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Restrictedly-Regular Map Representation of
n-Dimensional Abstract Polytopes

Antonio Breda d’Azevedo

Abstract—Regularity has often been present in the form of regular
polyhedra or tessellations; classical examples are the nine regular
polyhedra consisting of the five Platonic solids (regular convex
polyhedra) and the four Kleper-Poinsot polyhedra. These polytopes
can be seen as regular maps. Maps are cellular embeddings of
graphs (with possibly multiple edges, loops or dangling edges) on
compact connected (closed) surfaces with or without boundary. The
n-dimensional abstract polytopes, particularly the regular ones, have
gained popularity over recent years. The main focus of research
has been their symmetries and regularity. Planification of polyhedra
helps its spatial construction, yet it destroys its symmetries. To our
knowledge there is no “planification” for n-dimensional polytopes.
However we show that it is possible to make a “surfacification”
of the n-dimensional polytope, that is, it is possible to construct a
restrictedly-marked map representation of the abstract polytope on
some surface that describes its combinatorial structures as well as
all of its symmetries. We also show that there are infinitely many
ways to do this; yet there is one that is more natural that describes
reflections on the sides ((n−1)-faces) of n-simplices with reflections
on the sides of n-polygons. We illustrate this construction with the
4-tetrahedron (a regular 4-polytope with automorphism group of size
120) and the 4-cube (a regular 4-polytope with automorphism group
of size 384).
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I. INTRODUCTION

AN abstract n-polytope P is a partially ordered set (poset)

of faces with a strictly monotone rank function of range

{−1, 0, . . . , n}, represented by a Hasse diagram with n + 1
layers, where the poset obey the diamond condition and flags

are strongly flag-connected. Flags are maximal chains of faces,

that is, vectors consisting of n+2 faces of rank -1, 0, 1, . . ., n
respectively. There is a unique least face, the (−1)-face F−1

and a unique greatest face the n-face Fn. Faces of rank 0,

1 and n − 1 are called vertices, edges and facets. Two flags

are adjacent if they differ only by one face (entry). Flags are

strongly flag-connected means that any two flags Ψ, Φ are

connected by a sequence of flags Γ0 = Ψ, Γ1, . . .Γm = Φ
such that two successive flags Γi, Γi+1 are adjacent and for

any i, j, Γi ∩ Γj = Ψ ∩ Φ. The diamond condition says that

whenever Fi−1 and Fi+1 are faces of ranks i − 1 and i + 1
for some i, with Fi−1 < Fi+1, then there are exactly two

faces Fi of rank i containing Fi−1 and contained in Fi+1,

that is, Fi−1 < Fi < Fi+1. That is, the poset of the section

Fi+1/Fi−1 = {F ∈ P|Fi−1 < F < Fi+1} is like a diamond.

An abstract 2-polytope is just a polygon while a 3-polytope

is a non-degenerate map (cellular embedding of a simple graph

on some compact connected (i.e. closed) surface), with the
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property that every edge is incident with exactly two faces,

and every vertex on a face is incident with two edges of that

face. All polytopes and maps are finite in this paper. For a

deeper reading see [3], [7].

II. Θ-MARKED MAPS

A map M = (Ω; r0, r1, r2) is determined by a set Ω of

triangular pieces of surface called flags, and 3 involutory

permutations r0, r1, r2 on Ω satisfying (r0r1)
2 = 1 and

generating a transitive group on Ω called the monodromy
group of the map. Lynne James in [6] introduced

maps representations and associate it to a non-commutative

multiplication operation between map type objects. Although

restrictedly map representations [4] lie in a different category,

they represent the same topological objects with a different

perspective and semantic.
Consider the “right triangle” group Γ = 〈R0, R2〉 ∗ 〈R1〉 ∼=

(C2×C2)∗C2 generated by the three reflections R0, R1, R2 in

the sides of a hyperbolic right triangle with two zero internal

angles. Every finite index subgroup M < Γ determines a

finite map M = (Γ/
r
M ;M∗R0,M

∗R1,M
∗R2), where M∗

is the core of M in Γ and each M∗Ri acts as a permutation

on the right cosets Γ/rM of M in Γ by right multiplication.

M is called the fundamental map subgroup of M (or just

“map subgroup”). Let Θ be a normal subgroup of Γ with

finite index n. A map is Θ-conservative if M is a subgroup

of Θ. In this case the flags of M are n coloured under the

action of Θ, each colour determined by an orbit (the Θ-orbit)

under the action of Θ. By the Kurosh’s Subgroup Theorem

[5, Proposition 3.6], Θ freely decomposes into a free product

C2 ∗ . . . ∗C2 ∗D2 ∗ . . . ∗D2 ∗C∞ ∗ . . . ∗C∞ = 〈Z1, . . . , Zm〉
for some finite number (possibly zero) of factors C2, D2 =
C2 × C2 and C∞. This decomposition is unique up to a

permutation of the factors. A Θ-conservative map can then

be represented by a Θ-marked map Q = (Ω; z1, . . . , zm),
where Ω is the set of right cosets Θ/

r
M of M in Θ, and

each zi = M
Θ
Zi ∈ Θ/M

Θ
(where M

Θ
is the core of M in

Θ). The geometric construction described in [1], which can be

adapted to Γ [4], uses Θ-slices, polygonal regions determined

by a Schreier transversal for Θ in Γ. Θ-slices represent the

elements of Ω. For example, a Γ-slice is a “flag” and a Γ+-slice

is a “dart”, where Γ+ is the normal subgroup of index 2 in

Γ consisting of the words of even length on R0, R1, R2. The

group generated by z1 . . . , zn , called the monodromy group
of Q, or the Θ-monodromy group of M, acts transitively on

the set of the Θ-slices Ω. A morphism (or covering ψ from a

Θ-marked map Q1 = (Ω1; z1, . . . , zm) to another Θ-marked

map Q2 = (Ω2; z
′
1, . . . , z

′
m) is a function ψ : Ω1 −→ Ω2 that

commutes the diagram.
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Ω1 ×Mon(Q1) −−−−→ Ω1

ψ

⏐
⏐
�ι: zi �→z′

i

⏐
⏐
�ψ

Ω2 ×Mon(Q2) −−−−→ Ω2

An automorphism of Q is just a bijective morphism from Q to

Q. A Θ-marked map Q is regular, or the Γ-marked map M
is Θ-regular, if M is a normal subgroup of Θ. In this case the

automorphism group of Q, which is the automorphism group

of M preserving each Θ-orbit, coincides with the monodromy

group Mon(Q), but with different action on Ω. For a more

detailed exposition see [1].

A restrictedly-regular (or resctrictly-regular) map is a

Θ-regular for some (finite index) normal subgroup Θ � Γ.

Any group G is the monodromy group (and hence the

automorphism group) of a restrictedly-regular map ([2, Lemma

2.2] easily adapted to Γ).

III. REGULAR REPRESENTATION OF n-POLYTOPES BY

RESTRICTEDLY-MARKED MAPS

A group with presentation 〈s0, s1, . . . , sn−1 | s2i =
(sisj)

pij = 1〉 where pij ≥ 2 is a positive integer possibly

∞, is a Coxeter group. If pij = ∞ then the relation (sisj)
pij

is not considered in the above presentation. Let ΩP denote the

set of flags of a polytope P . As a consequence of the diamond

condition, for any Φ ∈ ΩP and for any 0 ≤ i ≤ n− 1, the set

{Φ′ ∈ ΩP | Φ′
j = Φj , ∀j = i} contains exactly two elements,

one of them being Φ. Denote by Φri = Φ′ the other flag

of this set. We have n permutations ri =
∏

Φ∈ΩP (Φ,Φri)
for i ∈ {0, 1, . . . , n − 1}. They give rise to a flag transitive

permutation group G(P) = 〈r0, r1, . . . , rn−1〉, called the

connection group of P , that describes the polytope P: each

i-face Fi for i ∈ {0, 1, . . . , n− 1}, corresponds to an orbit of

〈r0, . . . , r̂i, . . . , rn−1〉 on ΩP , where r̂i means ri is absent.

A polytope P can be identified with the n + 2 tuple

(ΩP ; r0, r1, . . . , rn−1). Denote by Δn−1 the Coxeter group

〈S0, S1, . . . , Sn−1 | S2
i = 1〉. Then we have a natural

epimorphism π : Δn−1 → G(P), mapping each Si to ri,
inducing an action Φd := Φdπ of Δn−1 on Ω(P). Similarly

to [1, & 1.2], fixing a flag Φ ∈ ΩP and letting P be the

stabiliser of Φ in Δn−1, then Δn−1 acts on Δn−1/rP by right

multiplication inducing a bijective function πΦ : Δn−1/rP →
ΩP , Pd �→ Φdπ. The kernel of π is the core P ∗ of P in

Δn−1 and the group Δn−1/P
∗ acts transitively on Δn−1/rP

by right multiplication in a similar way as G(P) acts on ΩP .

Hence the polytope (ΩP ; r0, r1, . . . , rn−1) is isomorphic to

(Δn−1/rP ;P ∗S0, P
∗S1, . . . , P

∗Sn−1). Every polytope P is

described by such (n + 2)-tuples; the converse is false. The

set of all such (n + 2)-tuples will be called the set of (n −
1)-hypermaps. So both n-polytopes are (n−1)-hypermaps, the

converse is false. The subgroup P will be called a fundamental

subgroup pf P . This is unique up to a conjugacy in Δn−1.

Following Lynne’s ideas [6], and more specifically

[4], a regular representation of (n − 1)-hypermaps by

restrictedly-marked maps is a m tuple (Θ;X0, X1, . . . , Xm),
consisting of a normal subgroup Θ of Γ freely generated

by X0, X1, . . . , Xm for some m ≥ n, together with an

epimorphism ρ from Θ to Δn−1. Such representation gives

rise to a bijection between the set of (n−1)-hypermaps P with

fundamental subgroup H to the set of regular Θ-marked maps

with fundamental subgroup Hρ−1, henceforth a representation

of n-polytopes.

M
map

TΘ
 trivial
Θ-map

n
Γ

Θ
ρ

P

HHρ-1

= 〈S  ,S  ,... , S 〉0     1             n-1Δn

=〈R 〉 〈R  ,R 〉1 0     2= C    D2       2* *

Θ-marked
   map

Q

There are actually infinitely many regular restrictely-marked

representations of (n− 1)-hypermaps, and so of n-polytopes.

Theorem 1: There is a regular restrictedly-marked

representation of n-polytopes such that

1 flags (n-tetrahedra for n-polytopes) correspond to

n-polygons,

2 local reflections about facets ((n− 1)-dimensional sides)

of a n-tetrahedron corresponds to local reflections on the

sides of a n-polygon,

3 the (full) automorphism group of the n-polytope is the

(full) automorphism group of the restrictedly marked

map.

Proof: Lynne James’s first example [6], essentially given

by an alternative construction, gives an answer to this question

for n = 4. The proof resumes to find a normal subgroup Θ
of Γ which is freely generated by reflections. Unfortunately

there are only four subgroups that are freely generated only

by reflections, namely Γ2.1 = 〈R0, R1, R2R1R2〉 = C2 ∗
C2 ∗ C2, Γ2.4 = 〈R1, R2, R0R1R0〉 = C2 ∗ C2 ∗ C2,

Γ2.5 = 〈R1, R2R0, R0R1R0〉 = C2 ∗ C2 ∗ C2 and Γ4.2 =
〈R1, R0R1R0, R2R1R2, R0R2R1R2R0〉 = C2 ∗ C2 ∗ C2 ∗
C2. These solve the problem for n = 3 and 4. Denote

by
∏

k(Ri, Rj) = the product RiRjRiRjRi . . . of Ri and

Rj in alternate form, starting from Ri and counting k
total factors. If k = 0 then let

∏
0(Ri, Rj) = 1. As a

general construction we take the normal subgroup Γn =

〈R0, R
R1
0 , RR1R2

0 , . . . , R
∏

n−1(R1,R2)

0 , (R1R2)
n〉1 of index 2n

in Γ (Γ/Γn is a dihedral group of order 2n). By the Kurosh’s

Subgroup Theorem, these generators decompose Γn as a free

product C2 ∗ C2 ∗ . . . ∗ C2 ∗ C∞. We take the epimorphism

ρ : Γn → Δn−1 by mapping each R
∏

k(R1,R2)
0 to Sk, for

k = 0, 1, . . . , n− 1, and (R1R2)
n to 1. Then the regular map

with dihedral automorphism group of size 2n corresponding

to the quotient Γ/Γn, is a star graph cellularly embedded

in the disk, thus a boundary map with one vertex and n
edges. We need to cut open this disk to create a Γn-slice

(see [4] for the constructing example of such a Γn-slice) for

the restricted Γn-marked map, however we need to join the

cut back to accomplish with (R1R2)
n = 1 imposed by the

epimorphism ρ to create a Γn-slice for this representation ρ.

Each (n − 1)-hypermap P , and hence each n-polyotpe, with

1There is another subgroup generated by reflections and one rotation that
also decomposes as a free product C2 ∗ C2 ∗ C2 ∗ . . . ∗ C∞, it is the dual
resulting from swapping R0 with R2. Another subgroup actually appears also
with a free product decomposition C2 ∗C2 ∗C2 ∗ . . . ∗C∞, yet one of the
C2 is generated by the rotation R0R2.
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fundamental subgroup P , is isomorphic to a Γn-marked map

Q with fundamental subgroup the inverse image Q = Pρ−1.

The rooted Γn-slice (Fig. 1a) for Q is the above n-polygon

with a distinguished flag (in black): The monodromy group of

the (n − 1)-hypermap (which corresponds to the connection

group of the n-polytope) is generated by the reflections on

the sides of this n-polygon. The isomorphism ρ̄ between

the restricted Γn-marked map Q and P establishes the third

statement.

r0
r1

r2r3

(a) (b)

Fig. 1 A rooted Γ4-slice (a) and sides identification (b)

IV. EXAMPLE: THE HYPERTETRAHEDRON AND THE

HYPERCUBE

We take the hypertetrahedron, an orientable and regular

4-polytope with 120 flags, and the hypercube, an orientable

and regular 4-polytope with 384 flags, for an illustration

of the above theorem. The rooted Γ4-slice of the restricted

Γ4-marked map representation is actually illustrated in the

picture 1(a). To construct the regular restricted Γ4-map Q, that

represents the hypertetrahedron (or the hypercube), we need

to join the 120 (or the 384) rooted Γ4-slices through their four

sides according to the rule dictated by r0 = R0, r1 = RR1
0 ,

r2 = RR1R2
0 and r3 = RR1R2R1

0 . The automorphism group

G of the hypertetrahedron and of the hypercube, is a Coxeter

group of type [3, 3, 3], and [4, 3, 3] respectively. They have

presentations respectively

〈r0, r1, r2, r3|r20, r21, r22, r23, (r0r2)2, (r0r3)2, (r1r3)2, (r0r1)3,

(r1r2)
3, (r2r3)

3〉
and

〈r0, r1, r2, r3|r20, r21, r22, r23, (r0r2)2, (r0r3)2, (r1r3)2, (r0r1)4,

(r1r2)
3, (r2r3)

3〉.
Since they are regular, their connection groups coincide with

their automorphism groups (only their action on the flags are

different), and their size is the number of flags (the action is

regular on the set of flags). So the set of flags may be replaced

by the automorphism group, in which case the action of the

automorphism group is done by left multiplication while the

action of the connection group is done by right multiplication.

For the constructing we use this group as a connection group

and label its elements 1, 2, 3, . . .. We start by labelling the

first elements as follows: 1 for the identity element, 2 for

r0 = R0, 3 for r1 = RR1
0 , 4 for r0r1, 5 for r0r1r0, etc,

until all the elements of the dihedral subgroup 〈r0, r1〉 are

labelled (this gives a central 12-gon with 6 sectors in the case

of the hypertetrahedron (and a 16-gon with 8 sectors in the

case of the hypercube). We only need to label all the elements

of one sector; the remaining ones come by symmetry. In the

figure below we show a constructed labelling of a sector of the

hypertetrahedron. Bold numbers label the sides of this sector

to be identified elsewhere; in bold red are those that will find

an identification label inside the same sector while the others

will be matched outside.
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Fig. 2 The first sector of the hypertetrahedron

As we can see from the complete picture of the
hypertetahedron, not all the sides were labelled; this is not
necessary since by taking reflections and rotations about the
central polygonal region we get all the remaining labels. For
example, the bottom right side is not labelled; label it 17,
horizontally reflect this to label d, see where the other d
appears and then take the same reflection to see where the
second d goes to and label that side 17. Moreover, there is no
arrow indicating how the same labelled sides are identified.
This is not necessary either: make the identification so to
resemble the matched interior sides or just follow the word
R0, RR1

0 , RR1R2
0 , RR1R2R1

0 that corresponds to the side (Fig.
1b); it will takes a root flag to a root flag.
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Fig. 3 The hypertetrahedron

The hypercube is done similarly.
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Fig. 4 The hypercube
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