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Multilevel Arnoldi-Tikhonov Regularization
Methods for Large-Scale Linear Ill-Posed Systems

Yiqin Lin, Liang Bao

Abstract—This paper is devoted to the numerical solution of
large-scale linear ill-posed systems. A multilevel regularization
method is proposed. This method is based on a synthesis of
the Arnoldi-Tikhonov regularization technique and the multilevel
technique. We show that if the Arnoldi-Tikhonov method is
a regularization method, then the multilevel method is also a
regularization one. Numerical experiments presented in this paper
illustrate the effectiveness of the proposed method.

Keywords—Discrete ill-posed problem, Tikhonov regularization,
discrepancy principle, Arnoldi process, multilevel method.

I. INTRODUCTION

IN this paper we consider the iterative solution of large

system of linear equations

Ax = b, (1)

where A ∈ R
n×n and b ∈ R

n. We further assume that

the coefficient matrix A is of ill-determined rank, i.e., all its

singular values decay gradually to zero, with no gap anywhere

in the spectrum. This is situation is mathematically described

by the notion of singular value clustering and is typical of

matrices that can be described as a sampling of a reasonably

smooth function [1]. Such systems often are referred to as

linear discrete ill-posed problems and arise, for example, from

the discretization of ill-posed problems such as Fredholm

integral equations of the first kind∫
Ω

k(t, s)x(s)ds = b(t), t ∈ Ω, (2)

where Ω denotes a bounded interval, and the kernel k(t, s) and

right-hand side b(t) are smooth functions on Ω × Ω and Ω,

respectively. Often, the right-hand side b of (1) is contaminated

by an error e ∈ R
n, which may stem from discretization or

measurement inaccuracies, and b = b̂ + e, where b̂ is the

unknown error-free right-hand side vector. Thus, our task is to

compute the solution x̂ of the linear system of equations with

the error-free right-hand side b̂,

Ax̂ = b̂. (3)

We assume the linear system (3) to be consistent. However,

since the right-hand side in (3) is not available, we seek to

determine an approximation of x̂ by solving the available

system (1) or a modification. Due to the ill-conditioning
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of A, the system (1) has to be regularized in order to

compute a useful approximation of x̂. Perhaps, the best

known regularization method is Tikhonov regularization [14],

[27], [34], [35], which in its simplest form is based on the

minimization problem

min
x∈Rn

{
‖Ax− b‖22 +

1

μ
‖x‖22

}
, (4)

where μ > 0 is a regularization parameter. Here and

throughout this paper ‖·‖2 denotes the Euclidean vector norm

or the associated induced matrix norm.

After regularizing the system (1), we need to compute the

solution xμ of the minimization problem (4). Such a vector

xμ is also the solution of(
ATA+

1

μ
I

)
x = AT b. (5)

If μ is far away from zero, then, due to the ill-conditioning

of A, xμ is badly computed while, if μ is close to zero, xμ

is well computed but the error xμ − x̂ is quite large. Thus,

the choice of a good value for μ is fairly important. Several

methods have been proposed to obtain an effective value for

μ. For example, if the norm of the error e or a fairly accurate

estimate is known, the regularization parameter is quite easy

to determine by application of the discrepancy principle.

The discrepancy principle proposes that the regularization

parameter μ be chosen so that the discrepancy b−Axμ satisfies

‖b−Axμ‖2 = ηε, (6)

where ε = ‖e‖2, and η > 1 is a constant, see, for example,

[20] for further details on the discrepancy principle.

A number of numerical solution methods have been

proposed for solving the minimization problem (4). The

singular value decomposition (SVD) [18] of A can be used

to determine the solution xμ of the minimization problem

(4). For an overview of numerical methods for computing

the SVD we refer to [5]. Since the computational effort

required to compute the SVD is quite high even for moderately

sized matrices, the SVD based method is only applicable to

problems of small or medium size. Numerical methods using

Krylov subspaces have been proposed for the solution of

large-scale Tikhonov regularization problems (4). The main

idea of such algorithms has been to first project the large

problems onto some Krylov subspace to produce problems

with small size, and then solve the small-sized problems by the

SVD. For instance, several well-established methods based on

the Lanczos bidiagonalization process [18] have been proposed

for the solution of the minimization problem (4), see [4],
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[8], [9], [25] and references therein. These methods use the

Lanczos bidiagonalization process to construct a basis of the

Krylov subspace

Km(ATA,AT b) = span{AT b, ATAAT b, · · · , (ATA)m−1AT b}.

We remark that each Lanczos bidiagonalization step needs

two matrix-vector product evaluations, one with A and the

other with AT , and it is not necessary to compute the SVD

since the coefficient matrix associated with the small-sized

problem is bidiagonal; see, e.g., [9]. Other methods using the

range-restricted Krylov subspace

Km(A,Ab) = span{Ab,A2b, · · · , Amb}
as the projection subspace have been also designed. For

example, Lewis and Reichel [26] proposed to exploit the

Arnoldi process to produce a basis of the Krylov subspace

Km(A,Ab) to obtain an approximation of the solution of

the Tikhonov regularization problem (4). Since each Arnoldi

decomposition step requires only one matrix-vector evaluation

with A, the approach based on the Arnoldi process may

requires fewer matrix-vector product evaluations than that

based on the Lanczos bidiagonalization process. Moreover,

the methods based on the Arnoldi process does not require

the adjoint matrix AT and, hence, is more appropriate to

problems for which the adjoint is difficult to evaluate. For

such problems we refer to [11]. Several multilevel methods

have been proposed in the literature for solving the Tikhonov

equation (5), see, for example, [12], [19], [21], [23]. For a

large number of ill-posed problems, these multilevel methods

determine accurate approximations of the solution of the

Tikhonov equation (5) faster than standard one-level iterative

methods.

Some numerical methods without using the Tikhonov

regularization technique have been already proposed to solve

the large-scale linear discrete ill-posed problem (1). These

methods include the range-restricted GMRES (RRGMRES)

method [6], [33] and the augmented range-restricted

GMRES (ARRGMRES) method [3]. The RRGMRES method

determines the mth approximation xm of (1) by solving the

minimization problem

min
x∈Km(A,Ab)

‖Ax− b‖2, m = 1, 2, · · · , x0 = 0.

The regularization is implemented by choosing a suitable

dimension number m, see, for example, [7]. The ARRGMRES

method augments the Krylov subspace Km(A,Ab) by a

low-dimensional user-supplied subspace. The low-dimensional

subspace is determined by vectors that are able to represent the

known features of the desired solution. The augmented method

can yield approximate solutions of higher accuracy than the

RRGMRES method if the Krylov subspace Km(A,Ab) do not

allow to represent the known features.

Recently, Reichel and Shyshkov [32] proposed a cascadic

multilevel method to solve (1). Although their method is

based on the un-regularized normal equation ATAx = AT b,
regularization can be achieved by restricting the number of

iterations of the basic iterative method CGNR [18] on each

level by using the discrepancy principle. Specifically, the

cascadic multilevel method applies CGNR on the coarsest

discretization level until the computed approximate solution

satisfies the discrepancy principle. Then the coarsest-level

solution is prolongated to the next finer discretization level. By

taking the prolongated solution as the initial approximation,

iterations with CGNR are carried out on this level until

the computed approximate solution satisfies the discrepancy

principle. The computations are continued in this manner until

an approximate solution on the finest discretization level has

been found that satisfies the discrepancy principle. It has been

shown that the CGNR-based cascadic multilevel method is a

regularization method in some sense. Numerical experiments

presented in [32] indicate that the cascadic multilevel method

is able to determine an approximate solution of (3) that

satisfies the discrepancy principle with less arithmetic work

than applying CGNR on the finest level only. Other multilevel

methods have been proposed for large-scale linear ill-posed

systems, especially from applications of image deblurring and

signal restoration; see, for example, [10], [13], [15], [24], [28].

We note that these multilevel methods are also based on the

un-regularized equation Ax = b or ATAx = AT b.
The iterative method proposed in this paper for solving

large-scale system of linear equations (1) is developed based

upon a synthesis of the Arnoldi-Tikhonov regularization

technique and the multilevel technique. The performance

of the method is compared to some known methods. The

multilevel method seems somewhat similar to the regularizing

multigrid [13]. Both of them establish the coefficient matrices

on coarser grids by directly projecting on the original

coefficient matrix A. In [13], it is shown that this scheme can

reduce the relative error and the computational cost compared

with the best regularizing methods for the normal equations.

The main difference is that the problems on coarser grids

are solved by the range-restricted Arnoldi-Tikhonov method

(RRAT) [26] in our method, while the regularizing multigrid

uses methods based on normal equations.

Throughout this paper, we adopt the following notations.

I denotes the identity matrix, and 0 denotes the zero vector

or zero matrix. The dimensions of these vectors and matrices

are conformed with dimensions used in the context. The space

of m× n real matrices is denoted by R
m×n. The superscript

“ ·T ” denotes the transposition of a vector or a matrix.

The remainder of the paper is organized as follows. In

Section II, we review the range-restricted Arnoldi-Tikhonov

method [26] for solving large-scale system of linear equations

(1). In Section III, we present the multilevel Arnoldi-Tikhonov

regularization method. Section IV is devoted to some

numerical tests. Some concluding remarks are given in the

last section.

II. RANGE-RESTRICTED ARNOLDI-TIKHONOV

REGULARIZATION METHOD

RRAT is based on the minimization problem (4) and

uses the range-restricted Krylov subspace Km(A,Ab) as the

projection subspace.

We can establish the orthornormal basis of Km(A,Ab) by

the Arnoldi process [18], which is outlined as follows.
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Algorithm 1: Arnoldi Process
Input: A ∈ R

n×n, b ∈ R
n, m;

Output: Vm+1 ∈ R
n×(m+1), H̃m ∈ R

(m+1)×m;

1) Compute v1 := Ab/‖Ab‖2, and set V1 := [v1];
2) For j = 1, 2, · · · ,m Do:

vj+1 := Avj ;

For i = 1, 2, · · · , j Do:

hi,j := vTi vj+1;

vj+1 := vj+1 − hi,jvi;
End For

hj+1,j := vj+1/‖vj+1‖2;

vj+1 := vj+1/hj+1,j ;

Vj+1 := [Vj , vj+1];
End For

We remark that a loss of orthogonality can occur when

the algorithm progresses, see [29]. A remedy is the so-called

reorthogonalization where the current vector has to be

orthogonalized against previously created vectors. One can

choose between a selective reorthogonalization or a full

reorthogonalization against all vectors in the current subspace.

In this paper we only use the full reorthogonalization.

The columns of Vm are an orthornormal basis of

Km(A,Ab). Let H̃m denote the (m+1)×m upper Hessenberg

matrix whose nonzero entries are hi,j defined by Algorithm

1. Then, we have the well-known Arnoldi decomposition

AUm = Um+1H̃m. (7)

The range-restricted Arnoldi-Tikhonov method proposed in

[26] seeks to determine an approximate solution xμ,m of (4) in

the range-restricted Krylov subspace Km(A,Ab). Substituting

x = Vmy, y ∈ R
m, into (4) yields the reduced minimization

problem

min
y∈Rm

{
‖AVmy − b‖2 + 1

μ
‖Vmy‖2

}
= min

y∈Rm

{
‖Vm+1H̃my − b‖2 + 1

μ
‖y‖2

}
= min

y∈Rm

{
‖H̃my − V T

m+1b‖2 + ‖(I − P )b‖2 + 1

μ
‖y‖2

}
,(8)

where P = Vm+1V
T
m+1 is an orthogonal projector onto

span{Vm+1}. Obviously, the reduced minimization problem

(8) is equivalent to

min
y∈Rm

{
‖H̃my − V T

m+1b‖2 +
1

μ
‖y‖2

}

= min
y∈Rm

∥∥∥∥∥
[

H̃m
1√
μI

]
y −

[
V T
m+1b
0

]∥∥∥∥∥
2

. (9)

Note that the reduced minimization problem (9) can be solved

by a sequence of Givens rotations [18]. We denote the

solution of the minimization problem (9) by yμ,m. Then, the

approximate solution of (4) is

xμ,m = Vmyμ,m.

In Tikhonov regularization methods, the most important step

is to choose the regularization parameter μ. The discrepancy

principle proposes that the regularization parameter μ should

be chosen so that the discrepancy b−Axμ,m satisfies (6).

Define

φm(μ) = ‖b−Axμ,m‖2. (10)

Concerning the properties of the function φm(μ), the

following results hold, see [26].

Theorem 1: The function φm(μ) has the representation

φm(μ) = bTVm+1

(
μH̃mH̃T

m + I
)−2

V T
m+1b+ ‖(I − P )b‖22.

Assume that Ab �= 0 and H̃T
mV T

m+1b �= 0. Then φm is

strictly decreasing and convex for μ ≥ 0 with φm(0) = ‖b‖22.

Moreover, the equation

φm(μ) = τ

has a unique solution μτ,m, such that 0 < μτ,m < ∞, for any

τ with

‖PN ( ˜HT
m)V

T
m+1b‖22 + ‖(I − P )b‖22 < τ < ‖b‖22,

where PN ( ˜HT
m) denotes the orthogonal projector onto N (H̃T

m).
To make the equation

φm(μ) = η2ε2

have a solution, it follows from Theorem 1 that the input

parameter m of the Arnoldi process should be chosen so that

‖PN ( ˜HT
m)V

T
m+1b‖22 + ‖(I − P )b‖22 < η2ε2.

After choosing the number m of the Arnoldi iterative steps,

the regularization parameter μm is determined by solving the

nonlinear equation φm(μ) = η2ε2. Many numerical methods

have been proposed for the solution of a nonlinear equation,

including Newton’s method [22], super-Newton’s [16] method,

and Halley’s method [17]. For the specific nonlinear equation

φm(μ) = η2ε2, Reichel and Shyshkov proposed a new

zero-finder method in their new paper [31]. In this paper, we

still make use of Newton’s method to obtain the regularization

parameter μm. For the details of implementation of Newton’s

method for solving φm(μ) = η2ε2, the interesting reader is

referred to [26].

In the following, we outline the algorithm, which is used to

solve large-scale linear ill-posed systems (1).

Algorithm 2: RRAT
Input: A ∈ R

n×n, b ∈ R
n,ε, η;

Output: xμ,m, μm, m = mmin +m0.

1) Compute the Arnoldi decomposition

AVm = Vm+1H̃m

with m = mmin + m0, where mmin is the smallest

number such that ‖PN ( ˜HT
m)V

T
m+1b‖22 + ‖(I − P )b‖22 <

η2ε2, and m0 is the number of additional Arnoldi steps

and is chosen to 1 or 2.

2) Compute the solution μm of the equation φm(μ) = η2ε2

by Newton’s method.

3) Compute the solution yμ,m of the least-squares problem

(9) and obtain the approximate solution xμ,m = Vmyμ,m.

It is pointed out that RRAT is attractive since the

computation of an orthonormal basis for the Krylov subspace
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Km(A,Ab) requires about half the number of matrix-vector

product evaluations than the Krylov subspace Km(ATA,AT b)
of the same dimension, and these evaluations typically

constitute the dominant computational effort required by these

methods.

The following theorem shows that the RRAT method is a

regularization method when applied to the solution of (1).

Theorem 2: Assume that the coefficient matrix A is

symmetric and the system of linear equations (3) is consistent.

Let xμ,m be determined by RRAT. Then,

lim
ε→0

sup
‖b−b̂‖2≤ε

‖x̂− xμ,m‖2 = 0, (11)

where x̂ is the minimal-norm solution of (3).

Proof: Let xm be the mth iterate generated by

RRGMRES applied to (1). Form Corollary 2.1 in [26], we

obtain

‖b−Axm‖ =
√

φm(∞) ≤
√

φm(μ) ≤ ‖b−Axμ,m‖ = ηε.

It follows from the above inequality and Theorem 2.3 in [32]

that

lim
ε→0

sup
‖b−b̂‖≤ε

‖x̂− xm‖ = 0.

Note that the solution μ of φm(μ) = η2ε2 approaches to ∞ as

ε → 0. Moreover, it has been shown in the proof of Corollary

2.1 in [26] that xm = limμ→∞ xμ,m. Therefore, we have

xm = lim
ε→0

xμ,m.

Then, (11) follows directly from the inequality ‖x̂−xμ,m‖ ≤
‖x̂− xm‖+ ‖xm − xμ,m‖.

III. CASCADIC MULTILEVEL RRAT METHOD

In this section, we propose a multilevel method to solve the

minimization problem (4). The basic iterative method on every

level is the RRAT method described in the above section.

We assume that l subspaces Wi, i = 1, 2, · · · , l, of Rn are

nested, i.e.,

W1 ⊂ W2 · · · ⊂ Wl. (12)

The dimension ni of Wi satisfies n1 < n2 · · · < nl = n.

As in [32], we denote the discrete coefficient matrix of

the underlying continuous problem on the ith level by Ai ∈
R

ni×ni . Thus, for the lth level, we have Al = A.

Let Ri : R
n → Wi be the restriction operator from the lth

level to the ith level. Then, the restrictions of b and b̂ to Wi

are

bi = Rib and b̂i = Rib̂,

respectively.

Define ei = bi− b̂i = Ri(b− b̂). To apply the RRAT method

to the ith level, we need the value εi such that

‖ei‖2 ≤ εi, 1 ≤ i ≤ l. (13)

Let Pi : Wi → Wi+1, 1 ≤ i ≤ l − 1, be the prolongation

operator from the ith level to the (i+ 1)th level.

With these preparation, we give the cascadic multilevel

RRAT method (ML-RRAT) for solving the minimization

problem (4) as follows.

Algorithm 3: ML-RRAT
Input: A, b, number of levels l ≥ 1, ε1, ε2, · · · , εl, η.

Output: approximate solution x̃ of the linear system (3).

1) x1 := 0;

2) For i := 1, 2, · · · , l do

bi := Rib;

ri := bi −Aixi;

Solve AiΔxi = ri by RRAT with ε = εi to obtain

Δxi;

xi := xi +Δxi;

If i < l, then xi+1 := Pixi;

End For

3) x̃ = xl.

By making use of Theorem 2 and the similar techniques

in proving Theorem 3.2 in [32], we can obtain the following

result.

Theorem 3: Assume that Ai is symmetric, the equation

Aix̂i = b̂i is consistent, and R(Pi) ⊂ R(Ai) for 1 ≤ i ≤ l.
Let the projected contaminated right-hand side satisfy (13).

Then, the ML-RRAT method described by Algorithm 3 is a

regularization method on each level, i.e.,

lim
εi→0

sup
‖bi−b̂i‖2≤εi

‖x̂i − xi‖2 = 0, 1 ≤ i ≤ l, (14)

where x̂i is the minimal-norm solution of Aix̂i = b̂i with

x̂l = x̂.

IV. NUMERICAL EXPERIMENTS

In this section, we present two numerical examples to

illustrate the performance of ML-RRAT for large-scale linear

ill-posed problems. We compare ML-RRAT to RRAT and

ML-CGNR in [32].

To simplify the computations in RRAT and ML-RRAT,

the smallest iterative step number, denoted by mmin, of the

Arnoldi process is chosen so that ‖(I − P )b‖2 < η2ε2. The

quality of the computed solution can be improved by choosing

the practical iterative step number m somewhat larger than

mmin. The parameter m0 denotes the number of additional

Arnoldi steps to improve the computed solution, and will be

chosen to 1 or 2.

Let the right-hand side bi = [b
(1)
i , b

(2)
i , · · · , b(ni)

i ]T , which

is recursively obtained by

b
(j)
i = b

(2j−1)
i+1 , 1 ≤ j ≤ ni, 1 ≤ i ≤ l

with bl = b. This implicitly defines the restriction operator

Ri, which consists of the first ni rows of In. It follows that

RiR
T
i = Ini

for all i = 1, 2, · · · , l. The prolongation operator



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:12, No:11, 2018

226

Pi is the same as that in [32], i.e.,

Pi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
2

1
2

1
4

1
2

1
4

1
2

1
2

1
4

1
2

1
4

1
2

1
2

. . .
. . .

. . .
1
4

1
2

1
4

1
2

1
2
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R

ni+1×ni .

We use the Euclidean norm ‖ · ‖2 in ML-RRAT and RRAT,

and the weighted Euclidean norm ‖ · ‖ defined by

‖v‖ =

(
1

ni
Σni

j=1(v
(j))2

)1/2

, v =
(
v(1), v(2), · · · , v(ni)

)T

∈ R
ni ,

in ML-CGNR. In all examples, the right-hand side is given by

b = b̂+ e, e = ‖b̂‖ ∗ 10−kw,

where w is a vector generated from normally distributed

entries with mean zero and variance one, and k is a positive

integer. We set

εl = ε = ‖e‖2, and εi =
1√
2
εi+1, i = 1, 2, · · · , l − 1,

in both RRAT and ML-RRAT, while

εi = ε = ‖e‖, i = 1, 2, · · · , l − 1,

in ML-CGNR as in [32].

For RRAT and ML-RRAT, we choose η = 1.01 as in [26]

and m0 = 1 or 2 . Note that the numbers of matrix-vector

products in RRAT and the i-th level of ML-RRAT are m =

mmin +m0 and mi = m
(i)
min +m0, respectively. However, as

pointed out above, the number mi of matrix-vector products

in each level of ML-CGNR are the double of the number

of iterations since each iteration of ML-CGNR needs two

matrix-vector products, one with A and the other with AT .

As in [32], for ML-CGNR, we choose ci = c = 1.25, i =
1, 2, · · · , l and τ = 1.25.

In all the following tables, we denote by RERR the relative

error ‖x̃ − x̂‖2/‖x̂‖2, where x̂ is the exact solution of

the linear error-free system of equations (3) and x̃ is the

approximate solution obtained by one of RRAT, ML-RRAT,

and ML-CGNR.

All the numerical experiments are performed in Matlab on

a PC with the usual double precision, where the floating point

relative accuracy is 2.22 · 10−16.

Example 1

The first example considered is the Fredholm integral

equation of the first kind, which takes the generic form∫ 6

−6

k(s, t)x(s)ds = b(t), −6 ≤ t ≤ 6. (15)

TABLE I
RESULTS OF RRAT AND ML-RRAT WITH m0 = 1 FOR EXAMPLE 1

RRAT ML-RRAT
k m RERR m1 m2 m3 RERR
1 3 0.0898 3 2 2 0.0797
2 4 0.0257 4 2 2 0.0254
3 9 0.0090 8 2 2 0.0078
4 12 0.0035 12 2 2 0.0033

TABLE II
RESULTS OF RRAT AND ML-RRAT WITH m0 = 2 FOR EXAMPLE 1

RRAT ML-RRAT
k m RERR m1 m2 m3 RERR
1 4 0.0590 4 3 3 0.0589
2 5 0.0238 5 3 3 0.0224
3 10 0.0088 9 3 3 0.0078
4 13 0.0032 13 3 3 0.0032

The solution, kernel and right-hand side of (15) are given by

x(s) =

{
1 + cos(π3 s), if |s| < 3,
0, otherwise,

k(t, s) = x(t− s),

b(t) = (6− |t|)(1 + 1

2
cos(

π

3
t)) +

9

2π
sin(

π

3
|t|).

This example was discussed in [30].

We discretize the integral equation by Nyström methods

based on composite trapezoidal quadrature rules with l = 3.

The numbers of nodes on three levels are n1 = 257, n2 =
513, and n3 = 1025, respectively. Numerical results for the

example are reported in Table I for RRAT and ML-RRAT with

m0 = 1, in Table II for RRAT and ML-RRAT with m0 = 2,

and in Table III for ML-CGNR.

From Tables I and II, we can see that for m0 = 1 and

m0 = 2, RRAT has almost the same relative errors as

ML-RRAT, but RRAT requires more matrix-vector product

evaluations on the finest discretization level. Tables I and III

show that ML-CGNR needs the same number of matrix-vector

products as ML-RRAT with m0 = 1, while ML-RRAT has

smaller relative errors.

Example 2

This example considered here is the Fredholm integral

equation of the first kind∫ π/2

0

κ(t, s)x(s)ds = b(t), 0 ≤ t ≤ π, (16)

TABLE III
RESULTS OF ML-CGNR FOR EXAMPLE 1

ML-CGNR
k m1 m2 m3 RERR
1 4 2 2 0.0939
2 8 2 2 0.0241
3 8 2 2 0.0241
4 16 2 2 0.0086
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TABLE IV
RESULTS OF RRAT AND ML-RRAT WITH m0 = 1 FOR EXAMPLE 2

RRAT ML-RRAT
k m RERR m1 m2 m3 RERR
1 3 0.1123 3 2 2 0.1814
2 3 0.0918 3 2 2 0.0896
3 4 0.0544 4 2 2 0.0564
4 5 0.0488 5 2 2 0.0478

TABLE V
RESULTS OF RRAT AND ML-RRAT WITH m0 = 2 FOR EXAMPLE 2

RRAT ML-RRAT
k m RERR m1 m2 m3 RERR
1 4 0.2243 4 3 3 0.2167
2 4 0.2032 4 3 3 0.2109
3 5 0.1341 5 3 3 0.1258
4 6 0.1069 6 3 3 0.0659

which is discussed by Baart [2]. The solution, kernel and

right-hand side of (16) are given by

x(s) = sin(s), k(t, s) = exp(t cos(s)), b(t) = 2 sinh(t)/t,

respectively.

The integral equation is discretized with l = 3 by the same

method as Example 1. For this discretization, n1 = 257, n2 =
513, and n3 = 1025, respectively. Numerical results for the

example are reported in Table IV for RRAT and ML-RRAT

with m0 = 1, in Table V for RRAT and ML-RRAT with

m0 = 2, and in Table VI for ML-CGNR.

Tables IV and V show that RRAT and ML-RRAT

with m0 = 1 have better performance than RRAT and

ML-RRAT with m0 = 2. Moreover, ML-RRAT requires fewer

matrix-vector products than RRAT on the finest discretization

level. Tables IV and VI indicate that ML-CGNR needs the

same number of matrix-vector products as ML-RRAT with

m0 = 1, while ML-RRAT has smaller relative errors for this

example.

V. CONCLUSIONS

In this paper, we have proposed a multilevel regularization

method to solve large-scale linear ill-posed systems.

The method is developed based on a synthesis of the

Arnoldi-Tikhonov regularization technique and the multilevel

technique. Numerical experiments are presented for the

performance comparison between the iterative method and two

known methods. It shows that the method is effective for some

real world examples.

TABLE VI
RESULTS OF ML-CGNR FOR EXAMPLE 2

ML-CGNR
k m1 m2 m3 RERR
1 4 2 2 0.2352
2 4 2 2 0.2149
3 8 2 2 0.1579
4 12 2 2 0.0738
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