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 
Abstract—Crest loads are often encountered in hydropower, 

highway, open-pit and other engineering rock slopes. Toppling failure 
is one of the most common deformation failure types of anti-dip 
bedding rock slopes. Analysis on such failure of anti-dip bedding rock 
slopes subjected to crest loads has an important influence on 
engineering practice. Based on the step-by-step analysis approach 
proposed by Goodman and Bray, a geo-mechanical model was 
developed, and the related analysis approach was proposed for the 
toppling failure of anti-dip bedding rock slopes subjected to crest 
loads. Using the transfer coefficient method, a formulation was 
derived for calculating the residual thrust of slope toe and the support 
force required to meet the requirements of the slope stability under 
crest loads, which provided a scientific reference to design and support 
for such slopes. Through slope examples, the influence of crest loads 
on the residual thrust and sliding ratio coefficient was investigated for 
cases of different block widths and slope cut angles. The results show 
that there exists a critical block width for such slope. The influence of 
crest loads on the residual thrust is non-negligible when the block 
thickness is smaller than the critical value. Moreover, the influence of 
crest loads on the slope stability increases with the slope cut angle and 
the sliding ratio coefficient of anti-dip bedding rock slopes increases 
with the crest loads. Finally, the theoretical solutions and numerical 
simulations using Universal Distinct Element Code (UDEC) were 
compared, in which the consistent results show the applicability of 
both approaches. 
 

Keywords—Anti-dip slopes, crest loads, stability analysis, 
toppling failure. 

I. INTRODUCTION 

HE block toppling on rock slopes is often associated with 
rock masses with transverse fractures which produce 

blocks of dimension not negligible compared with the slope 
extension [1]. Toppling failure may occur on various types of 
rock slopes and even hard soil slopes, as long as the joints in the 
slope are properly produced. Anti-dip slopes failure is often 
encountered in hydropower, highway, open-pit and other 
engineering projects. Such as the excavation slope rock fall in 
US Brilliant, cut slope toppling failure in San Antolin, Spain [2] 
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and the northern foothills of Vajont, Italy [3]. 
At present, the theoretical analysis of slope toppling failure 

mainly includes two different methods: flexural toppling and 
block toppling. Aydan et al. [4] used the cantilever beam 
bending model and the limit equilibrium theory to obtain the 
residual thrust of the anti-dip slope by iterative solution. Based 
on this force, the stability analysis method was established and 
validated by indoor model test. Goodman and Bray [5] 
proposed a step-by-step analysis method for block toppling 
failure based on the limit equilibrium, which laid the theoretical 
foundation for block toppling failure. Later, Bobet et al. [6]-[9] 
developed the block toppling failure analysis methods based on 
Goodman and Bray [5]. Besides, some scholars [10], [11] used 
numerical calculation software to analyze the block toppling of 
the anti-dip slopes and achieved certain results. 

Most of the above scholars studied the stability of the slope 
toppling failure under its own weight. Few scholars have 
studied the toppling failure mechanism under the crest load. 
Furthermore, the crest load is a non-negligible factor in the 
stability analysis of highway, railway and mine slopes. 
Therefore, the research on the toppling failure mechanism of 
anti-dip slope subjected to the crest load is of great significance 
in road and mine slopes engineering. 

In many cases, the failure surface of the anti-dip slope is 
perpendicular to the steeply inclined joint. Many scholars [5], 
[6], [12], [13] have investigated the slope toppling failure 
mechanisms and analysis methods under such condition. On 
this basis, this paper discusses the stability analysis method of 
the anti-dip slope subjected to the crest load of the slope at the 
arbitrary angle between the failure surface and the steeply 
inclined joint. First, the geo-mechanical model of the anti-dip 
slope subjected to the crest load is established. Then, the 
formulation for solving the residual thrust of the anti-dip slope 
by using the transfer coefficient method proposed in [7]. 
Finally, the influence of the crest load on the stability of the 
anti-dip slope is analyzed. 

II. TOPPLING FAILURE ANALYSIS 

A. Geological Geometry Model 

At present, the geological model of the anti-dip bedding rock 
slopes is almost always the same. That is, the slopes contain a 
set of parallel equidistant steeply inclined joints that are 
consistent with their strikes and are cut by lateral cracks to form 
discrete rock blocks combinations with a stepped potential 
failure surface. The stability analysis of such discrete rock 
blocks combinations is based on a single rock block [14]. In this 
paper, it is assumed that the crest load is evenly distributed, and 
the direction is vertically downward, acting on the slope crest, 
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as shown in Fig. 1. 
 

 

Fig. 1 Geometric geometry model of the toppling failure 
 
For ease of analysis, a coordinate system is established (Fig. 

1). The X-axis is perpendicular to the steeply inclined joint, that 
is, the X-axis is parallel to the normal direction of the steeply 
inclined joint. In this figure, the symbol H  is used to denote 
the anti-dip slope height; the symbol   is used to denote the 
dip angle of the potential failure surface; the symbols g  and 

c  are used, respectively, to denote the dip angles of the nature 

slope and the cut slope surfaces; the symbols   and b  are 

used, respectively, to denote the dip angles of the normal 
direction of the steeply inclined joint and the basal surface of 
the rock block. In addition, the symbols br  gr  cr and r  

are some calculating intermediate parameters.  
 

=

=
br b

gr g

cr c

r

  
  

  
  

 
 


  
  

                                  (1) 

 
The premise of the stability analysis on the toppling failure 

shown in Fig. 1 is that the wedge body ABC does not undergo 
overall sliding failure, that is, the friction angle of the basal 
surface of the rock block ( b ) and the dip angle of the basal 

surface of the rock block ( b ) should satisfy: 
 

b b                                      (2) 

B. Toppling Failure Criterion for a Single Rock Block 

The toppling failure criterion for a single rock block is that 
the sum of the rotational moments of the crest loads and the 
weight to the corner point p is greater than zero ( 0M  ), as 
shown in Fig. 2. 

It can be seen from Fig. 2 that the toppling failure of a single 
rock block subjected to the crest load must satisfy (3). The rock 
block is approximately regarded as a parallelogram when 
calculated. 

 

 

Fig. 2 Stability of a single rock block subjected to crest load 
 

br br(1 tan tan ) cos (1 tan tan )

2 tan sin

h

h

     


  
  




    (3) 

 
where   is the height-to-width ratio, namely, /h t  , h  and 

t  are the height and width of the rock block respectively;   is 
the loading ratio, namely, = /q  , q  and   are the loading 

density and the unit weight of the rock block, respectively. 

C. Block Number Determination for the Slope Crest 

Starting from the rock block in the first block toppling, the 
rock block at the crest of the slope is numbered m. From the 
geometric relationship in Fig. 1, the height and height-to-width 
ratio of the rock block can be determined as: 

 

cr cr r
c

cos (tan tan )
sinm

m
m

H
h

h

t

  



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
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              (4) 

 
And then, the height of any blocks is determined as: 

 

gr r

cr r

( )(tan + tan )     

( )(tan - tan )      

m

i

m

h m i t i m
h

h m i t i m

 

 

   
  

         (5) 

 
Under the crest load, the first toppling block should satisfy 

(3), namely 
 

   br 1 br
1

1

1 tan tan cos 1 tan tan

2 tan sin

h

h

     


  
  




         (6) 

 

We know that 1
1 =

h

t
 , so (6) can be rewritten as 

 

b
1

cos 2 tan +

2sin

tA K
h

  



                       (7) 

 

where, b br1 tan tanA    , 
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(a) Rock block i located above the slope crest ( i m ) 

 

 

(b) Rock block i located at the slope crest ( i m ) 
 

 

(c) Rock block i located below the slope crest ( i m ) 

Fig. 3 Mechanical model of the slope toppling failure subjected to 
crest load 

 

2
b g(2 tan cos ) +4 sinK tA tA      . 

 
Bring (5) into (7), with the result 
 

b

gr r gr r

cos 2 tan +
1

tan tan 2 (tan tan )sin
m tA K

m
t

   
    


  

 
            (8) 

 
The m value of the rock block number can be obtained by 

rounding the right end of (8), and then the number of toppling 
block above the slope crest can be obtained for given slope 
subjected crest load. Thus, the effective region for the crest load 
is determined by combing the position of the first toppling 
block. 

D. Basic Assumptions and Mechanical Models 

In the analysis of this paper, the two basic assumptions put 
forward by Goodman and Bray [5] are still used: (1) frictional 
limit equilibrium conditions are satisfied at the interfaces of 
neighboring blocks and (2) the normal forces between blocks 
are applied at the uppermost point of the intersection of the 
blocks. Based on these two basic assumptions, the mechanical 
models of the rock block i subjected to the crest load are 
divided into three cases, as shown in Fig. 3. 

When the rock block i is in the limit rotation equilibrium, the 
rock block is in contact with the bedrock corner point, and the 
normal force ( iR ) and the shear force ( iS ) on the basal surface 

of the rock block act on the corner point ip , so no rotational 

moment is generated for iR  and iS  with respect to the center 

point ip . Moreover, the shear force acting on rock block i-1 

and i+1 are, respectively, 1 1 tani i iT N    and tani i iT N  . 

Thus, we can give the limit rotation equilibrium equation for 
rock block i subjected to crest load. 

When i m , 
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When i m , 
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When i m , 
 

1 b
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2 2
i i i

i i i
i i

l t h t
N N A W

r r


 

     
 

   (11) 

 
where 1iN   and iN  are, respectively, the normal force acting 
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on rock block i-1 and i+1; il  and ir  are, respectively, the 

moment arm of the 1iN   and iN . In addition, i  is the friction 

angle of the steeply inclined joint; iW  is the weight of block i; 

iQ  is the crest load acting on rock block i, gives 
 

        
cos

     
2cos

0               

i

qt
i m

qt
i mQ

i m





 

  






                             (12) 

 
Equations (9)-(11) can hence be rewritten in the general form 
 

1i i i i i i iN N W Q                         (13) 
 

where i , i  and i  are, respectively, the transfer coefficient 

of the block toppling, weight and crest load, are given as  
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Therefore, the normal force acting on rock block i+1 are 
given as  

 

 
1

1 1

+
ii

i i i i i j j j j k
j k j
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Besides, it can be seen from Fig. 3, il  and ir  are, 

respectively, given as 
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 cr br
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i

i
i

h i m
r

h i m 
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             (19) 

E. Failure Mode Distinction 

 

Fig. 4 Schematic of slope failure mode 
 

Due to the small height-to-width ratio of the rock block at the 
toe of the slope, its anti-toppling stability is strongly good. Thus, 
sliding failure often occurs instead of toppling failure [5]-[9], as 
shown in Fig. 4. Liu et al. [7]-[9] pointed out that the position of 
the slope from the toppling failure to the sliding failure is 
determined by the force of the basal surface of the rock block. 
When the sliding force of the rock block is greater than its 
anti-sliding force (20), the sliding failure will occur. Thus, it 
should adopt the sliding failure analysis method to analyze the 
block stability where below this rock block (including this rock 
block). 

 

btani iS R                               (20) 
 

Moreover, iR  and iS  can be seen from Fig. 3, given as 
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Equation (20) can be rewritten as 
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b 1 br br
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According to the mechanical analysis of rock block, the 

normal force between rock blocks can be calculated by (17). At 
the same time, the normal and shear forces of the block basal 
surface can be obtained by (21). When the rock block i meet the 
condition shown as (22), the region below this rock block 
(including this block) should be regarded as the sliding front 
edge. 

To analyze the loading density ( q ) effect on the failure mode 

change position, the sliding scale coefficient ( ) is established. 
 

S

B

n

n
                                        (23) 

 

where Sn  is the number of sliding blocks; Bn  is the number of 

rock blocks located below point B, as shown in Fig. 4. 
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Fig. 5 Mechanical model of sliding front edge 
 

From Fig. 5, the residual thrust of the sliding front edge ( RP ) 

can be written as 
 

  
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R br br br br b 1
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        (24) 
 

Furthermore, the reinforced force of anti-dip slope can be 
obtained by the basal surface frictional limit equilibrium of the 
sliding front edge, gives 
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R br br

br br b 1 T b b b
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

   
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where RF  is the reinforced force;   is the angle between the 

direction of the reinforced force and the basal surface; I  is the 
number of failure mode change position; 1IN   is the normal 

force to keep stable for rock blocks located above the block I ; 

TW  is the weight of the sliding front edge. What is more, the 

relationship between the reinforced force and the residual thrust 
is as  

 

R
R

bcos tan sin

P
F

  



                          (26) 

F. Summary of the Analysis Process 

Based on the limit equilibrium of the block and the transfer 
coefficient method, the toppling failure analysis process of the 
anti-dip rock slope subjected the uniform crest load is 
conducted, as follows: 

First, the block will slide if (2) is not satisfied. Instead, the 
block will topple if (2) is satisfied. 

Second, the number of toppling block above the slope crest 
can be obtained by (8), and then the effective region for the 
crest load is determined. 

Third, the block normal force can be calculated by (17), and 
the region of the sliding front edge will generate if (22) is 
satisfied. If so, the basal surface frictional limit equilibrium of 
the sliding front edge should be conducted. On the contrary, the 
normal force of the next block will be calculated if (22) is not 
satisfied. 

Finally, the anti-dip slope stability depends on the residual 
thrust of the sliding front edge ( RP ). Slope is stable and does 

not need reinforce if R 0P  . However, slope is instable if 

R 0P  , and the reinforced force can be calculated by (25) or 

(26). 

III. CASE STUDY 

The two case examples [2], [13] are used to analyze the 
effect of different rock block widths and slope cut angles on the 
slope stability and sliding scale coefficient, which provides the 
theoretical guidance for the design and support of such slopes. 
Since the slope geometry parameters and the potential toppling 
block numbers are adopted to describe the calculating 
parameters in the slope stability analysis under the crest load, so 
that the calculating parameters of each toppling block have a 
unified expression, and the above method is coded into a 
spreadsheet using Microsoft Excel software to perform 
toppling analysis efficiently and accurately. The calculation 
parameters of the two case examples are shown in Table I. 
Moreover, the basal surface of rock block is perpendicular to 
the steeply inclined joint ( br 0  ) and the anti-dip slope does 

not undergo overall sliding failure ( b b  ). 

A. Effect of Different Rock Block Widths on the Sliding Scale 
Coefficient 

Figs. 6 (a) and (b) show how the crest load ( q ) influences the 

sliding scale coefficient (  ) under the different rock block 
widths ( t ). 

 
 

TABLE I 
CALCULATION PARAMETERS OF CASE EXAMPLES 

Cases H (m) t (m)  (kN/m3) c (°) g (°)  (°)  (°) b (°) i (°) 

G-B.1a 92.5 10 25 56.6 4 30 35.8 38.15 38.15 

G-B.1b 92.5 10 25 56.6 4 30 35.8 33 33 
a H = slope height, t = rock block width,  = rock unit weight, c = dip angle of cut slope, 

g = dip angle of nature slope,  = dip angle of the normal of 

steeply inclined joint,  = dip angle of potential failure surface, b = friction angle of basal surface, i = friction angle of steeply inclined joint. 
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(a) Case G-B.1a 
 

 

(b) Case G-B.1b 

Fig. 6 Curves of crest load vs. sliding scale coefficient 
 

It can be seen from Fig. 6, the influence of the crest load ( q ) 

on the sliding scale coefficient ( ) is controlled by the rock 
block width ( t ). When t  is a smaller value,   nonlinearly 
increases as q  increases. It indicates that the larger crest load, 

the larger the region of sliding front edge is. However, when t  
is a larger value,   almost keeps constant as q  increases. Thus, 

the block width plays a dominant role in the failure mode 
change position. It implies the greater rock block width, the 
smaller the effect of the crest load on the failure mode. 

B. Effect of Different Rock Block Widths on the Residual 
Thrust 

In the same way, Figs. 7 (a) and (b) show how the crest load 
( q ) influences the residual thrust ( RP ) under the different rock 

block widths ( t ). 

It can be seen from Fig. 7, the residual thrust ( RP ) linearly 

increases as the crest load ( q ) increases. Furthermore, the 

smaller rock block width ( t ), the larger the value of Rd / dP p  

is. It indicates that the crest load decreases the slope stability. 
Moreover, the smaller block width, the larger effect of the crest 
load on the slope stability. 

 

 

(a) Case G-B.1a 
 

 

(b) Case G-B.1b 

Fig. 7 Curves of crest load vs. residual thrust 
 

It also can be seen from Fig. 6, a critical rock block width ( crt ) 

or critical average the height-to-width ratio ( cr ) does exist. 

That means that the influence of the crest load on the slope 

stability in the case of crt t  ( cr  ) is more significant than 

the case of crt t  ( cr  ). Besides, the critical rock block 

width and the critical average the height-to-width ratio are, 
respectively, 2m and 10 in such both two cases. 

C. Effect of Different Slope Cut Angles on the Sliding Scale 
Coefficient 

Keeping the rock block width constant ( 2mt  ), Figs. 8 (a) 
and (b) show how the cut angle ( C ) influences the sliding 

scale coefficient ( ) under the different crest load ( q ). 

As shown in Fig. 8 (a), the sliding scale coefficient ( ) is 0 
when the slope cut angle is 45°. Namely, slope (G-B.1a) sliding 
failure does not occur at that cut angle. Thus, the slope can be 
self-stabilized by adjusting the cut angle in the excavation 
design of such slope. In general, it is detected from Figs. 8 (a) 
and (b) that the larger cut angle, the smaller sliding scale 
coefficient is. It means the steeper the slope, the smaller the 
region of the sliding front edge is; instead, the larger region of 
the block toppling. 
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(a) Case G-B.1a 
 

 

(b) Case G-B.1b 

Fig. 8 Curves of cut angle vs. sliding scale coefficient 

D. Effect of Different Slope Cut Angles on the Residual 
Thrust 

In the same way, keeping the rock block width constant 
( 2mt  ), Figs. 9 (a) and (b) show how the cut angle ( C ) 

influence the residual thrust ( RP ) under the different crest load 

( q ). 

It can be seen from Fig. 9, the increased residual thrust by the 
crest load ( RP ) nonlinearly increases as cut angle ( C ) 

increases. Slope gradually changes from a stable state to a 
toppling-sliding failure state with the increase of the cut angle. 
Namely, cut angle also has significant influence on the slope 
stability. Therefore, slope can be self-stabilized by adjusting 
the cut angle in the excavation design of such slope. 

 

 

(a) Case G-B.1a 
 

 

(b) Case G-B.1b 

Fig. 9 Curves of cut angle vs. residual thrust 

IV. COMPARISON WITH NUMERICAL RESULTS 

In order to validate the efficacy and accuracy of the 
new-proposed analysis method, the numerical simulation of the 
anti-dip slope subjected to crest load is conducted and the 
theoretical results and the numerical results are compared. Due 
to space limitations, only one slope (G-B.1a, 2mt   and 

45C   ) is built to conduct comparative analysis. In the 

numerical simulation, the elastic model is employed for rock 
blocks and the Coulomb slip model is for joints. 

 

 

Fig. 10 Horizontal displacement map of slope only subjected weight 
 
From Fig. 10, the horizontal displacement of the bottom and 

top of the block in the front edge are approximately equal, it 
indicates that the sliding failure occurs for the block in the front 
edge. Nevertheless, the horizontal displacement of the top of 
the block above the front edge is apparently larger than that 
bottom; it obviously shows the toppling failure characteristics. 
Thus, adopting the toppling-sliding failure mode to describe 
such anti-dip slope stability analysis is reasonable.  

Fig. 11 shows the distribution of the sliding front edge under 
crest loads as 0, 500, and 1000 kN/m. It can be detected that the 
region of the sliding front edge expands from the slope toe to 
the slope crest as the crest loads increase. It is consistent with 
the theoretical result. 

It can be seen from Fig. 12 that the numerical values of the 
sliding scale coefficient are a little larger than that theoretical 
values generally, and the average error for two methods is 
11.7%. Furthermore, the smaller value of crest load, the smaller 
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error is. This is because that the normal forces between blocks 
are assumed to act on the uppermost point of the intersection of 
the blocks in the theoretical method, but the acting positions 
depend on the grids of the interface in the numerical simulation. 
Anyway, the curve trend of these two methods is the same. 

 

 

(a) 0q   

 

 

(b) 500kN/mq   

 

 

(c) 1000kN/mq   

Fig. 11 Distribution of sliding front edge under various crest loads 
 

 

Fig. 12 Comparison of theoretical and numerical results of sliding 
scale coefficient 

 
In summary, the results of qualitative analysis and 

quantitative calculation show that the theoretical and numerical 
results are consistent. On the one hand, the accuracy of the 
theoretical method for the toppling failure of anti-dip slope 
subjected crest load is validated. On the other hand, the 
feasibility of using UDEC to analyze the toppling-sliding 
failure of the anti-dip slope is also demonstrated. 

V. CONCLUSION 

This paper discusses the stability analysis method of the 
anti-dip slope subjected to the crest load of the slope. Based on 
the step-by-step analysis approach, a geo-mechanical model 
was developed, and the related analysis method was proposed 
for the toppling failure of anti-dip bedding rock slopes 
subjected to crest loads. Using the transfer coefficient method, 
a formulation was derived for calculating the residual thrust of 
slope toe and the support force required to meet the 
requirements of the slope stability under crest loads. In the end, 
the theoretical solutions and numerical simulations using 
UDEC were compared. Our main conclusions can be 
summarized as follows: 
(1) The crest load is a non-negligible factor in the stability 

analysis. It has significant influence on the slope stability, 
the position of first block toppling and the region of the 
sliding front edge. 

(2) There exists a critical block width for such slope. The 
influence of crest loads on slope stability is obvious when 
the block thickness is smaller than the critical value. 

(3) The influence of crest loads on the residual thrust increases 
with the slope cut angle. Slope can be self-stabilized by 
adjusting the cut angle in the excavation design of such 
slope. 

(4) The theoretical solutions and numerical simulations using 
UDEC were compared, in which the consistent results 
show the applicability of both approaches. 
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