
International Journal of Architectural, Civil and Construction Sciences

ISSN: 2415-1734

Vol:12, No:11, 2018

1085

 

 

 
Abstract—Passive resonant vibration absorbers are among the 

most widely used dynamic control systems in civil engineering. They 
typically consist in a single-degree-of-freedom mechanical 
appendage of the main structure, tuned to one structural target mode 
through frequency and damping optimization. One classical scheme 
is the pendulum absorber, whose mass is constrained to move along a 
curved trajectory and is damped by viscous dashpots. Even though 
the principle is well known, the search for improved arrangements is 
still under way. In recent years this investigation inspired a type of 
bidirectional pendulum absorber (BPA), consisting of a mass 
constrained to move along an optimal three-dimensional (3D) 
concave surface. For such a BPA, the surface principal curvatures are 
designed to ensure a bidirectional tuning of the absorber to both 
principal modes of the main structure, while damping is produced 
either by horizontal viscous dashpots or by vertical friction dashpots, 
connecting the BPA to the main structure. In this paper, a variant of 
BPA is proposed, where damping originates from the variable 
tangential friction force which develops between the pendulum mass 
and the 3D surface as a result of a spatially-varying friction 
coefficient pattern. Namely, a friction coefficient is proposed that 
varies along the pendulum surface in proportion to the modulus of the 
3D surface gradient. With such an assumption, the dissipative model 
of the absorber can be proven to be nonlinear homogeneous in the 
small displacement domain. The resulting homogeneous BPA 
(HBPA) has a fundamental advantage over conventional friction-type 
absorbers, because its equivalent damping ratio results independent 
on the amplitude of oscillations, and therefore its optimal 
performance does not depend on the excitation level. On the other 
hand, the HBPA is more compact than viscously damped BPAs 
because it does not need the installation of dampers. This paper 
presents the analytical model of the HBPA and an optimal 
methodology for its design. Numerical simulations of single- and 
multi-story building structures under wind and earthquake loads are 
presented to compare the HBPA with classical viscously damped 
BPAs. It is shown that the HBPA is a promising alternative to 
existing BPA types and that homogeneous tangential friction is an 
effective means to realize systems provided with amplitude-
independent damping. 
 

Keywords—Amplitude-independent damping, Homogeneous 
friction, Pendulum nonlinear dynamics, Structural control, Vibration 
resonant absorbers.  

I.INTRODUCTION 

ASSIVE resonant vibration absorbers are widely used 
dynamic control systems in civil engineering. In current 

applications, they simply consist in single-degree-of-freedom 
(SDOF) appendages, tuned to the target mode of the main 
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structure through frequency and damping optimization [1]. 
One classical scheme is the pendulum absorber (PA), that uses 
gravity to generate the required restoring force, and consists of 
a damped mass constrained to move along an arched 
trajectory. A PA can be designed either as a supported 
pendulum, sliding or rolling along a physical track, or as a 
hanging pendulum, suspended through ropes or bars. In recent 
years, supported PAs have particularly attracted the interest of 
the research community, because of their compactness, 
durability and geometric versatility. Classical examples of 
supported PAs include the ball pendulum [2], the rolling and 
sliding pendulums (with single or double concavity) [3] and 
the rocking pendulum.  

Despite the several technological realizations reported in 
the literature and available in engineering practice, the 
research for novel configurations is still under way, recently 
resulting in a number of new arrangements, including the 
unbalanced rolling PA [4], the multiple-ball PA [5], and 
several types of track nonlinear energy sinks [6]. In recent 
years this investigation has also inspired the proposal of the 
so-called BPA, consisting of a mass moving along an optimal 
3D concave surface, whose principal curvatures are designed 
to ensure a bidirectional tuning to both principal structural 
modes. The BPA has been proposed in two different variants, 
respectively belonging to the supported pendulum and to the 
hanging pendulum types. The first variant is the rolling-
pendulum absorber proposed in [7]. Its 3D surface is realized 
as a double 3D rolling-pendulum bearing, consisting of two 
equal concavities sandwiching a rolling ball. Changing the 
shape of the two concavities and the ball radius provides any 
possible 3D surface. The second variant is the hanging-
pendulum absorber proposed in [8]. Its 3D surface is obtained 
through a Y-shaped arrangement of the suspending cables. 
Changing the length of the cables provides any possible 
toroidal surface. In the first variant, energy dissipation is 
produced by horizontal viscous dampers, whereas in the 
second variant it is produced by a vertically aligned friction 
damper. In this latter case, the orthogonality between the 
friction damper and the 3D surface ensures an amplitude-
independent equivalent damping, which eventually makes the 
two variants approximately equivalent in terms of control 
effectiveness. 

In this paper, a further alternative of BPA is presented, in 
which damping originates from the variable tangential friction 
force which develops between the pendulum mass and the 3D 
surface, as a result of a spatially-varying friction coefficient 
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pattern. In particular, the friction coefficient is assumed to 
vary along the guiding surface proportionally to the modulus 
of the surface gradient. This provides the absorber with a 
dissipative model which is nonlinear homogeneous in the 
small displacement domain [9]. This HBPA proves superior to 
conventional friction-type ball absorbers (characterized by a 
constant friction coefficient, as in [2] and [5]), because its 
equivalent damping ratio results independent of the amplitude 
of oscillations, and therefore, its optimal performance does not 
depend on the excitation level. On the other hand, with respect 
to the abovementioned existing types of BPAs ([7] and [8]), 
the HBPA is more compact, because its dissipation 
mechanism is integral with the guiding surface and no damper 
needs to be installed. In the HBPA, friction can be provided 
either by rolling or by sliding, depending on the type of 
supported pendulum chosen. The friction coefficient can be 
spatially varied through changing the surface roughness or the 
material or thickness of the surface coating, either 
continuously (according to the optimum pattern) or discretely 
(according to its stepwise approximation).  

This paper describes the analytical model of the HBPA and 
proposes an optimal methodology for its design. Simulations 
of single-story and multi-story building structures subjected to 
wind and seismic loads are reported to highlight the pros and 
cons of the HBPA with respect to existing viscously damped 
BPAs (VBPA). Results show that the HBPA is a promising 
alternative to conventional VBPAs, and that homogeneous 
tangential friction is a possible solution to conceive 
mechanical systems characterized by amplitude-independent 
damping. 

II.DESCRIPTION AND MODELLING OF THE HBPA 

A.Problem Setting 

A BPA including both viscous damping and tangential 
friction is schematically shown in Fig. 1. 

 

 

Fig. 1 Schematics of the BPA model 
 
It is modelled as a point mass m subject to gravity g and 

constrained to move along a generic 3D surface, rigidly 
connected to the structure at its minimum in O. The motion of 
m along the surface is contrasted by: (i) the viscous damper 
connecting m to the structure in A; (ii) the friction force acting 
along the surface; and (iii) the restrainer (or bumper) 

connecting m to the structure in B. If the rotations of the 
structure are assumed negligible, the surface and the structural 
supports in A and B merely translate together with the support 
in O. If u, v and w are the coordinates of m with respect to the 
local reference system xyz fixed in O, and if w = w(u,v) = w(q) 
is the pendulum surface equation, then the relative 
displacement of the HBPA with respect to the structure is r = 
[u,v,w]T = [qT,w(q)]T, where u and v are the two independent 
coordinates, w is the dependent coordinate and q = [u,v]T is the 
HBPA degree-of-freedom vector. The acceleration vector of 

the structural support is T
z

T
h

T
zyx aaaa ],[],,[ aa  , and the 

BPA relative velocity is derived as qJqqrr   )/( , where 
Tw],[/  IqrJ  is the Jacobian matrix of the kinematic 

transformation and  q /ww  is the surface gradient.  

B.The Dissipative Mechanisms 

The model schematized in Fig. 3 accounts for three distinct 
dissipative mechanisms, respectively represented by: (i) one or 
more viscous dampers; (ii) the tangential friction mechanism; 
and (iii) the fail-safe restrainer.  

Assuming for brevity a single viscous damper having 
damping coefficient c, undeformed length lc0, deformed length 
lc, and undeformed and deformed coaxial versors 0ĉ  and ĉ , 

and further denoting by sc = lc – lc0 the damper axial 
elongation, it results that the viscous force vector acting on m 

is cf ˆ
cc f , where cc scf   and qJcrc  TT

cs ˆˆ  . 

Assuming a rigid-plastic (dry) friction coefficient varying 
along the pendulum surface according to an assigned 
geometrical pattern μ = μ(u,v) = μ(q), and denoting by N the 
modulus of the normal reaction force vector N at the contact 
point, the friction force vector acting on m can be expressed as 

tf ˆ
 f , where qJJqqJrrt  TT//ˆ   is the tangent 

versor at the contact point and  
 

Nf )(q  . (1) 

 
This paper focuses in particular on a special friction pattern, 

characterized by a friction coefficient proportional to the 
surface gradient vector according to: 

 

w 0)(  q , (2) 

 
where μ0 is a properly selected proportionality factor, called 
the friction ratio. As it will be shown later, (2) ensures a 
homogeneous first-order friction model. 

Assuming a restrainer having stiffness kr, damping 
coefficient cr and initial clearance wr, the restrainer force 

vector acting on m is kf ˆ
rr f , where 0rf  if w ≤ wr and 

wcwwkf rrrr  )(  if w > wr, with q Tww  . 

The total dissipative force applied to m by the three 

mechanisms is rcd ffff   . Denoting by kw ˆmg  the 
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weight of m, and by )( raλ md  the dynamic interaction 

force exchanged between the BPA and its support, the 
dynamic equilibrium of m provides dd λfNw  , which 

eventually allows to compute N in (1) as the modulus of the 
vector dd fwλN  .  

C.The Nonlinear 3D Model of the BPA 

The dynamic equation of the BPA can be obtained by 
applying the Euler-Lagrange equation to the mass m: 

 

0QQ
qqq





















ei
gVTT

dt

d


, (3) 

 

where 2/rr TmT   is the kinetic energy of m; Vg=mgw is its 
gravitational potential energy; Qi = –JTfd is the generalized 
internal force due to the total dissipative force fd; and Qe = 
mJTa is the generalized external force due to the support 
acceleration. Deriving the first three terms of (3), and denoting 
by Mq = mJTJ the BPA generalized mass matrix, the fully 
nonlinear 3D model of the device can be finally obtained as 
follows: 
 













q

qMaJQqM
T

mwmg qT
i

q  . (4) 

 
In (4), the dissipative term on the left-hand side can be 

expressed as: 
 

kJtJcJfJQ ˆˆˆ T
r

TT
cd

T
i fff   , (5) 

 
where  
 

 qJccJcJ TTT
c cf ˆˆˆ  , (6) 

 

qJJqqJJqtJ  TTTT Nf /)(ˆ   , and (7) 

 

wff r
T

r kJ ˆ  (8) 
 
respectively, represent the generalized viscous, friction and 
restrainer force vectors.  

D.The Nonlinear 3D Model of the BPA-MDOF System 

The dynamic equation of a linear multi-degree-of-freedom 
(MDOF) structure subjected to external forces and ground 
accelerations and equipped with the BPA is:  

 

gsssd
T

ssssss rRMfλLqKqCqM   , (9) 

 
where qs is the vector of structural DOFs; Ms, Cs and Ks are 
the structural matrices of mass, damping and stiffness; fs is the 
vector of external forces; gr  is the vector of ground 

accelerations; L and Rs are kinematic and topological 
matrices. By combining (4) and (9), the fully nonlinear 

dynamic equation of the coupled system can be finally 
expressed as: 
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E.The First-Order Approximated Model  

Fundamental properties of the BPA can be highlighted by 
considering its response in the small-displacement domain. By 
developing in Taylor series expressions (4) to (8), and by 
truncating higher-order terms, the first-order 3D model of the 
BPA is obtained as 

 

hww mNNm aqqqKqKqCq   /000  , (11) 

 
where: C is the BPA viscous damping matrix, given by:    
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if the viscous damper is set parallel to the xy plane; N0 = 
N/(mg) = 1+az/g is the weight-normalized normal component 
of the reaction force vector; ah = [ax, ay]

T is the vector of 
horizontal accelerations at the support; and Kw is the 
equivalent pendular stiffness matrix, given by: 
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where Hw is the Hessian matrix of w(q) in 0, and Lx and Ly are 
the pendulum lengths in the local directions x and y.  

Accordingly, the first-order 3D model of the BPA-structure 
coupled system is expressed as: 
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where Lh is the vector containing the first two columns of L. 

Based on (11) it can be observed that: 
1)  the inertia force vector qm  and the restoring force vector   

N0Kwq are linear and uncoupled along x and y; this holds 
for the viscous force vector qC , provided that all viscous 

dampers are aligned with the coordinate axes; 

2)  the friction force vector has modulus qK wN00  and has 

direction and sign of the tangent versor qq  / ; because its 
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modulus, direction and sign are nonlinear and coupled, 
the friction force vector is a nonlinear coupled function of 
q and q ; 

3)  because its modulus increases proportionally with q and 
does not depend on q , the friction force vector is a 

homogeneous function of q and q ; (11) itself is therefore 

homogeneous and its solution is proportional to the 
horizontal acceleration ah, which definitely makes an 
HBPA a first-order nonlinear but homogeneous system. 

F.The Simplified 2D Model  

The 3D first-order models in (11) and (14) can be further 
simplified for design purposes by assuming that: (i) the motion 
occurs in a vertical coordinate plane, supposedly the xz plane, 
so the models turn into 2D models; (ii) in the xz plane the 
structural target frequency is far from the other ones, so the 
MDOF structure can be reduced to a 1DOF mode-generalized 
system; (iii) the vertical acceleration input az is negligible, so 
N0 = 1. Under these conditions, (11) and (14), respectively, 
become: 

 

xwxx mauuukucum  )](sign1[ 0   , (15) 
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where us is the structure horizontal displacement relative to the 
ground; msx, csx and ksx are the structure generalized mass, 
damping and stiffness along x; and cx is the BPA viscous 
damping coefficient along x. 

Equations (15) and (16) can be finally recast in modal form 
as follows: 
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where mRx = m/msx is the BPA mass ratio along x; 

ssxsx mk /  and xx Lg /  are the structure and BPA 

circular frequencies along x; ωRx = ωx/ωsx is the BPA 
frequency ratio along x; and ςsx = csx/(2ωsxmsx) and ςx = 
cx/(2ωxm) are the structure and BPA viscous damping ratios 
along x. 

III. DESIGN METHODOLOGY 

A design methodology is here proposed for a BPA of either 
viscous type (VBPA) or homogeneous variable friction type 

(HBPA). Their respective models can be obtained from those 
derived in Section II, by respectively annulling the friction or 
the viscous terms. The methodology comprises two steps: (1) 
a 2D first-order optimization; and (2) a 3D second-order 
completion.  

A.The 2D First-Order Optimization Step 

Based on the simplified 2D model expressed by (18), which 
admits an uncoupled motion along x and y, and assuming the 
structure known, both the VBPA and the HBPA are 
completely defined, in each direction, by three dimensionless 
design parameters, namely mRx, ωRx and ςx for the VBPA, and 
mRx, ωRx and μ0 for the HBPA. If, as usual in vibration 
absorbers design, the mass ratio mRx is fixed based on cost-
benefit expectations, the two remaining free parameters can be 
determined by solving a classical H∞ design problem [10], i.e. 
by minimizing the H∞ norm of some meaningful input-output 
transfer function of the structure-BPA system. Denoting by ω 
the circular frequency of the excitation input, two possible 
transfer functions are here considered for each BPA type, 
namely the force-to-displacement transfer function Tf(ω) 

(computed from sxf  to us and significant for wind load 

applications) and the ground acceleration-to-displacement 
transfer function Tg(ω) (computed from gu  to us and 

significant for seismic load applications). Denoting as the 
response ratio Rx the ratio between the controlled and the 
uncontrolled H∞ norm of those transfer functions, optimization 
can be formalized as follows, respectively for a wind-oriented 
VBPA: 
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for a seismic-oriented VBPA: 
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for a wind-oriented HBPA: 
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and for a seismic-oriented HBPA: 
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Equations (19) and (20) provide the optimal VBPA 

parameters ωRxopt and ςxopt, respectively for wind and seismic 
control. Equations (21) and (22) provide the optimal HBPA 
parameters ωRxopt and μ0opt, respectively for wind and seismic 
control.  

The min.max. problems (19)-(22) are numerically solved by 
using a branch & bound search algorithm similar to the one 
used in [3], followed by a nonlinear least-square solver that 
improves local convergence. The computation of the VBPA 
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transfer function in (19) and (20) is straightforward and based 
on classical closed-form expressions available for linear 
mechanical models, whereas the computation of the HBPA 
transfer function in (21) and (22) requires simulating the 
response time-history of the system at each input frequency 
until the response amplitude stabilizes at an acceptable degree. 

 

 

 

 

Fig. 2 H∞ optimal design of a VBPA (dotted lines) and a HBPA 
(continuous lines), for ζsx = 2% and as a function of mRx. On the left: 

wind-oriented design. On the right: seismic-oriented design. First 
row: optimal frequency ratios. Second row: optimal viscous/friction 

damping ratios. Third row: optimal response ratios 
 
Assuming a structural damping ratio ζsx = 2%, the results of 

the optimization are shown in Fig. 2 for both the VBPA 
(dashed lines) and the HBPA (continuous lines), as a function 
of the mass ratio mRx (ranging from 1‰ to 20%). The wind-
oriented optimization is reported on the left (subfigures a, c 
and e), while the seismic-oriented optimization is reported on 
the right (subfigures b, d and f). The first row of subfigures (a 
and b) shows the optimal frequency ratio; the second row (c 
and d) shows the optimal damping ratio (for the VBPA) and 
the optimal friction ratio (for the HBPA), this latter 
conveniently normalized to π; and the third row (e and f) 
shows the resulting optimal response ratios. Whereas the 
results obtained for the VBPA are well known (see for 
instance [11]) and do not deserve specific comments, the 
results obtained for the HBPA interestingly reveal that the 
optimal HBPA generally (although not largely) improves the 
VBPA performance (resulting in a smaller response ratio), 
especially for large values of mRx. To achieve this, ωRxopt is 
always larger for the HBPA than for the VBPA, except for 

very small mass ratios, when the optimal frequency ratio 
converges to unity for both types. On the other hand, μ0opt 
appears to converge to πꞏςxopt for small mass ratios, but to be 
increasingly smaller than πꞏςxopt as the mass ratio increases. 
The same trends are observed for both the wind-oriented and 
the seismic-oriented design types.  

Assuming, as it will be done in the sequel, that the target 
modes of the structure have the same damping ratio and the 
same generalized mass in the two horizontal directions, the 
results obtained above identically hold along x and y, and the x 
subscript can be dropped for brevity in the expressions for the 
parameters and the response ratios. Together with the mass 
ratio mR and with the structural parameters, the resulting 
optimal dimensionless parameters ωRopt, ςopt and μ0opt provide 
then all the BPA dimensional parameters involved in the 
domain of the small displacement, i.e. the BPA mass m, the 
BPA circular frequencies ωx and ωy, the BPA pendulum 
lengths Lx and Ly, the VBPA damping coefficients cx and cy, 
and the HBPA friction pattern around the origin, this latter 
given around the origin by: 

 

2222
00 //)( yxoptopt LvLuw   q . (23) 

B.The 3D Second-Order Completion Step  

The completion step provides the BPA parameters which, 
involved only in the large-displacement domain, are excluded 
from the optimization step. They include the shape of the 
pendulum surface (and consequently the friction pattern) far 
from the origin, the length and number of the viscous dampers 
and the properties of the restrainer. These parameters could 
undergo a specific optimization process based on the fully 
nonlinear model, but for simplicity they are here left to the 
free choice of the designer. Some guidelines for their selection 
are proposed as follow.  

By providing Lx and Ly, the optimization step completely 
determines the pendulum shape around the origin. Far from it, 
however, different shapes correspond to the same pair of Lx 
and Ly. Among the viable choices are, for example, the 
ellipsoid, the torus or the elliptic paraboloid. If the ellipsoid is 
chosen, as in the sequel, infinite ways of assigning its semi-
axes bx, by and bz exist which provide the desired Lx and Ly 

pair. However, by imposing that yxz bbb   only one 

admissible ellipsoid exists, of semi-axes 4 3
yxx LLb  , 

4 3
yxy LLb   and yxz LLb  . This choice will be assumed 

in the remaining of this paper. 
With the said assumption of an ellipsoidal pendulum shape, 

the friction pattern defined by (2) specializes as: 
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where μ(q) tends to zero around the origin, tends to infinite at 
the ellipsoid equator, and describes iso-friction curves 
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(characterized by a constant friction value) which intersect the 
level curves (characterized by a constant height), as shown for 
example in Fig. 3, which refers to an ellipsoid having Ly/Lx = 
2, and truncated at wr = bz/2. Both Figs. 3 (a) and (b) represent 
nine level curves, uniformly spaced from 0 to wr, and nine iso-
friction curves, uniformly spaced from 0 to 2 μ0opt. 

 

 

 

Fig. 3 Level curves (continuous) and iso-friction curves (dashed) if 
Ly∕Lx = 2: (a) planar view; (b) axonometric view (with the z 

dimension doubled for clarity) 
 
Regarding the design of the viscous dampers, the 

optimization step provides the optimal values of cx and cy, 
based on the assumption of a single damper in each direction. 
If more dampers are used in the same direction, the optimal 
damping coefficient must be parted among them. The length 
of the viscous dampers does not enter the optimization step. In 
the sequel, two dampers will be assumed in every direction, 

each having length yxzc LLbl 0 .  

Finally, the restrainer too does not enter the optimization 
step. Its mechanical properties shall be assigned to simulate a 
dissipative impact. In the remaining of this paper, its stiffness 

is assigned as 2
rr mk  , where yxr  20 ; its damping 

is assigned as mc rrr 2 , where rrr ee 22 lnln    

and er = 0.5 (elastic restitution coefficient); its clearance is 
assigned as wr = bz/2. 

IV.2D SIMULATIONS OF THE FIRST-ORDER MODEL 

This section compares the optimal VBPA and the optimal 
HBPA in the small-displacement domain, by assuming the 
first-order 2D models expressed by (16) or (18). The structure 
is a 2% damped SDOF system. 

A.White noise force input 

Optimized according to the wind-oriented design method 
exposed in Section III, the VBPA and the HBPA are here 
compared by subjecting the SDOF structure to a stationary 

Gaussian zero-mean white-noise normalized force input sxf . 

For the uncontrolled and for the VBPA-controlled structure 
(linear cases), the stationary root-mean-square (rms) response 
of the system is computed by solving the Lyapunov equation 
[10]. For the HBPA-controlled structure (homogeneous 
nonlinear case), the rms response is computed by Monte Carlo 
simulations, using 100 realizations of the input process. Each 
realization has a duration of 3600Tsx and a sampling time of 
0.01Tsx, Tsx being the structural period. 

The BPA performance is here evaluated in terms of the rms 

structural displacement, rms(us), and the rms BPA relative 
displacement (stroke), rms(u). In particular, two performance 
indices are considered, obtained dividing the controlled value 
of these rms responses by the uncontrolled value of the rms 
structural displacement: the displacement response ratios Rdx = 

rms(us)con/ rms(us)unc, and the stroke response ratio Rsx = 

rms(u)con/ rms(us)unc. 
The two response ratios are reported in Fig. 4, where they 

appear nearly identical for the two BPA types. The substantial 
equivalence already observed under a harmonic force input in 
Fig. 2 (e) is therefore confirmed under a white-noise force 
input. Expectedly, the absorber results more effective in H∞ 
terms than against a white-noise input (i.e. in H2 terms).  

 

 

Fig. 4 2D first-order model. VBPA and HBPA response ratios under 
a unidirectional white-noise force input 

B.Real Seismic Ground Acceleration Input 

Optimized according to the seismic-oriented design method, 
the evaluation of the VBPA and the HBPA under a white-
noise ground acceleration input gu  leads to very similar 

results to those presented in Fig. 4, which are therefore 
omitted here for brevity. 

 

 

Fig. 5 2D first-order model. VBPA and HBPA response ratio spectra 
under a unidirectional seismic input, for mRx = 1%, 3%, 10% 

 
More interestingly, the structure (with or without BPA) is 

here subjected to a set of 338 near-field real seismic records 
(details in [12]), and its period Tsx is varied from 0.1 s to 6.0 s 
so as to obtain uncontrolled and controlled spectra. For each 
response quantity of interest, namely the maximum structural 
displacement us,max and the maximum BPA stroke umax, the 338 
spectra are then condensed into their rms spectrum. Dividing, 
at each period, the controlled rms response spectra by the 
uncontrolled structural displacement response spectrum, two 
significant rms response ratio spectra are obtained, 
respectively in terms of structural displacement (Rdx = 

rms(us,max)con/ rms(us,max)unc) and in terms of BPA stroke (Rsx = 

rms(umax)con/ rms(us,max)unc). Results are reported in Fig. 5 for 
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three mass ratios (mRx = 1%, 3% and 10%). Again, the VBPA 
and the HBPA display a very alike performance, both in terms 
of structural displacement and absorber strokes.  

V.3D SIMULATIONS OF THE FIRST-ORDER MODEL 

This section extends the analysis to 3D models, still 
operating in the small-displacement domain, according to (14). 
The equations of motion are still linear and uncoupled for the 
VBPA but nonlinear and coupled for the HBPA. The structure 
is a 2%-damped system having 1 DOF in each direction. 

A.White Noise Force Input 

The structure, having Tsx = 1 s and Tsy/Tsx variable from 1 
(axial-symmetry) to 2, is supposed to be excited by two 
independent white-noise force input components fsx and fsy, 
having the same rms value fsx0 = fsy0. The mass ratio mR = mRx 
= mRy is supposed to alternatively equal 1%, 3% and 10%. The 
BPA performance is evaluated by considering the average 
response to 100 realizations of the stochastic input process, 
each one having duration 600 s and sampling time 0.01 s. 
Performance is expressed by the following two bidirectional 

response ratios: dydxd RRR   and sysxs RRR  , which 

extend to 3D the 2D response ratios already introduced in 
Section IV.A. 

Results are reported in Fig. 6, where Rd and Rs are plotted as 
a function of Tsy/Tsx. The VBPA performance appears clearly 
constant with Tsy/Tsx. The HBPA performance appears 
approximately constant with Tsy/Tsx, and quite similar to the 
VBPA performance, with only slightly larger structural 
displacements and moderately smaller BPA strokes.  

 

  

Fig. 6 3D first-order model under a bidirectional white-noise force 
input. VBPA and HBPA response ratios as a function of Tsy/Tsx, for 

mRx = 1%, 3%, 10% 

B.Real Seismic Ground Acceleration Input 

The bidirectional performance of the VBPA and of the 
HBPA is here evaluated using the same set of seismic records 
adopted in Section IV.B. Spectra are expressed in terms of 3D 
rms response ratios, obtained by averaging the corresponding 
2D rms response ratios in the x and y directions, according to: 

dydxd RRR   and sysxs RRR  . Fig. 7 shows Rd and Rs 

computed under the assumption that Tsy/Tsx = 1, for Tsx = Tsy 
ranging from 0.5 to 4.0 s, and for mR alternatively equal to 1%, 
3% or 10%. As already recognized in Fig. 6, it appears that 
under bidirectional excitation, because of friction coupling, the 
nearly perfect coincidence between the VBPA and the HBPA 

response is lost. Friction damping implies a slightly larger 
structural response, and a slightly smaller stroke. The extent of 
this reduction remains however quite limited.  

 

 

Fig. 7 3D first-order model. VBPA and HBPA response ratio spectra 
under a bidirectional seismic input, for Tsy/Tsx = 1 and mRx = 1%, 3%, 

10% 

VI. 2D SIMULATIONS OF THE FULLY NONLINEAR MODEL 

In order to show the influence of the excitation intensity on 
the BPA performance, this section compares the optimal 
VBPA and the optimal HBPA in the large-displacement 
domain, by assuming fully nonlinear 2D models. The structure 
is once again a 2% damped SDOF system.  

A. White Noise Force Input 

A structure controlled with a wind-optimal BPA having mRx 
= 3% is simulated under a unidirectional white-noise force 

input of rms amplitude 0sxf , duration 600 s and sampling time 

0.01 s. The response ratios Rdx and Rsx are reported in Fig. 8 

for the two types of BPA as a function of 0sxf  ranging from 0 

to 5 N/kg. 

For 0sxf  = 0, the results are those already obtained in Fig. 4 

for first-order models. As 0sxf  increases, the structural 

displacement mitigation effectiveness diminishes, as typical of 
pendulum devices, and the absorber stroke decreases, as a 
result of bumping on the restrainer and loss of tuning. The 
effectiveness reduction appears delayed for the HBPA with 
respect to the VBPA, because of the amplitude-increasing 
dissipation capabilities of the gradient-proportional friction 
pattern, instead of the amplitude-decreasing equivalent 
damping ensured by the viscous dashpots under large 
displacements. 

 

 

Fig. 8 2D fully nonlinear model. VBPA and HBPA response ratios 
under a unidirectional white-noise force input, as a function of the 

input level and for mRx = 3% 
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B.Real Seismic Ground Acceleration Input 

A structure controlled with a seismic-optimal BPA having 
mRx = 3% is simulated under the set of real records already 
introduced in Section IV.B, for increasing seismic intensities. 
Denoting by I the intensity ratio, i.e. the dimensionless factor 
adopted to scale the entire set of records, Fig. 9 reports Rdx and 
Rsx as a function of I, for the two BPA types and for two 
possible periods of the structure, namely Tsx = 0.5 s (top 
subfigures) and Tsx = 4.0 s (bottom subfigures). 

For I = 0, the results are those already obtained in Fig. 5 for 
first-order models. As I increases, both Rdx and Rsx decrease 
for both structural periods, as already observed in Section 
VI.A under force excitation. However, significant variations 
are solely observed for Tsx = 0.5 s, as a result of the limited 
stroke capacity of small-period pendulums. In this case, the 
HBPA appears again superior to the VBPA, by virtue of the 
increasing damping provided by the proposed friction pattern.  

 

 

 

Fig. 9 2D fully nonlinear model. VBPA and HBPA response ratio 
spectra under a unidirectional seismic input, as a function of I and for 

mRx = 3%. Top figures: Tsx = 0.5 s; bottom figures: Tsx = 4.0 s 

VII. 3D SIMULATIONS OF THE FULLY NONLINEAR MODEL 

This section generalizes the previous results to a 3D model.  

A.White Noise Force Input 

The optimal BPAs are supposed to be mounted on a 2%-
damped structure having 1 DOF in each direction, with Tsx = 
Tsy = 1 s. The structure is excited by a bidirectional white-
noise force input, having equal rms amplitude in the two 

directions 0sxf = 0syf , duration 600 s and sampling time 0.01 

s. Simulations are conducted for 0sxf = 0syf  ranging from 0 to 

5 N/kg, and results are reported in Fig. 10. The performance 
loss trends already observed for a unidirectional input in Fig. 8 
are confirmed. Again, the HBPA performance is similar to the 
VBPA performance for small intensities, and better for large 
ones. 

B.Real Seismic Ground Acceleration Input 

Table I reports the response ratios obtained by subjecting 
the controlled structure to the bidirectional seismic records 
included in the selected set, for mR = 3% and for the intensity 
ratio increasing from 0 to 0.5 to 1.0. Two cases are considered, 
with the first structural period Tsx being fixed at 1.0 s and the 
second structural period Tsy equaling either 1.0 s or 1.5 s. 
Table I confirms that under a bidirectional shaking the VBPA 
is preferable if second-order effects are negligible (I = 0), and 
the HBPA if they are not.  

 

  

Fig. 10 3D fully nonlinear model. VBPA and HBPA response ratios 
under a bidirectional white-noise force input, as a function of the 

input level and for mRx = 3%. Tsx = Tsy = 1.0 s 
 

TABLE I 
3D FULLY NONLINEAR MODEL UNDER SEISMIC INPUT. RMS RESPONSE 

RATIOS FOR DIFFERENT PERIODS AND INTENSITIES (mR = 3%) 

  Rd Rs 

 I VBPA HBPA VBPA HBPA 

Tsx = 1.0 s 
Tsy = 1.0 s 

0.0 0.83 0.84 2.60 2.47 

0.5 0.90 0.88 1.81 1.52 

1.0 0.95 0.92 1.16 1.00 

Tsx = 1.0 s 
Tsy = 1.5 s 

0.0 0.84 0.85 2.58 2.35 

0.5 0.88 0.87 2.00 1.64 

1.0 0.94 0.91 1.38 1.15 

VIII. AN MDOF BUILDING UNDER WIND LOAD 

An MDOF high-rise building structure exposed to wind 
loads is simulated in this section with or without a BPA atop, 
by using the fully nonlinear model expressed by (10). The 
BPA is either of the VBPA or of the HBPA type, and in both 
cases is optimized according to the wind-oriented design 
procedure exposed in Section III.  

The structure is 168 m tall with a 25 m x 25 m square 
section. Its shape, mass and stiffness are taken from [13], but 
scaled to augment the building sensitivity to the across-wind 
component. Modelled as a tapered 10-elements cantilever 
beam, the structure has a flexural stiffness which in the y 
direction is 1.21 times smaller than in the x direction. The 
natural periods along y are therefore 1.10 times larger than 
along x. In the x direction, the first three periods are 4.00 s, 
1.23 s, and 0.52 s, with participating modal masses of 45.3%, 
21.8%, and 11.1%. Damping is assumed as 2% in every mode. 

The BPA mass is assumed as 1% the total building mass, 
corresponding to an effective mass ratio of 6.45% according to 
Warburton’s approach [1]. By applying the design 
methodology presented in Section III, the VBPA and the 
HBPA parameters are computed as in Table II.  
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Simulations are performed under moderate-to-high wind 
flow, blowing for 1 hour either along x or along y. 
Deterministic wind load time-histories are determined as the 
realization of a stationary, spatially nonhomogeneous, 
stochastic process, comprising both along-wind and across-
wind components, therefore exciting the structure 
simultaneously in the two directions. Along- and across-wind 
components are computed based on classical wind load 
spectra [14], [15]. 

 
TABLE II 

BPA DESIGN PARAMETERS ON THE TALL BUILDING 
ωR 

(-) 
ς 

(-) 
μ0 

(-) 
Lx 

(m) 
Ly 

(m) 
bx 

(m) 
by 

(m) 
bz 

(m) 
lc0 

(m) 
wr 

(m) 
VBPA 0.93 0.15 - 4.57 5.53 4.79 5.27 5.03 5.03 2.51
HBPA 0.98 - 0.45 4.12 4.99 4.32 4.76 4.53 - 2.27

 
For brevity, results are presented in Table III only for the 

wind blowing in the x direction. Four cases are compared, 
corresponding respectively to: (1) the uncontrolled structure; 
(2) the ideally linear VBPA; (3) the (geometrically nonlinear) 
VBPA; and (4) the HBPA. For each case, several response 
quantities are reported, including: (i) the maximum modulus 
of the top story displacement, rN,max; (ii) the maximum 
modulus of the BPA stroke, rmax; (iii) the maximum friction 
damping ratio encountered by the HBPA along the surface, 
μmax; (iv) the rms of the modulus of the top story displacement, 
rN,rms; (v) the rms of the modulus of the BPA stroke, rrms; and 
the mean value of the instantaneous power dissipated by the 
structure, Ws,mean. 

 
TABLE III 

BUILDING RESPONSES FOR WIND BLOWING ALONG X 

Case 
rN,max 
(cm) 

rmax 
(cm) 

μmax 
(-) 

rN,rms 
(cm) 

rrms 
(cm) 

Ws,mean 
(kW) 

Uncontrolled 79.4 0.0 - 27.3 0.0 31.1 

Linear VBPA 39.6 110 - 13.7 37.5 8.12 

VBPA 39.7 109 - 13.8 37.4 8.17 

HBPA 38.4 107 0.10 13.7 37.8 8.63 

 
Table III shows that: 

1) With respect to the uncontrolled structure, the ideally 
linear VBPA achieves a significant response reduction, 
with a 50% reduction in rN,max and in rN,rms, and with a 
74% reduction in Ws,mean. 

2) The VBPA, modelled accounting for geometrical 
nonlinearities, gives nearly identical results to the ideally 
linear VBPA. The absorber strokes are relatively small 
and the restrainer is far from being activated, which 
makes the first-order model accurate enough. 

3) The HBPA performance is also very similar to the VBPA 
performance. The greatest differences are in Ws,mean, 
which is 6% larger for the HBPA, and in rN,max, which is 
3% larger for the VBPA. The maximum friction 
coefficient met by the HBPA during motion is 0.10. 

It can be concluded that the three controlled cases are 
substantially equivalent. 

IX. CONCLUSION 

The following main conclusions can be drawn: 
1) The HBPA proves roughly equivalent to the VBPA, 

particularly when responding to a unidirectional 
excitation in the small displacement domain.  

2)  Both types suffer a performance loss if the stroke demand 
exceeds their stroke capacity, which usually occurs in 
rigid structures under large input intensities. This 
drawback is partially attenuated for the HBPA because of 
its larger dissipation capacity at large displacements. 
Despite such loss, in all considered cases both types still 
provide a significant control action.  
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