and

Ĥ2 =

⎡
⎢⎢⎢⎢⎢⎣

1
2 0 0 · · · 0
0 1

3 0 · · · 0
0 0 1

4 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
N+2

⎤
⎥⎥⎥⎥⎥⎦ .

Now, by integrating (13) of order 2 with respect to x, we get

∂u(x, t)

∂x
� xt2PT (x)QT

1 UQ2Q̂2L(t)

+ t(f ′
1(x)− f ′

1(0)) + (f ′
0(x)− f ′

0(0)) +
∂u(0, t)

∂x
,(15)

and

u(x, t) � x2t2PT (x)Q̂T
1 Q

T
1 UQ2Q̂2L(t) (16)

+ t(f1(x)− f1(0)− xf ′
1(0))

+ (f0(x)− f0(0)− xf ′
0(0))

+ x
∂u(0, t)

∂x
+ ϕ0(t),

where∫ x

0

sP (s)ds =

∫ x

0

sD1T (s)ds = D1

∫ t

0

sT (s)ds (17)

= x2D1Ĥ1T (x) = x2D1Ĥ1D
−1
1 P (x)

= x2Q̂1P (x),
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and

Ĥ1 =

⎡
⎢⎢⎢⎢⎢⎣

1
2 0 0 · · · 0
0 1

3 0 · · · 0
0 0 1

4 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
M+2

⎤
⎥⎥⎥⎥⎥⎦ .

To calculate the above equations, integrating (15) with

respect to x from 0 to 1

u(1, t)− u(0, t) � t2(

∫ 1

0

xPT (x)dx)QT
1 UQ2Q̂2L(t)

+ t(f1(1)− f1(0)− f ′
1(0))

+ (f0(1)− f0(0)− f ′
0(0)) +

∂u(0, t)

∂x
,

from (5), we get∫ 1

0

xPT (x)dx =

∫ 1

0

xTT (x)DT
1 dx = STDT

1 ,

where

S = [
1

2
,
1

3
,
1

4
, · · · , 1

M + 2
]T .

Then,

∂u(0, t)

∂x
� ϕ1(t)− ϕ0(t)− t2STDT

1 Q
T
1 UQ2Q̂2L(t)

− t(f1(1)− f1(0)− f ′
1(0)) (18)

− (f0(1)− f0(0)− f ′
0(0)).

Substituting (18) in (15) and (16), we obtain the

approximation of u(x, t) and
∂u(x,t)

∂x by use of Legendre

and Laguerre polynomials. Also, we need to calculate the

following expression, by integrating (12) of order 2 with

respect to x and using initial and boundary conditions

∂3u(x, t)

∂x∂t2
� xPT (x)QT

1 UL(t) +
∂3u(0, t)

∂x∂t2
, (19)

∂2u(x, t)

∂t2
� x2PT (x)Q̂T

1 Q
T
1 UL(t) + x

∂3u(0, t)

∂x∂t2
(20)

+ ϕ′′
0(t).

∂3u(0,t)
∂x∂t2 is an unknown function. By integrating (19) from 0

to 1 with respect to x, we get

∂3u(0, t)

∂x∂t2
� ϕ′′

1(t)− ϕ′′
0(t)− STDT

1 Q
T
1 UL(t).

Then

∂2u(x, t)

∂t2
� x2PT (x)Q̂T

1 Q
T
1 UL(t) (21)

+ x(ϕ′′
1(t)− ϕ′′

0(t)− STDT
1 Q

T
1 UL(t))

+ ϕ′′
0(t).

By integrating (21) with respect to t, we obtain

∂u(x, t)

∂t
� x2tPT (x)Q̂T

1 Q
T
1 UQ2L(t) (22)

+ x(ϕ′
1(t)− ϕ′

0(t)− tSTDT
1 Q

T
1 UQ2L(t))

+ ϕ′
0(t) + f1(x).

In addition, it is necessary to calculate fractional derivatives

of u(x, t) by applying the integral pseudo-operational matrix

of variable fractional order and Riemann-Liouville fractional

integral properties.

For 0 < γ(x, t) ≤ 1, by integrating (22) with respect to t of

order γ(x, t) and taking initial and boundary conditions, we

have

D
γ(x,t)
t u(x, t) = I

1−γ(x,t)
t (

∂u(x, t)

∂t
) (23)

� x2t2−γ(x,t)PT (x)Q̂T
1 Q

T
1 UQ2ξ̂

1−γ(x,t)
N L(t)

+ xI
1−γ(x,t)
t (ϕ′

1(t)− ϕ′
0(t))

− xt2−γ(x,t)STDT
1 Q

T
1 UQ2ξ̂

1−γ(x,t)
N L(t)

+
Γ(1)

Γ(2− γ(x, t))
t1−γ(x,t)f1(x) + I

1−γ(x,t)
t (ϕ′

0(t)),

so that

I
1−γ(x,t)
t (tL(t)) � t2−γ(x,t)ξ̂

1−γ(x,t)
N L(t),

according to (8), we obtain

ξ̂
1−γ(x,t)
N = D2θ̂

1−γ(x,t)
N D−1

2 .

Also, for 1 < γ(x, t) ≤ 2,

D
γ(x,t)
t u(x, t) = I

2−γ(x,t)
t (

∂2u(x, t)

∂2t
) (24)

� x2t2−γ(x,t)PT (x)Q̂T
1 Q

T
1 Uξ

2−γ(x,t)
N L(t)

+ xI
2−γ(x,t)
t (ϕ′′

1(t)− ϕ′′
0(t))

− xt2−γ(x,t)STDT
1 Q

T
1 Uξ

2−γ(x,t)
N L(t)

+ I
2−γ(x,t)
t (ϕ′′

0(t)).

We obtain an algebraic equation by substituting the

above approximate functions in (10) and nodal points of

Newton-Cotes [60]. Then, we get unknown matrix U by

solving a system of algebraic equation and using Newton’s

iterative method. Ultimately, by substituting U in (16), we

achieve the approximate solution of the problem.

VI. ERROR ANALYSIS

In this section, we analyze the upper bound of error for

the numerical method and present error analysis based on the

residual function.

A. Upper Bound of Error

We indicate that Legendre-Laguerre expansion of a

continuous function f(x, t) converges uniformly. But before

that, we present the upper bound for its error by the following

theorem. Let PM,N consists of all polynomials of degree at

most M for variable x and degree at most N for variable t.
Thus, for f ∈ C(Ω), there exists unique pM,N ∈ PM,N such

that

‖f(x, t)− fM,N (x, t)‖L2
w(Ω) ≤ ‖f(x, t)− pM,N (x, t)‖L2

w(Ω).
(25)

Also, we define

L2
w(Ω) = {ϑ : ϑ is measurable on Ω and ‖ϑ‖w < ∞},
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equipped with the following inner product and norm

〈ϑ, ρ〉w =

∫
Ω

ϑ(x, t)ρ(x, t)w(x, t)dxdt, ‖ϑ‖w = 〈ϑ, ϑ〉w.

Definition 3: Let f(x, t) be a function of two real variables

which is continuous at a certain point (x0, t0) and such that all

its partial derivatives are also continuous at that point. Then

the Taylor series expansion of f(x, y) about the point (x0, y0)
can be obtained as [60], [61]

f(x, t) =
∞∑

m=0

∞∑
n=0

1

m!n!

∂n

∂tn
(
∂mf

∂xm
)|(x0,t0)(x−x0)

m(t−t0)
n.

We can write

f(x, t) (26)

=
M∑

m=0

N∑
n=0

1

m!n!

∂n

∂tn
(
∂mf

∂xm
)|(x0,t0)(x− x0)

m(t− t0)
n

+ RMN (x, t).

If all partial derivatives of f of order M + N + 2 are exist,

then

|RMN (x, t)| ≤ (x− x0)
M+1(t− t0)

N+1

(M + 1)!(N + 1)!
(27)

× sup
(x,t)∈Ω

| ∂M+N+2f

∂xM+1∂tN+1
(x, t)|.

Theorem 2: Suppose that the real sufficiently smooth

function f, is expanded by the Legendre-Laguerre functions

in Ω, as

fM,N (x, t) �
M∑

m=0

N∑
n=0

f̄mnψmn(x, t) = F̄TψMN (x, t),

where

ψMN (x, t) = [ψ00(x, t), ψ01(x, t), · · · , ψ0N (x, t), · · ·
, ψM0(x, t), ψM1(x, t), · · · , ψMN (x, t)]T ,

F̄ = [f̄00, f̄01, · · · , f̄0N , · · · , f̄M0, f̄M1, · · · , f̄MN ]T .

If the bounded on the right hand side of (27) in magnitude by

CMN = sup
(x,t)∈Ω

| ∂M+N+2f

∂xM+1∂tN+1
(x, t)|,

we can estimate the upper bound of error as

‖f(x, t)−fM,N (x, t)‖L2
w(Ω) ≤

CMN

√
(2N + 2)!

(M + 1)!(N + 1)!
√

(2M + 3)
.

(28)

In addition, let

f̃M,N (x, t) � F̃TψMN (x, t),

be the approximate solution obtained by the proposed method

in Section V, where

F̃ = [f̃00, f̃01, · · · , f̃0N , · · · , f̃M0, f̃M1, · · · , f̃MN ]T .

Then, we have

‖f(x, t)− f̃M,N (x, t)‖L2
w(Ω)

≤ CMN

√
(2N + 2)!

(M + 1)!(N + 1)!
√

(2M + 3)
(29)

+ θMN‖F̄ − F̃‖2,

where

θMN =

√√√√ M∑
m=0

N + 1

2m+ 1
,

and the norm ‖.‖2 is the usual Euclidean norm of vectors.

Proof: We define

pMN (x, t) =
M∑

m=0

N∑
n=0

1

m!n!

∂n

∂tn
(
∂mf

∂xm
)|(0,0)xmtn, (30)

by using (26) and (27) about (x0, t0) = (0, 0), we have

|f(x, t)−pMN (x, t)| ≤ CMN

(M + 1)!(N + 1)!
xM+1tN+1. (31)

Applying above equation, we get

‖f(x, t)− fM,N (x, t)‖2L2
w(Ω) (32)

=

∫ ∞

0

∫ 1

0

|f(x, t)− F̄TψMN (x, t)|2e−tdxdt

≤
∫ ∞

0

∫ 1

0

|f(x, t)− pM,N (x, t)|2e−tdxdt

≤
∫ ∞

0

∫ 1

0

| CMN

(M + 1)!(N + 1)!
xM+1tN+1|2e−tdxdt

= C2
MN

∫ ∞

0

∫ 1

0

x2M+2t2N+2

((M + 1)!(N + 1)!)2
e−tdxdt

=
C2

MN (2N + 2)!

((M + 1)!)2((N + 1)!)2(2M + 3)
,

by taking the square roots of both sides, we obtain the upper

bound of the error. Also, one can easily find that

‖f(x, t)− f̃M,N (x, t)‖L2
w(Ω)

≤ ‖f(x, t)− fM,N (x, t)‖L2
w(Ω)

+ ‖fM,N (x, t)− f̃M,N (x, t)‖L2
w(Ω). (33)



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:12, No:12, 2018

251

We then have,

‖fM,N (x, t)− f̃M,N (x, t)‖L2
w(Ω) (34)

=

(∫ ∞

0

∫ 1

0

|fM,N (x, t)− f̃M,N (x, t)|2e−tdxdt

) 1
2

≤
(∫ ∞

0

∫ 1

0

|
M∑

m=0

N∑
n=0

(F̄ − F̃ )ψMN (x, t)|2e−tdxdt

) 1
2

≤ (

∫ ∞

0

∫ 1

0

[
M∑

m=0

N∑
n=0

|F̄ − F̃ |2
]

×
[

M∑
m=0

N∑
n=0

|ψMN (x, t)|2
]
e−tdxdt)

1
2

=

(
M∑

m=0

N∑
n=0

|F̄ − F̃ |2
) 1

2

×
(

M∑
m=0

N∑
n=0

∫ ∞

0

∫ 1

0

|ψMN (x, t)|2e−tdxdt

) 1
2

= ‖F̄ − F̃‖2
(

M∑
m=0

N + 1

2m+ 1

) 1
2

.

Consequently, from (32)-(34), we obtain

‖f(x, t)− f̃M,N (x, t)‖L2
w(Ω) (35)

≤ CMN

√
(2N + 2)!

(M + 1)!(N + 1)!
√

(2M + 3)

+

(
M∑

m=0

N + 1

2m+ 1

) 1
2

‖F̄ − F̃‖2.

Above theorem demonstrates that with increasing the terms of

Legendre-Laguerre functions the error tends to zero.

B. Residual Error

The error function of the approximate solution uMN (x, t)
for u(x, t), where u(x, t) is the exact solution of (14), is define

as follow:

eMN (x, t) = uMN (x, t)− u(x, t).

According to the problem, uMN (x, t) satisfies in

F (D
γ(x,t)
t uMN (x, t),

∂2uMN (x, t)

∂x2
,
∂2uMN (x, t)

∂t2
,

∂uMN (x, t)

∂x
,
∂uMN (x, t)

∂t
, uMN (x, t))− g(x, t)

= rMN (x, t),

where rMN (x, t) is the residual function. Also, in order to

achieve the approximate error ẽMN (x, t) to the error function

eMN (x, t) using the techniques of Section V, as

F (D
γ(x,t)
t eMN (x, t),

∂2eMN (x, t)

∂x2
,
∂2eMN (x, t)

∂t2
,

∂eMN (x, t)

∂x
,
∂eMN (x, t)

∂t
, eMN (x, t))

= rMN (x, t),

with initial and boundary conditions

eMN (x, 0) = e0(x),
∂eMN (x, 0)

∂t
= e1(x),

eMN (0, t) = φ0(t), eMN (1, t) = φ1(t),

where e0(x), e1(x), φ0(t) and φ1(t) are known functions.

Therefore, the approximate solution is obtain

ũMN (x, t) = uMN (x, t) + ẽMN (x, t). (36)

Ultimately, the general error of the problem is

E(x, t) = u(x, t)− ũMN (x, t). (37)

VII. ILLUSTRATIVE EXAMPLES

In order to test the validity of the present method, some

examples are solved and the numerical results are compared

with their exact solution and other methods. The computations

associated with the examples were performed using MATLAB.

Example 1: Consider the time variable fractional order

mobile-immobile advection-dispersion model is as follows

[40], [47]

∂u(x, t)

∂t
+D

γ(x,t)
t u(x, t) = −∂u(x, t)

∂x
+

∂2u(x, t)

∂x2
+ f(x, t),

(38)

with the following initial condition

u(x, 0) = 5x(1− x), 0 ≤ x ≤ 1,

and boundary conditions

u(0, t) = u(1, t) = 0, 0 ≤ t ≤ 1,

with

f(x, t) = 5x(1− x) +
5x(1− x)t1−γ(x,t)

Γ(2− γ(x, t))

+ 10(t+ 1) + 5(t+ 1)(1− 2x),

and

γ(x, t) = 0.8 + 0.005 cos(xt) sin(x).

The exact solution of this example is u(x, t) = 5(t +
1)x(1 − x). Now, let us find the approximate solution given

by Legendre-Laguerre functions. Let

∂u3(x, t)

∂x2∂t
� PT (x)UL(t), (39)

by integrating (39) with respect to t, we get

∂u2(x, t)

∂x2
� tPT (x)UQ2L(t)− 10. (40)

By integrating (40) with respect to x of order 2 and using

initial and boundary conditions, we obtain

∂u(x, t)

∂x
� xtPT (x)QT

1 UQ2L(t) + 5− 10x (41)

− tSTDT
1 Q

T
1 UQ2L(t),

u(x, t) � x2tPT (x)Q̂T
1 Q

T
1 UQ2L(t) + 5x− 5x2

− txSTDT
1 Q

T
1 UQ2L(t).



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:12, No:12, 2018

252

Moreover, by integrating (39) of order 2 with respect to x,

we obtain

∂u(x, t)

∂t
� x2PT (x)Q̂T

1 Q
T
1 UL(t)− xSTDT

xQ
T
1 UL(t).

(42)

With a view to 0 < γ(x, t) ≤ 1, we integrating (42) of

variable fractional with respect to t,

D
γ(x,t)
t u(x, t) � x2t1−γ(x,t)PT (x)Q̂T

1 Q
T
1 Uξ

1−γ(x,t)
N L(t)

− xt1−γ(x,t)STDT
1 Q

T
1 Uξ

1−γ(x,t)
N L(t).(43)

By replacing above approximation in (38) and using

collocation points, we get the system of algebraic equations.

We take M = N = 1, obtains

U =

[ −10 −4.58922× 10−16

−6.17113× 10−16 1.45846× 10−15

]
,

then, with regards to (41) have

u(x, t) � (3.33× 10−16xt+ 2.43× 10−16xt2 − 5t

+ 5.18× 10−16t2 − 5)x2 (44)

× (2.75× 10−16t2 + 5t+ 5)x.

In view of the error introduced in section 6, we have error

problem as⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂e11(x,t)
∂t +D

γ(x,t)
t e11(x, t) +

∂e11(x,t)
∂x − ∂2e11(x,t)

∂x2

= rMN (x, t),
e11(x, 0) = 0,
e11(0, t) = 0,
e11(1, t) = 4.8978931× 10−40t,

where

By solving the above problem, we get the absolute error

ẽ11(x, t) as

ẽ11(x, t) = (5.62× 10−63xt+ 1.00× 10−63xt2)x2

+ 5.92× 10−65xt2.

So, by using (36) the approximate solution is

ũ11(x, t) = (3.33× 10−16xt+ 2.43× 10−16xt2 − 5t

+ 5.18× 10−16t2 − 5)x2 + (2.75× 10−16t2 + 5t+ 5)x

+ (5.62× 10−63xt+ 1.00× 10−63xt2)x2

+ 5.92× 10−65xt2.

Also, Table I shows the maximum absolute errors obtained

for various values of t with M = N = 1. In Table II, the

absolute error obtained between the approximate solution and

the exact solution with that CPU time (in seconds). From the

comparison in Table II, it is displayed that the present method

more accurate than the method in [40]. Also, due to the errors

table and figures in [47], the present method more accurate

compared with that method.

Example 2: Consider the time variable fractional order

mobile-immobile advection-dispersion model is as follows

[40], [41], [47]

∂u(x, t)

∂t
+D

γ(x,t)
t u(x, t) = −∂u(x, t)

∂x
+

∂2u(x, t)

∂x2
+ f(x, t),

with initial condition u(x, 0) = 10x2(1− x)2, 0 ≤ x ≤ 1 and

boundary conditions

u(0, t) = u(1, t) = 0, 0 ≤ t ≤ T,

with

f(x, t) = 10(1 +
t1−γ(x,t)

Γ(2− γ(x, t))
)x2(1− x)2

+ 10(4x3 − 6x2 + 2x− 12x2 + 12x− 2)(t+ 1),

and

γ(x, t) = 1− 0.5 exp(−xt).

The exact solution of this example is u(x, t) = 10(t+1)x2(1−
x)2. To solve the problem by proposed method, we take M =
2, N = 1, obtain

U =

[
4.792× 10−16 3.204× 10−16 20
−7.313× 10−16 −5.958× 10−16 1.084× 10−14

]
,

then,

u(x, t) = x2(10t+ 10tx2 + 5.52× 10−15xt2

− 2.71× 10−15x2t2 − 20xt− 2.67× 10−15t2

+ 10) + x(−1.33× 10−16t2 + 8.01× 10−16t)

− 20x3 + 10x4.

We see that u(x, t) is a good approximation with the

exact solution by using a few terms of Legendre-Laguerre

functions. In Table III, the absolute error obtained between

the approximate solution and the exact solution with that

CPU time (in seconds), which demonstrates that the proposed

method is more accurate in comparison to the methods in

[40], [41], [47]. Also, Table IV shows the maximum absolute

error obtained between the approximate solutions and the exact

solution for various values of t.
Example 3: Consider the following linear variable-order

time fractional partial differential equations

D
γ(x,t)
t u(x, t) +

∂u

∂x
(x, t)− x

∂2u

∂x2
(x, t) = f(x, t),

0 < γ(x, t) ≤ 1,

with initial condition u(x, 0) = exp(x), 0 ≤ x ≤ 1 and

boundary conditions

u(0, t) = (t2+1)(1−t), u(1, t) = (t2+1)(exp(1)−t), t > 0,

with

f(x, t) =
2t2−γ(x,t)

Γ(3− γ(x, t))
− t1−γ(x,t)

Γ(2− γ(x, t))

− 6t3−γ(x,t)

Γ(4− γ(x, t))
+ (t2 + 1)(1− x) exp(x).

The exact solution of this problem is u(x, t) = (t2 +
1)(exp(x)− t). Table V, presents the absolute errors between
the approximate solutions and the exact solution for various
functions of γ(x, t) with various values of M,N. From Table
V, we can see clearly that the error gets more and more small
with increasing M . Fig. 1, illustrates the absolute error and
approximate solution obtained by the proposed method for
M = 4, N = 3.
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rMN (x, t) = 2.091× 10−15t+ 4.861× 10−16xt2 + 1.370× 10−14x2t+ 3.331× 10−15x3

+ (−5.516× 10−16x+ 1.037× 10−14x2 + 3.331× 10−16x3)
t0.2−0.005 cos(xt) sin(x)

Γ(1.2− 0.005 cos(xt) sin(x))

− 4.861× 10−16x3t− 2.430× 10−16x2t2 − 8.083× 10−16x2

− 4.167× 10−15xt− 4.861× 10−14x2t2 + 6.665× 10−14x2t

+ 2.010× 10−15xt2 + 4.751× 10−16x− 1.313× 10−15t2.

TABLE I
MAXIMUM ABSOLUTE ERRORS WITH VARIOUS VALUES OF t FOR EXAMPLE 1

M = 1, N = 1 t = 1 t = 10 t = 100 t = 1000
x ∈ [0, 1] 3.91× 10−17 3.47× 10−15 4.20× 10−13 4.27× 10−11

TABLE II
COMPARISON OF THE ABSOLUTE ERROR FOR

γ(x, t) = 0.8 + 0.005 cos(xt) sin(x) AND t = 1 WITH METHOD IN [40]
OF EXAMPLE 1

xi Present Method Method in [40]
M = 1, N = 1 N = 13

0.1 1.71× 10−17 0
0.2 2.90× 10−17 2.2205× 10−16

0.3 3.61× 10−17 4.4409× 10−16

0.4 3.91× 10−17 0
0.5 3.85× 10−17 0
0.6 3.48× 10−17 4.4409× 10−16

0.7 2.86× 10−17 0
0.8 2.03× 10−17 0
0.9 1.06× 10−17 6.6613× 10−16

Cpu 1.69× 10−2 -

Fig. 1 Absolute error and approximate solution for
γ(x, t) = 1− 0.2 exp(−xt) with M = 4, N = 3 of Example 3

Example 4: As a final example, consider the variable-order

fractional SG equations is as follows

D
γ(x,t)
t u(x, t) =

∂2u

∂x2
(x, t)− sin(u(x, t)) + f(x, t),

1 < γ(x, t) ≤ 2,

with the following initial conditions

u(x, 0) = 0,
∂u(x, 0)

∂t
= 0, 0 < x < 1,

and boundary conditions

u(0, t) = 0, u(1, t) = t2 sin(1), 0 ≤ t ≤ 1,

with

f(x, t) = (
2t2−γ(x,t)

Γ(3− γ(x, t))
+ t2) sin(x) + sin(t2sin(x)).

The exact solution of this example is u(x, t) = t2sin(x). In
order to show the accuracy of the method, the absolute errors
between exact and numerical solutions for various values of
M,N with γ(x, t) = 2 − 0.2 sin(x) exp(−t) are shown in
Table VI. From Table VI, we can see clearly that the error
gets more and more small with increasing M . Authors in [28]
expressed this problem for γ(x, t) = α, which α is a real
number. Also, we presented absolute errors between exact and
numerical solutions for γ(x, t) = 1.15, 1.85, 2 with various
values of M,N in Table VII and Fig. ??. Due to the errors
table in [28], the present method more accurate compared with
that method. With regards to these table and figure, it is seen
that the approximate solutions converge to the exact solution.

VIII. CONCLUSION

In the present work, applied the collocation method to

approximate the solution of variable-order time fractional

partial differential equations. One significant advantage of this

method is that with using a few terms of Legendre-Laguerre

functions, approximate solution converges to the exact solution

and with increasing the amount of M and N the accuracy is

increased sufficiently. Also, we introduced a new technique

to obtain the operational matrices with the least error, which

is called the pseudo-operational matrix. According to these

pseudo-operational matrix, we can be transformed our problem

to a nonlinear system of algebraic equations. As seen from the

numerical examples, the results demonstrate that this method

is more accurate than some existing methods.
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TABLE III
ABSOLUTE ERRORS FOR γ(x, t) = 1− 0.5 exp(−xt) WITH t = 1 OF EXAMPLE 2

(xi, ti) Present Method Method in [40] Method in [41] Method in [47]
M = 2, N = 1 N = 20 N = 100 M = N = 10

0.1 4.84× 10−18 1.5629× 10−4 6.3759× 10−5 4.7781× 10−15

0.2 2.71× 10−17 1.4006× 10−3 4.9040× 10−6 1.1399× 10−16

0.3 6.46× 10−17 2.9751× 10−3 5.9837× 10−5 2.7608× 10−16

0.4 1.04× 10−17 4.2976× 10−3 7.7810× 10−6 7.0724× 10−16

0.5 1.31× 10−16 4.9721× 10−3 5.8089× 10−5 1.0486× 10−17

0.6 1.33× 10−16 4.8034× 10−3 8.2984× 10−6 2.3397× 10−16

0.7 1.09× 10−16 3.8152× 10−3 5.8931× 10−5 2.3096× 10−16

0.8 6.44× 10−17 2.2746× 10−3 5.9463× 10−6 8.4324× 10−17

0.9 1.86× 10−17 7.2075× 10−4 6.2975× 10−5 7.9527× 10−17

Cpu 5.76× 10−2 - - -

TABLE IV
MAXIMUM ABSOLUTE ERRORS WITH VARIOUS VALUES OF t OF EXAMPLE 2

M = 2, N = 1 t = 1 t = 10 t = 100 t = 1000
x ∈ [0, 1] 1.55× 10−16 1.78× 10−14 2.11× 10−12 2.14× 10−10

TABLE V
ABSOLUTE ERRORS WITH VARIOUS FUNCTIONS OF γ(x, t) FOR EXAMPLE 3

(xi, ti) γ(x, t) = 1− 0.5 exp(−xt) γ(x, t) = 1− exp(−xt) γ(x, t) = 0.5
M = 3, N = 3 M = 6, N = 3 M = 3, N = 3 M = 6, N = 3 M = 3, N = 3 M = 6, N = 3

(0.1, 0.1) 3.06× 10−8 9.50× 10−10 4.16× 10−8 8.85× 10−10 1.46× 10−8 9.52× 10−9

(0.2, 0.2) 3.24× 10−8 6.41× 10−9 7.75× 10−8 6.19× 10−9 2.16× 10−8 6.41× 10−9

(0.3, 0.3) 6.39× 10−9 1.82× 10−8 9.00× 10−8 1.79× 10−8 1.08× 10−7 1.83× 10−8

(0.4, 0.4) 9.25× 10−8 3.60× 10−8 2.50× 10−7 3.57× 10−8 5.68× 10−8 3.61× 10−8

(0.5, 0.5) 2.51× 10−7 5.72× 10−8 4.73× 10−7 5.70× 10−8 6.42× 10−8 5.72× 10−8

(0.6, 0.6) 4.75× 10−8 7.72× 10−8 3.24× 10−7 7.73× 10−8 1.59× 10−7 7.72× 10−8

(0.7, 0.7) 6.56× 10−7 8.99× 10−8 3.51× 10−7 9.02× 10−8 8.59× 10−7 9.00× 10−8

(0.8, 0.8) 9.43× 10−7 8.76× 10−8 6.56× 10−7 8.79× 10−8 1.11× 10−6 8.76× 10−8

(0.9, 0.9) 4.38× 10−7 6.12× 10−8 6.31× 10−7 6.13× 10−8 3.37× 10−7 6.12× 10−8

TABLE VI
ABSOLUTE ERROR WITH DIFFERENT VALUES OF M,N WITH γ(x, t) = 2− 0.2 sin(x) exp(−t) FOR EXAMPLE 4

(xi, ti) M = 2, N = 2 M = 3, N = 2 M = 5, N = 2
(0, 0) 0 0 0

(0.1, 0.1) 4.75× 10−6 1.96× 10−9 4.62× 10−11

(0.2, 0.2) 2.66× 10−5 1.17× 10−8 3.42× 10−10

(0.3, 0.3) 7.55× 10−5 2.57× 10−8 9.55× 10−10

(0.4, 0.4) 5.80× 10−5 8.67× 10−9 1.95× 10−9

(0.5, 0.5) 4.52× 10−5 4.94× 10−8 3.25× 10−9

(0.6, 0.6) 1.84× 10−4 3.71× 10−8 4.47× 10−9

(0.7, 0.7) 2.65× 10−4 2.69× 10−7 5.41× 10−9

(0.8, 0.8) 2.38× 10−4 3.29× 10−7 5.80× 10−9

(0.9, 0.9) 1.52× 10−4 1.67× 10−7 3.84× 10−9

(1, 1) 1.77× 10−18 1.77× 10−18 1.77× 10−18

TABLE VII
ABSOLUTE ERRORS WITH VARIOUS VALUES OF γ(x, t) AND M FOR N = 2 OF EXAMPLE 4

(xi, ti) γ(x, t) = 1.15 γ(x, t) = 1.85 γ(x, t) = 2
M = 2 M = 3 M = 2 M = 3 M = 2 M = 3

(0.1, 0.1) 1.19× 10−7 1.39× 10−9 1.37× 10−7 1.94× 10−9 1.47× 10−7 1.83× 10−9

(0.3, 0.3) 2.20× 10−6 4.75× 10−8 2.07× 10−6 2.87× 10−8 1.99× 10−6 2.57× 10−8

(0.5, 0.5) 2.00× 10−7 2.33× 10−8 1.27× 10−7 3.78× 10−8 1.04× 10−7 5.31× 10−8

(0.7, 0.7) 1.15× 10−5 3.66× 10−7 1.16× 10−5 2.89× 10−7 1.17× 10−5 2.63× 10−8

(0.9, 0.9) 7.69× 10−6 1.21× 10−7 7.56× 10−6 1.54× 10−7 7.43× 10−6 1.72× 10−7
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Fig. 2 Errors between the exact and approximation solutions for (a)
γ(x, t) = 1.15, (b) γ(x, t) = 1.85, (c) γ(x, t) = 2 with M = 5, N = 2

for Example 4
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