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Improved Predictive Models for the IRMA
Network Using Nonlinear Optimisation

Vishwesh Kulkarni, Nikhil Bellarykar

Abstract—Cellular complexity stems from the interactions
among thousands of different molecular species. Thanks to the
emerging fields of systems and synthetic biology, scientists are
beginning to unravel these regulatory, signaling, and metabolic
interactions and to understand their coordinated action. Reverse
engineering of biological networks has has several benefits but a
poor quality of data combined with the difficulty in reproducing
it limits the applicability of these methods. A few years back,
many of the commonly used predictive algorithms were tested
on a network constructed in the yeast Saccharomyces cerevisiae
(S. cerevisiae) to resolve this issue. The network was a synthetic
network of five genes regulating each other for the so-called in
vivo reverse-engineering and modeling assessment (IRMA). The
network was constructed in S. cereviase since it is a simple and well
characterized organism. The synthetic network included a variety
of regulatory interactions, thus capturing the behaviour of larger
eukaryotic gene networks on a smaller scale. We derive a new set of
algorithms by solving a nonlinear optimization problem and show
how these algorithms outperform other algorithms on these datasets.

Keywords—Synthetic gene network, network identification,
nonlinear modeling, optimization.

I. INTRODUCTION

IN principle, interactions among genes, when unknown,

can be identified from transcriptomic data using

reverse-engineering methods. Typically, the data consist of

measurements at steady state after multiple perturbations

(i.e., gene over-expression, knockdown, or drug treatment)

or at multiple time points after one perturbation (i.e., time

series data). Successful applications of these approaches

have recently been demonstrated in bacteria, yeast, and

mammalian systems [1]-[4]. The main difficulty encountered

by these reverse engineering methods is due to the poor

and often non-reproducible quality of the data and the

scarcity of such datasets. In [1], an interesting experiment

was performed and some of the most successful such

predictive algorithms were tested on a network constructed

in the yeast Saccharomyces cerevisiae (S. cerevisiae). The

network, shown in Fig. 1 and commented upon in [4],

is a synthetic network of five genes regulating each other

for the so-called in vivo reverse-engineering and modeling
assessment (IRMA). In this paper, we show how nonlinear

modeling can improve upon the results presented in [1].

II. PROBLEM FORMULATION

We first present an overview of the gene network

identification problem solved in [1]. The variables of

interest are protein concentrations, which are assumed to

be proportional to the mRNA abundances of five genes
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Fig. 1 (A) The correct IRMA network as given and (B)-(C) the NIR
results given [1]

([CBF1] = x1; [GAL4] = x2; [SWI5] = x3; [GAL80] = x4;

[ASH1] = x5) The simulated network dynamics are given by

dx1

dt
= α1 −d1x1 + v1

xh1
3 (t − τ)(

kh1
1 + xh1

3 (t − τ)
) 1(

1+
x

h2
5

k
h2
2

) +u1

dx2

dt
= α2 − (d2 −Δ(β1))x2 + v2

xh3
1

kh3
3 + xh3

1

+u2

dx3

dt
= α3 −d3x3 + v3

xh4
2

kh4
4 + xh4

2

1(
1+

x4
4

γ4

) +u3 (1)

dx4

dt
= α4 − (d4 −Δ(β2))x4 + v4

xh5
3

kh5
5 + xh5

3

+u4

dx5

dt
= α5 −d5x5 + v5

xh6
3

kh6
6 + xh6

3

+u5

The functions Δ(β ) are pulse functions with magnitude β
between 0 and 10 seconds, and magnitude 0 otherwise. The

functions Δ(β ) are used to simulate the effect of an initial

washing step (see bottom of page 2 of the supplementary

material). The signals ui are inputs that will be discussed

later. The other parameters are shown in Table I towards the

end of this manuscript and are for growth in a galactose

medium or glucose medium. The variables that change

between the two media are noted. For later use, this system

is represented in compact form as

ẋ = f (x)+u (2)

The goal is to determine the topology of this

interconnected system, that is, which variables appear on

the right hand side for each differential equation. The

experimental data consists of different types of perturbations

with measurements both at steady state and as a function of

time.

Fig. 3 of [1] shows time dependent data after switching

between growing media. “Switch on” data moves from

glucose to galactose, and “Switch off” moves from galactose

to glucose. To replicate the switch on data, we first simulate
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(1) to steady state with parameters for glucose, and record

the final states. We then perform a simulation using galactose

parameters, but with initial condition as the final state for the

glucose simulation. A similar simulation is done to switch

to glucose. The results are shown in Fig. 2, and are close to

that of Fig. 3 of [1].

Fig. 4 of [1] shows steady state measurements

after overexpression experiments in both growth media.

(Experimental data is on top, data simulated using the

dynamical equations above is below). In an overexpression

experiment, a factor is introduced which increases the

transcription rate of a particular gene. This is modeled in the

dynamical equations by the application of a non-zero ui for a

particular gene, with the remaining u j = 0, i �= j. We attempt

to replicate this data here. In Fig. 3 steady state expression

in both galactose and glucose is plotted for no perturbation,

along with perturbation for each gene. The input ui is selected

so that the results are close to that of Fig. 4 in [1], but the

magnitude of this input is not recorded.

If the system is operated over a restricted region, and

the function f is sufficiently smooth, then (2) can be well

approximated by a linear dynamical equation. Let x0 be the

equilibrium with u = 0, and let x′ = x− x0. Then a linear

approximation takes the form

dx′

dt
= Ax′+u (3)

where A∈R
n×n is a matrix with non-zero diagonal elements,

and a non-zero entry at element (i, j) when j ∈ Ni. This

model is the basis for a variety of recovery methods,

including NIR [5] and TSNI [2], which are tested in [1].

We will be interested here in the case when the state

velocity is estimable. In this case, data from both steady

state and dynamic experiments needs to be written a the

common framework. Suppose that there are N measurements

at distinct times and/or experiments with the index k indexing

the measurements. Then, modulo measurement noise, the

experimental data can be described by the relationship

Z −U = XAT (4)

where Z ∈ R
n×N is given by

Z =
[( dx

dt

)
1

· · · ( dx
dt

)T
N

]T

(where
( dx

dt

)
k = 0 in the case of steady state experiments),

U ∈ R
n×N is a matrix with sparse support, given by

U =
[
u1 u2 · · · uN

]T

where the location of the non-zero elements is known,

although the magnitude may be unknown, and X ∈ R
n×N

a matrix containing state measurements of the form

X =
[
x′1 x′2 · · · x′N

]T

The recovery of the network interconnectivity can be

achieved by solving for A, and identifying the elements that

are non-zero. From the form of (4) it is clear that each row

of A is involved in an independent equation. Let Zi↓ be the

ith column of Z, and similarly for U and AT . Then

Zi↓ −Ui↓ = X(AT )i↓

Algorithm 1 The NIR algorithm

input: measurements Ui↓, X , max elements k
for i = 1 to

(n
k
)

do
a. Π = set of k elements of {1,2, · · · ,n}
b. estimate: αi = (XΠ↓)†Ui↓
c. residual magnitude: ri = ‖Ui −XΠ↓αi‖2

end for
output: αi with minimum ri

By solving this equation for (AT )i↓, we can obtain an

estimate for the ith row of A. The following methods have

been proposed:

• The NIR algorithm [6] was proposed for steady state

data (Zi↓ = 0) and solves for Ai↓ by exhaustive search

of different combinations of non-zero elements of Ai↓.

Specifically, an upper limit on the number of non-zero

elements, denoted k, is selected, and Algorithm 1 is

implemented. Note that in many cases the magnitude

of Ui↓ is unknown. However, since only one element

is non-zero, the magnitude can be arbitrarily set to 1,

which simply scales the estimate by the true magnitude.

If more than one element were non-zero, this would not

be feasible.

• A more advanced version of the NIR algorithm has been

proposed in [7], which will be called the �1 method. In

this case, an �1 regularization term is utilized instead of

exhaustive search, and they also add linear constraints

on the elements of A denoted by inclusion in a set

S. Specifically, they recursively solve the optimization

problem

minA t ∑n
i, j=1 wi j|ai j|+(1− t)ε

subject to ‖XAT +U‖1 ≤ ε, A ∈ S

where ai j is the i, jth element of A, ‖M‖1 is the absolute

sum of the matrix M, wi j is a weight chosen using the

prior estimate of A

wi j =
δ

δ + |ai j|
and t and δ are user selected weights. In addition, they

suggest two methods for ensuring the stability of A,

either adding constraints using the Gershorin bound, or

by adding constraints based on a Lyapunov inequality.

Note that while the objective function includes all

elements of A, it is really the stability constraints that

require this problem to be solved all at once, rather than

a row at a time as with the NIR algorithm. Just as with

the NIR algorithm, if U is diagonal, then the magnitude

can be arbitrarily set to 1, which simply scales the rows

of A accordingly.

• The TSNI algorithm [2] is the transient counterpart to

the NIR algorithm. As originally stated in [2], the linear

model is converted to a sampled data system, so the

system of equations to be solve is

Xk+1 = XkAT
d +UBT

d

where Ad = eATs and Bd =
∫ Ts

0 eAtdt. They also simply

use a pseduo inverse to solve for Bd and Ad , without a

sparsification step.

Note that all of the methods above implicitly assume a

linear model. The the approach detailed in the next section,
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Fig. 2 Transient expression data – (a) after switch between glucose and galactose; (b) after switch between galactose and glucose
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Fig. 3 Nominal steady state expression data, along with steady state data after overexpression for each gene (ptb stands for perturbation) – (a) galactose
media; (b) glucose media

we will try to accommodate is the fact that the true model

is nonlinear.

III. METHODOLOGY AND ASSUMPTIONS

The motivation for our method is based on the following

assumptions

A1 The response of each gene in the network is regulated

by its own expression level and that of a small number

of other genes. For gene i, the set of regulating genes

is Ni.

A2 The gene network data is generated by a set of ordinary

differential equations where the state velocity function

has a constant term, a linear self-regulation term, and a

nonlinear term that is a sum of univariate functions.

ẋi = αi −dixi + ∑
j∈Ni

fi j(x j)+ui

A3 Each nonlinear term fi j can be well approximated by a

piecewise-linear function

xj

x̄j,0 x̄j,1 x̄j,2 x̄j,3

Fig. 4 Example distribution of 50 data points for one node after 10
experiments
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Fig. 5 Examples of our saturation functions

A4 The system is well damped, so that the self-regulation

term dominates the dynamics

A5 The experimental data is steady state expression levels

with a perturbation input ui that is non-zero for only

one i.
Note that the yeast system described in the first section

satisfies these assumptions.

Because of assumptions A2 and A3, we will utilize a small

set of piecewise linear basis functions to represent each fi j.

Specifically, define si, j to be the set of saturation functions

si, j(x) =

⎧⎪⎨
⎪⎩

0 x ≥ x̄i, j−1

x− x̄i, j−1 x̄i, j−1 ≤ x ≤ x̄i, j

x̄i, j − x̄i, j−1 x ≤ x̄i, j

The points of division, x̄i, j, are chosen to equalize the

saturation based on the observed distribution of the observed

data, xi. For example, suppose that xi(k) has the distribution

shown in Fig. 4, where each stem represents the location of

one data point, and we choose p = 3. The red lines indicate

division points such that one third of the data lies in each

region. Based on these divisions, the resulting saturation

functions are shown in Fig. 5.

Let c =
[
α1 · · · αn

]′
and d =

[
d1 · · · dn

]′
. Based on

the assumption set A, the following set of equations will

approximate the gene network dynamics

dx′

dt
= c+diag(d)x′+Aexe +u (5)

where Ae ∈ R
n×np and

xe =
[
s1,1(x′1) · · · s1,p(x′1) s2,1(x′2) · · · sn,p(x′n)

]T
.
(6)

Grouping the observed data as in the previous section, the

system of equations then becomes

Z −U = XeAT
e +1c′+Xdiag(d)

where 1 is a vector of 1s, and Xe ∈ R
(np)×N a matrix

containing state measurements of the form

Xe =
[
xe,1 xe,2 · · · xe,N

]T
.

Our recovery algorithm is based on repeated solution of

an optimization problem. To state the optimization problem,

we make the following definitions

• Since each state x is associated with multiple elements

of xe, we will want to define a regularization term that

will penalize the elements as a group. Define Ωi to be

the indices of xe that are a mapping of the variable xi.

For example, for xe defined in (6), Ω1 = {1,2, · · · , p},

Ω2 = {p+1, p+2, · · · ,2p}, etc.

• Define (AT
e )

i↓
Ω j

to be the elements of (AT
e )

i↓ with indices

in Ω j.

• As discussed above, the magnitude of U is unknown,

but the location of non-zero elements is known. Define

Ui = {u|u satisfies appropriate sparsity pattern for Ui↓}
Our recovery algorithm can then be written as follows. For

i = 1, · · · ,n, recursively solve

min(AT
e )

i↓,Ui↓,ci,di
t ∑n

j=1 wk‖(AT
e )

i↓
Ω j
‖2 +(1− t)ε

subject to ‖Xe(AT
e )

i↓+1ci +Xi↓di +Ui↓‖2 ≤ ε,
Ui↓ ∈ Ui (AT

e )
i↓
Ωi

= 0 di =−1

where the weight

wk =
δ

δ +‖(ĀT
e )

i↓
Ωk
‖2

is calculated from the priori estimate of (AT
e )

i↓
Ωk

, with the

normalization

(ĀT
e )

i↓ =
(AT

e )
i↓

‖(AT
e )

i↓‖2
.

Note that we have assumed that the linear self regularization

term is dominant, so that no nonlinear basis elements

associated with xi are needed, and thus we can take

(AT
e )

i↓
Ωi

= 0. Also, since we are solving for Ui↓ we normalize

the variables by setting di = −1, which assumes a stable

self-regularization term.

IV. RESULTS

In this section we compare the results on steady state data

for the NIR, �1, and our approach. In [1], the NIR approach

was also tested, with the results shown in Fig. 5 of that

paper. As was done in Cantone, we search all combinations

of 2 input genes (including self loops). Since the best fit

pair always included a self loop, this method essentially was

limited to finding one other input gene.

One irregularity is what [1] considered to be the correct

network. Their correct network is reproduced in our Fig. 1

(a). The red question mark has been added to denote the

connections that do not exist the system of equations (1). It

could be that this is why these connections are dotted, but

this is not discussed in the figure caption.

Unfortunately, our testing of the NIR method was not able

to replicate the results of [1]. The results from using the NIR

algorithm in the [1]. paper are repeated in our Fig. 1, while

the results of using the NIR algorithm with the data generated

ourselves (and plotted in our Fig. 3) is shown in Fig. 6.

While the Galactose media results are somewhat similar, we

show an inhibitory input from ASH1 to SWI5, while they

show an inhibitory input from GAL80 to SWI5. The results

for Glucose media are quite different, with our results much

closer to the true network. Essentially only the inhibitory

input from ASH1 to CBF1 is missing.

We also implemented the �1 regularization method.

Unfortunately, due to numerical difficulties, the algorithm
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Fig. 6 Recovery Results: NIR method using data from Fig. 3
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Fig. 7 Recovery Results: �1 method using data from Fig. 3

TABLE I
PARAMETERS FOR SYNTHETIC YEAST NETWORK OF [1]

Parameter Value Parameter Value
α1 0 v1 0.04

α2 1.49×10−4 v2 8.82×10−4

α3 3.0×10−3 v3 0.0201 (Gal.) .0022 (Gluc.)

α4 7.4×10−4 v4 0.0147

α5 6.1×10−5 v5 0.0182
k1 1 d1 0.0222
k2 0.0356 d2 0.0478
k3 0.0372 d3 0.4217
k4 .01 (Gal.) 0.0938 (Gluc.) d4 0.010
k5 1.814 d5 0.05
k6 1.814

h1,h2,h3,h5,h6 1 h4 4
β1 .2014 γ 0.6 (Gal.) 0.2 (Gluc.)
β2 .1676 τ 100
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Fig. 8 Recovery Results: Our method using data from Fig. 3

had to be modified so that the errors were measured in

Frobenius norm (i.e. some of squared elements,) rather

than the sum of absolute values. Specifically, we used the

constraint

‖XAT +U‖F ≤ ε.

We used δ = .001 and t = .1. The results are shown in

Fig. 7. Since the estimated A was stable, no additional

iterations using stability constraints were taken. In this plot,

the connectivity is determined via the size of the weight wi j
and the sign of ai j. For each i (each row of A) we find

wmin = min
j �=i

wi j

and select gene j as an input to gene i if wi j < 10wmin. The

gene is activating if Ai j has positive sign, and inhibitory if

Ai j has negative sign.

Next we implemented our method with p = 1 and p = 4

(the number of saturation functions). The same value for t

and δ was selected, and the same method for selecting input

genes, except the sign is chosen based on the largest element

of (AT
e )

i↓
Ω j

. The results are shown in Fig. 8. Note that while

the p = 1 results (which assumed linear dynamics) is similar

to the �1 results, with p= 3 there are a total of 1 false positive

and 2 false negatives, which is an improvement over both

NIR and the linear �1 method, especially for the Galactose

media.

V. DISCUSSION

More accurate models, including, for example, a detailed

description of the galactose system, or those based on

different formalisms, can be developed, depending on the

biological question to be investigated, and assessed against

the same ground truth provided by the IRMA network. In [8],

the Huber group LASSO and the group LASSO are applied

to the IRMA data in three cases: (1) switch on datasets,

(2) switch off datasets and (3) all datasets, i.e., combining
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switch on and switch off datasets. In the stability selection

procedure, the number of bootstrap samples is 30 for all

cases and the moving block length is 14 for the second

case and 8 for the other cases. To quantify the prediction

accuracy, two measures are used: the area under the receiver
operating characteristics (AUROCs) and precision-recall
curves (PRCs). Group LASSO does not predict well for

the switch on datasets but the predictive performances of

these methods are otherwise better than random guesses.

The Huber group LASSO outperforms the group LASSO

in both AUROCs and AUPRs. All methods for the switch

off datasets perform better than for the switch on datasets.

The group LASSO for all datasets has better performance

than for the switch on datasets but is not as good as for the

switch off datasets. The Huber group LASSO for all datasets

has the best performance among all cases. This indicates

that combing multiple datasets may lead to either the best

result or a robust result which is better than the worst case.

The network topology with false positive rate (FPR) 0.08

of the Huber group LASSO for all datasets is shown in [8]

and the corresponding true positive rate (TPR) is 0.75 with

precision 0.86, in which the red edges represent true positives

while black edges are false positives. The results show the

effectiveness of our method for the IRMA data. Note that

all methods above implicitly assume a linear model. In the

approach detailed in the next section, we explicitly account

for the fact that the true model has a very characteristic

nonlinearity.

VI. CONCLUSION

In [1], a celebrated framework was established that

showed how a semi-quantitative prediction of cell behavior

is possible, even with a simplified phenomenological

differential equation model. We have improved upon its

predictive algorithm by using piecewise affine nonlinear

functions as the basis functions. One of the difficulties in

obtaining a predictive and quantitative model in biology is

the choice of the unknown kinetic parameters, especially for

even a mildly complex networks such as the IRMA network

(33 parameters) of [1]. A different set of parameters may

yield similar results. Ideally, the kinetic parameters should be

identified by appropriate experiments, and this is not always

possible, particularly if one wants to obtain quantitative

values. Here, we were able to measure, semi-quantitatively,

the strength of the promoters, and we estimated 16 out

of 33 parameters from these data. Remarkably, despite all

of the simplifications made, the model showed predictive

power, albeit semi-quantitative. All in all, whereas the

algorithms of [1] predicted 9 interconnections incorrectly in

the 30-node IRMA network, our algorithm predicts only 3

interconnections incorrectly.
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