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Continuous Plug Flow and Discrete Particle Phase
Coupling Using Triangular Parcels

Anders Schou Simonsen, Thomas Condra, Kim Sørensen

Abstract—Various processes are modelled using a discrete phase,
where particles are seeded from a source. Such particles can represent
liquid water droplets, which are affecting the continuous phase by
exchanging thermal energy, momentum, species etc. Discrete phases
are typically modelled using parcel, which represents a collection of
particles, which share properties such as temperature, velocity etc.
When coupling the phases, the exchange rates are integrated over
the cell, in which the parcel is located. This can cause spikes and
fluctuating exchange rates.

This paper presents an alternative method of coupling a discrete
and a continuous plug flow phase. This is done using triangular
parcels, which span between nodes following the dynamics of single
droplets. Thus, the triangular parcels are propagated using the corner
nodes. At each time step, the exchange rates are spatially integrated
over the surface of the triangular parcels, which yields a smooth
continuous exchange rate to the continuous phase.

The results shows that the method is more stable, converges
slightly faster and yields smooth exchange rates compared with
the steam tube approach. However, the computational requirements
are about five times greater, so the applicability of the alternative
method should be limited to processes, where the exchange rates are
important. The overall balances of the exchanged properties did not
change significantly using the new approach.

Keywords—CFD, coupling, discrete phase, parcel.

I. INTRODUCTION

VARIOUS processes can be simplified by assuming plug

flow, when the geometry is fairly simple. Such can be

flows in tubes, where the changes in the radial direction can be

assumed uniform, which is a common approximation within

the field of chemistry. Although the approximation has some

deficiencies, it will captures the overall tendencies in [1]. The

plug flow approximation can also be used in other processes,

where the radial changes can be assumed uniform without

loosing much accuracy, which is the case for sprayer based

scrubbers. Such serve to remove chemical compounds from

an exhaust gas by spraying water counter stream of the gas

phase [2]. Modelling such a phenomena requires a discrete

phase, where droplet particles are injected into the continuous

phase.

Modelled processing involving both continuous and discrete

phases are typically coupled, which ensures transfer of energy,

mass, momentum etc. The continuous phase is modelled

by discretizing the domain into a number of cells, which
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hold information about the continuous flow field such as

temperature, velocity, pressure etc. In case of plug flow, only

the axial direction is discretized, where each cell has uniform

properties in the radial direction.

The discrete phase is modelled by injecting a number

of droplets into the flow field. A typical injection

point with a Rosin-Rammler distribution [3] will inject

107 droplets/ (kg/s), which would be computationally

inefficient, if all were to be tracked. Instead, the droplets

are modelled using parcels, where each of these represents

a collection of droplets, which are sharing properties [4]. The

parcels move according to the local flow field, where the

trajectory will be similar to that of a single droplet within the

parcel. When coupling the discrete phase with the continuous

phase, the parcels exchange properties with the cells, in which

they are located over time. Thus, the exchange rates between

the phases are computed using the surface area flow rate for

each parcel, as most rates are linearly dependent of this such

as heat and mass transfer. The surface area flow rate is simply

the surface area for a single droplet multiplied by the number

of droplets within the parcel itself.

When coupling the two phases, the exchange rates are

integrated in time, and the transferred properties are then

adjusted in the parcels and cells in order to ensure conservation

of mass and energy. However, a large number of parcels

is required for accurate flow modelling, which can be

computationally expensive, as each parcel does only interact

with the current cell, in which it is located. Several methods

exists, where the influence area for each parcel is adjusted in

order to model the actual phenomena.

Stochastic particle tracking allows the parcels to be affected

by the turbulent fluctuations within the continuous phase [5].

By solving the trajectories for each parcel multiple times, a

representative number of paths will be available, where the

exchange rates are distributed over a large number of cells,

which coincide with the trajectories. Another method is to

use cloud tracking, where each parcel is initialized with a

finite diameter of influence [5]. By integrating the turbulent

continuous variables over time, the influence diameter is

allowed to grow. As such, a mean trajectory is obtained along

with a diameter of influence over which the exchange rates can

be calculated and integrated in order to couple the two phases.

Diffusive smoothing of the exchange rates is a third approach,

where a single trajectory is solved for each parcel, and the

resulting exchange rates are distributed over the neighbouring

cells by diffusive smoothing [6]. All the above mentioned

models are methods to reduce the parcel count and some to
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include the effects of turbulence.

This paper describes a method for coupling a discrete and

a continuous phase, where the parcels are represented by

triangular surfaces rather than stream-tubes. The surfaces are

propagated by allowing the nodes to move in the flow field.

This method allows for surface integration of the exchange

rates, where all cells intersecting the surface will get a

contribution of the overall exchange rate. This help to smooth

out the exchange rates, which will mimic the rates experienced

as the number of parcels tends towards infinity.

II. DISCRETE PHASE

When modelling a discrete phase, a number of parcels are

typically injected from a point source. Each parcel represents

a finite number of particles, which share properties such

as position, velocity, temperature etc. The spatial location

is governed by particle dynamics, where the surrounding

properties of the continuous phase are interpolated and used

to calculate the accelerations of the parcels. The equations

governing particle dynamics are shown in (1) assuming

spherical particles [7].

�vRel = [ẋ, ẏ, ż − ṽ]

Re =
d · |�vRel| ρ̃

μ̃

CD =
24

Re
· (1 + 0.15 ·Re0.681

)
+

0.407

1 + 8710/Re

�F =
1

2
· ρ̃ · |�vRel|2 ·

(
r2 · π) · CD + m · �g

ẍ = Fx/m

ÿ = Fy/m

z̈ = Fz/m

(1)

The spatial location of each parcel is denoted with x, y
and z. The variables with a tilde are the continuous flow

variables, which are interpolated at the positions of the parcels.

Note that d, r and m are representing the diameter, radius

and mass respectively for a single particle within the parcel.

The exchanged properties between the continuous and discrete

phases can be both mass, energy etc., where this paper will

focus on energy. The governing equations with respect to

thermal energy are shown in (2) [8].

Nu = 2 +
(
0.4 ·

√
Re + 0.06 ·Re2/3

)
· P̃ r

0.4

h =
Nu · k̃

d

Q = h · (4 · π · r2) · (T − T̃
) (2)

A. Injection Point

A typical injection point is a nozzle, which distributes the

parcels over a large area with various droplet sizes according

to some distribution. This paper will only deal with a single

droplet size for simplicity, and a discussion of this will follow

at the end of the article. A hollow cone sprayer can be seen

in Fig. 1, where the injection points are distribution on the

surface of a spherical segment and each vector is a normal

on the spherical surface. Only half of the sprayer surface has

been shown, as symmetry is utilized in this paper.

θ1

θ2

Fig. 1 A hollow cone sprayer represented by a spherical segment. The
surface is triangulated, where each incenter has an outward pointing normal
vector. The shown sprayer has θ1 = 30◦ and θ2 = 60◦, which results in 75

nodes, nN, and 112 faces, nF

The sprayer surface is triangulated and the normal vectors

are located at the incenter of each triangle, which is defined

as the intersection of the angle bisectors. The parcels will be

injected in the direction of the normal vectors, and each parcel

is initialized with some associated mass flow. This paper uses

the area fraction of each triangle to distribute the total mass

flow to each parcel. The droplet number count in each parcel

can be calculated by dividing with the mass of a single droplet.

This has been shown in (3) for the ith parcel, where the thermal

energy rate within each parcel is denoted Ḣi.

ṁi =
Ai∑nF

i=1 Ai
· ṁTotal

2

mDrop = ρ · 4
3 · π · r3

Ṅi =
ṁi

mDrop

ȦSurf,i = Ṅi ·
(
4 · π · r2)

Ḣi = ṁi · cp,L · Ti

Q̇i = h · ȦSurf,i ·
(
Ti − T̃i

)
= Q · Ṅi

(3)

ṁTotal is the total mass flow of the sprayer, which is divided

by two in order to reflect symmetry. Notice that ȦSurf,i is the

surface area rate or the parcel, which can be seen as the total

surface area flowing through a cross section of each parcel

trajectory or steam tube. Thus, when calculating the thermal

energy rate, Qi, this will use ȦSurf,i, which convert the units

from W to W/s.
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B. Phase Coupling

In order to accurately model a phenomena combining both

a discrete and a continuous phase, these must be coupled. As

previously stated, this paper will only deal with the transfer

of thermal energy. Assuming plug flow in the continuous

phase, where the properties only changes in a single spatial

dimension, namely the axial z-direction, the exchange rate

can be expressed according to (4), where H is the Heaviside
function. Both a continuous and discrete version of the thermal

energy transfer has been shown in (4), where q̃j is the energy

rate per unit volume for the jth cell. q̃j,Con and q̃j,Dis are

the continuous and discrete versions of the same equation

respectively. This will later be implemented as a source

term, when the continuous phase thermal energy is updated

iteratively, thus changing the temperature of the gas phase. nt

is the number of discrete time steps. (4) has been illustrated

in Fig. 2.

ΔṼj = (z̃j,1 − z̃j,0) · ÃCross

Φj(z) = H (z − z̃j,0) · H (z̃j,1 − z)

q̃j,Con =
1

ΔṼj

nF∑
i=1

∫ tSim

0

Q̇i(t) · Φj(zi(t)) dt

q̃j,Dis =
1

ΔṼj

nF∑
i=1

nt∑
it=1

Q̇i,it · Φj(zi,it) · Δt

(4)

The auxiliary function, Φj(z), is unity when z̃j,0 ≤ z ≤ z̃j,1
and zero otherwise, where the limits indicate the lower and

upper z-coordinates of the jth cell. ÃCross is the cross sectional

area of the continuous phase.

The energy rates from two parcels to the continuous phase

cells have been shown in the graph to the right in Fig. 2. It

can be seen that the energy rates are largest at the top parts of

the parcel trajectories, where they are spending the most time

compared with the other cells. Also, the parcels are heated over

time, and thus decreasing the driving temperature differences

and implicitly the thermal energy rates.

When injecting the parcels using the described method,

various problems exists. One is that the sprayer surface is not

fully represented. In between the parcels, a relatively large

area is not represented, as the parcels are acting like stream

tubes, in which the droplets are moving. Also, the edges of

the sprayer surface is not represented in any way, which will

increase as the parcel count is reduced.

Another inconsistency is the spikes in the energy rates to

the continuous phase. As seen in Fig. 2, q̃ fluctuates at every

z-direction extrema of the trajectories. This causes spikes in

the energy rate, where a continuous and smooth exchange rate

is expected. This can somewhat be corrected by smoothing

out the exchange rates, which can be done in a manner, which

conserves energy. However, the accuracy is lost, as it might

not represent the actual phenomena.

This paper will deal with the above mentioned shortcomings

by representing the parcels using the triangulation of the

sprayer shown in Fig. 1, which allows for surface integrations

of the exchange rates. This will in turn yield a smooth and

MW
m3

−1.5 −1 −0.5 0

x [m]

z
[m

]

0 1 2 3
2

3

4

5

6

7

z̃j,1

z̃j,0

q

Fig. 2 The coupling between the phases shown illustratively. Each cell
receives thermal energy according to the location of the parcels in the

z-direction, where only two parcels have been shown. The jth cell has been
highlighted, which is enclosed by z̃j,0 and z̃j,1, where both parcels are

contributing to the energy rate. q̃ is negative as it is seen from the
continuous phase, which is cooled by the droplets

continuous energy rate to the cells in the continuous phase,

while fully representing the sprayer surface area.

C. Face-Parcels and Tri-Parcels

The proposed method involved representing the parcels

as surfaces instead of steam tubes. The surfaces will be

constructed using the nodes of the triangulation, which

maintain the connectivity throughout the simulation. This

has been shown in Fig. 3, where face-parcels refers to the

previously described method and tri-parcels refers to the

proposed method. The dashed lines represent the trajectories

of droplets being injected from the black vectors. The

face-parcels are injected at the incenter of the triangles,

whereas the tri-parcels are propagated according to the

trajectories of the corner points, which obey the same

dynamics as the face-parcels shown in (1). As such, the

complete surface of the sprayer is represented by the

tri-parcels. The propagated triangles will store properties such

as temperature, mass etc. Triangular surfaces are chosen as

these will always remain planer, which is not the case for

quadrilaterals and more complex shapes.

Face-parcel Tri-parcel

Fig. 3 The face-parcels are injected at the incenter of the triangles, and the
tri-parcels are spatially propagated using the nodes of the triangles, which

move according to (1)
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� : Tri-parcel

� : Trapezoid

: Cell

◦ : Node T

T ◦

T ◦

T ◦

T�
T�T�

T�

T

T

T

T

Fig. 4 The notation used to describe the method of evaluating the surface
integrals on each tri-parcel. The notations will be applied as superscripts,

where the temperature, T , has been given as an example above. The
horizontal lines represents the cells in the continuous phase

The integration method shown in (4) and Fig. 2 cannot be

used to integrate the exchange rates between the discrete and

continuous phases for the tri-parcels, as the properties to be

exchanged are represented on the triangular surfaces. Thus,

surface integrals are required in order to compute the exchange

rates.

In order to describe the method of evaluating the surface

integrals, the nomenclature shown in Fig. 4 will be used. The

superscripts are shown in the legend in the upper left corner

of the figure, where these will be used to denote where the

properties are located. Tri-parcel properties are stored at the

surfaces, and node properties at the corners of each tri-parcel.

Trapezoid properties are interpolated in between the node

properties, and cell properties are stored in the continuous gas

phase.

III. SURFACE INTEGRALS

When coupling the tri-parcels with the continuous phase,

surface integrals must be evaluated in order to calculate the

exchange rates. As such, (4) must be formulated in a manner,

which is applicable to tri-parcels. This has been shown in (5)

and illustratively in (5).

q̃j=
1

ΔṼj

nF∑
i=1

∫ tSim

0

∫ z̃j,1

z̃j,0

Specific
exchange rate︷ ︸︸ ︷
∂Q̇�

i (z, t)

∂Ai(z)�

∣∣∣∣∣
z=zi(t)

· Φj(zi(t)) · dA�
i (z)

dz
dz dt

(5)

The integral in (5) for the jth cell is evaluated in between the

enclosing z-coordinates, z̃j,0 and z̃j,1. Conservation of energy

has been obeyed, so the integral of q̃(z) from 0 to 2.5 m in

Fig. 5 are equal for the face- and tri-parcel.

Fig. 5 also shows the apparent spikes in the continuous

phase exchange rates, if face-parcels are used. Notice that

the figure is showing the exchange rates in between two time

steps, so they are representing the time integrated values of (5)

from tn to tn+1. If the exchange rates from the face-parcels

are simply put into their corresponding continuous cell, three

distinctive spikes will form. However, using tri-parcels instead

yields a smooth and continuous exchange rate to the cells.

xLocal [m]

z
[m

]

0

0.5

1.0

1.5

2.0

2.5

MW
m3q MW

m3q

Face-parcel Tri-parcel

Fig. 5 A tri-parcel at a given time step shown the left graph. The middle
graph is the exchange rates, if only the nodes were used, which is an

analogue to the face-parcels. The right most graph is showing the exchange
rates, when surface integrals are applied

It should be noted that the face-parcels follows trajectories,

which are injected from the incenter and not the nodes, so

the figure is simply showing face-parcels to be located at the

tri-parcel nodes for illustration purposes. The dashed line in

the right most graph is the exchange rate as nCells → ∞.

In order to perform the surface integrals, several steps are

required. These are executed at every time step and have been

listed below:

A) Calculate weighted properties at the tri-parcel nodes

B) Split each tri-parcel at the mid node and interpolate node

properties

C) Subdivide each sub triangle at the intersections with the

cells

D) Integrate over subdivided surfaces analytically and sum

these to their corresponding cell

The different steps listed above will be explained in details

in the following subsections.

A. Weighted Node Properties

The surface integrals can be made assuming a constant

average exchange rate for each tri-parcel. This would imply

that the term labelled Specific exchange rate in (5) is constant

for each tri-parcel. However, this would lead to inaccurate

representation of the actual phenomena, as the location of

the tri-parcels nodes can be in different locations, where the

driving temperature differences might be different. This would

most likely imply different specific exchange rates at each

node, which would cause the term labelled Specific exchange
rate to vary as a function of z.

Instead of assuming a constant specific exchange rate, the

properties required to calculate the exchange rates are allowed

to change linearly on the surface of the tri-parcel. For heat

transfer these are the droplet surface areas, the heat transfer

coefficient and the driving temperature difference according to

Newton’s law of cooling. The linearly varying properties on
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the surface of each tri-parcel are found by calculating averaged

properties at the nodes. This is done by area averaging the

properties of all tri-parcels connected to each specific node.

In order to conserve energy and mass, the averaging process

sums one third of the neighbouring properties, which has been

shown in (6) for all properties related to heat transfer. The area

weighting has been shown illustratively in Fig. 6 as well.

Ḣ◦
i =

nNB∑
j=1

Ḣ�
j

3

ṁ◦
i =

nNB∑
j=1

ṁ�
j

3

Ṅ◦
i =

nNB∑
j=1

Ṅ�
j

3

Ȧ◦
Surf,i = Ṅ◦

i · (4 · π · r2)
T ◦
i =

Ḣ◦
i

ṁ◦
i · cp,L

ΔT ◦
i = T̃ ◦

i − T ◦
i

(6)

nNB is the number of neighbouring tri-parcels for the ith

node, where j loops over the correct indices corresponding to

the neighbours. Keep in mind that the superscripts corresponds

to different locations according to Fig. 4. Notice that only

the conserving properties are summed. The heat transfer

coefficient is independent of the conserving properties, and is

calculated directly at the nodes, where the velocities are stored

as well. As such, (1) applies for the heat transfer coefficient.

As multiple variables are to be calculated using the same

weighting, a sparse matrix can be assembled, which acts as

shown in (7). φ is one of the conserving properties, Ḣ , ṁ or

Ṅ .

[K] · [φ�] = [φ◦]
nF∑
i=1

φ�
i =

nN∑
i=1

φ◦
i

(7)

29.1 %

24.4 %

18.4 %

10.5 %

17.7 %

Fig. 6 The area weighted properties of the nodes are calculated using the
neighbouring tri-parcels. The centroids are shown as small triangles, the

midpoints as white circles and the nodes as solid circles. The highlighted
area for each tri-parcel is equal to one third of the respective areas. The

right image is showing the relative influence by the neighbouring tri-parcels
on the node itself in the given example, where nNB = 5

[K] has size (nN × nF), and [φ�] and [φ◦] have sizes

(nF × 1) and (nN × 1) respectively. The conserving property

of the weighting has been shown in the bottom of (7).

B. Midpoint Split

The second step is to split each triangle into two at the

middle node in the z-direction. This has been shown in Fig.

7, where the node numbered 2 is chosen for splitting, as it is

the middle node. The intersection point on the opposite edge

of node 2 will be denoted 2′, and new properties are linearly

interpolate here using the properties of node 1 and 3 according

to (8).

φ◦
2′ = (φ◦

3 − φ◦
1) ·

z◦2′ − z◦1
z◦3 − z◦1

(8)

1

2

3

2′

1

2

3

2′

Step 2Step 1

MW
m3q

Step 3

z
[m

]

xLocal [m]

z
[m

]

Fig. 7 The three main steps shown visually. Step 1 splits the tri-parcel at the
middle node in the z-direction. Step 2 subdivides the new sub triangles
according to the intersections with the continuous cells. Step 3 sums the

energy rate from each sub trapezoid to the corresponding cells in the
continuous phase

The following steps requires the horizontal length of the new

segment, which is found by (9). x◦
2′ and y◦2′ are calculated with

(8) by substituting φ with either x or y.

ΔL2−2′ =

√
(x◦

2 − x◦
2′)

2
+ (y◦2 − y◦2′)

2
(9)

C. Subdivision

All triangles are now split in two at the midpoint lines,

which creates twice the number of triangles. However, each of

the new triangles will have an edge aligned with the x-y-plane

between their local node 2 and 2′. These new triangles can

now be subdivided at the intersections with the cell of the

continuous phase, which has been shown in Fig. 7 as the

white squares. The properties at all intersections are linearly

interpolated using the node values on the edges, which are

node 1, 2 and 2′ in the example. The new subdivided surfaces

consists of trapezoids and a a single triangle at node 1. A

trapezoid has been shown in Fig. 8, where the superscript � is

used. Triangles are represented as having either L0 or L1 equal

to zero, which generalizes the method, as the same equations

can be used for both shapes.
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φ�
0,1

φ�
1,0

φ�
1,1

φ�
0,0

z�

L0

L1

Δ
z

Fig. 8 A subdivided trapezoidal with interpolated values at its local corners,
φ�. L0 and L1 are the lengths of the edges and Δz is the height of the

trapezoid. z� is the local coordinate system in the z-direction

D. Surface Integration

Each trapezoid has interpolated value for both ΔT and

h at the corners. The geometry is also fully defined, so a

surface integral can be evaluated in order to calculate the area

weighted average of the product ΔT ·h. Bilinear interpolation

is used to find the values in between the four corners, which

is shown in (10) [9].

ΔL(z) = L0 + (L1 − L0) · z
�

Δz

φ(x, z�) =
[ΔL(z) − x, x]

ΔL(z) · Δz
·
[
φ�
0,0 φ�

0,1

φ�
1,0 φ�

1,1

]
·
[
Δz − z�

z�

]
(10)

Notice that bilinear interpolation can be performed using

the local coordinate system of each trapezoid, as the surface

is planar. The average value of the product between ΔT ·
h can be evaluated by surface integrating over the trapezoid

and dividing by the trapezoid area, A�
i . Once again, this is

independent of the coordinate system as long as the horizontal

edges are aligned with the x-y-plane. This has been shown in

(11).

A�
i =

∫ Δz

0

∫ ΔL(z)

0

1 dx dz

ΔT · h =

∫ Δz

0

∫ ΔL(z)

0

ΔT (x, z) · h(x, z) dx dz

A�
i

ΔT · h =
1

36 · (L0 + L1)
·⎛

⎜⎜⎜⎝
⎡
⎢⎢⎣
T�
0,0

T�
0,1

T�
1,0

T�
1,1

⎤
⎥⎥⎦
T

·

⎛
⎜⎜⎝
⎡
⎢⎢⎣

6 2 3 1
2 2 1 1
3 1 6 2
1 1 2 2

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣
h�
0,0

h�
0,1

h�
1,0

h�
1,1

⎤
⎥⎥⎦
⎞
⎟⎟⎠ · L0 +

⎡
⎢⎢⎣
T�
0,1

T�
0,0

T�
1,1

T�
1,0

⎤
⎥⎥⎦
T

·

⎛
⎜⎜⎝
⎡
⎢⎢⎣

6 2 3 1
2 2 1 1
3 1 6 2
1 1 2 2

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣
h�
0,1

h�
0,0

h�
1,1

h�
1,0

⎤
⎥⎥⎦
⎞
⎟⎟⎠ · L1

⎞
⎟⎟⎠

(11)

The average product, ΔT · h, can now be multiplied with

the total droplet surface area going through the trapezoid,

Ȧ�
Surf,i, which will imply the energy rate between the

continuous and discrete phase. The exchange area for the ith

trapezoid located in the jth cells, q�
j,i, can be found by (12).

Ȧ�
Surf,i = Ȧ�

Surf,i ·
A�

i

A�
i

q�
j,i =

1

ΔṼj

· ΔT · h · Ȧ�
Surf,i · Δt

(12)

As the thermal energy rates for all trapezoids have been

calculated, these can be summed for each cell to calculate the

total exchange rate to continuous phase. This has been shown

in (13).

q̃j =

nF∑
i=1

q�
j,i (13)

When the specific energy rates to all cells has been found,

the temperature can be calculated using (14) and (15), which

are the continuous and discrete versions of the same equations

respectively.

˜̇H j = ˜̇HInlet + ΔṼ ·
j∑

i=1

q̃i

T̃j =
˜̇H j

cp,G · ˜̇m
(14)

˜̇H(z) = ˜̇HInlet + ÃCross ·
∫ z

0

q̃(z) dz

T̃ (z) =
˜̇H(z)

cp,G · ˜̇m (15)

IV. RESULTS

In order to evaluating the performance of the proposed

method, a test case is used to compare the two methods. This

case will consist of a plug flow model, where droplets are

seeded from a hollow cone sprayer. The droplets will move

according to the local flow field, where density, velocity and

viscosity is taken into account. The droplets will be seeded

with an initial temperature, which causes them to transfer

energy to and from the continuous gas phase. This will in turn

cause the temperature of the continuous phase to change, thus

affecting the density, velocity, viscosity, conductivity etc. A

steady state solution can be obtained by an iterative numerical

method, which has been shown in Fig. 9.

The implementation is done in MATLAB, where the code

has been streamlined to be as efficient as possible for a fair

comparison of the computational requirements.

A. Continuous Phase

The geometry will be a simple tube with an inlet at the bottom

and an outlet at the top. The domain is divided into a number

of cells, nCells, which are spaced equally along the z-direction.

The continuous phase will be represented by these cells, where
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Converged?

Break

Seed droplets and

calculate trajectories

Calculate energy rates

to continuous phase,

Integrate energy flow

in continuous phase,

Update temperature in

continuous phase,

Update temperature

dependent variables:

Fig. 9 A subdivided trapezoidal with interpolated values at its local corners,
φ�. L0 and L1 are the lengths of the edges and Δz is the height of the

trapezoid. z� is the local coordinate system in the z-direction

the flow properties do not change with the radial coordinate,

thus plug flow. A sketch of the domain has been shown in

Fig. 10, where a number of droplets are seeded and move

according to the local flow field. Notice that the parcels are

not constrained in the radial direction, as collision with the

walls is not taken into account for simplicity.

The correlations and constants used for the continuous gas

phase are listen in Tab. I. All properties can be derived

from ˜̇m, D̃ and T̃ , where the latter will vary when thermal

energy is transferred to and from the discrete droplet phase,

thus affecting the local flow field properties and indirectly

TABLE I
THE CONSTANTS AND CORRELATIONS OF THE GAS PHASE. NOTICE THAT

THE CORRELATED POLYNOMIALS FOR μ AND k ARE ONLY VALID WITHIN

0◦C ≤ T ≤ 250◦C
Property Symbol Value

Mass flow ˜̇m 1 kg
s

Temperature T̃Inlet 230◦C
Diameter D 1 m

Area ÃCross 0.785 m2

Velocity ṽ ˜̇m/
(
ρ̃ · ÃCross

)
Molar weight MW 28.97 · 10−3 kg

mol

Gas heat capacity cp,G 1025 J
kg·K

Liquid heat capacity cp,L 4192 J
kg·K

Pressure P̃ 101325 Pa

Density ρ̃ MW · P̃ /
(
R ·

(
T̃ + 273.15 K

))
Viscosity μ̃

(
17.22e−6 + 4.1967e−8 · ˜T

K

)
· kg
m·s

Conductivity k̃
(
0.02436 + 6.7e−5 · ˜T

K

)
· W
m·K

Prandtl number P̃ r 0.7

−1 0 1 2 3 4
0

1

2

4

5

6

z0 = 3

H = 7

x [m]

z
[m

]

α = 45◦

C

Fig. 10 A sketch of the domain, which is divided into a number of cells,
nCells. Droplets are being seeded from the nozzle and move according to

the local flow field. Thermal energy is transferred in between the two phases

α = 45◦

x
y

z

z0 = 3 m

Face−Parcel

ṁ
Ḣ

x, y, z
ẋ, ẏ, ż

ṁ
Ḣ

x, y, z
ẋ, ẏ, ż

x, y, z
ẋ, ẏ, ż

x, y, z
ẋ, ẏ, ż

Tri−parcel

Fig. 11 The hollow cone sprayer used for the comparison along with a
legend of where the properties are stored for the two methods

the droplet trajectories and heat transfer rates. As such, the

problem is non-linear.
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B. Discrete Phase

The nozzle will be similar to the shown in Fig. 1 with angles

of θ1 = 30◦ and θ2 = 60◦. The node count, nN, will be varied

in the analysis and thus also the number of triangular faces,

nF. The cone will be inclined with α = 45◦ upwards towards

the outlet and have an initial velocity magnitude of 15 m/s.
The total mass flow will be 0.5 kg/s and will be distributed

over the tri-parcels according to the surface areas as previously

described. The initial liquid temperature will be 10◦C. The

sprayer in the test case has been shown in Fig. 11. In the

lower part of the same figure, an illustration has been shown

of where the parcel properties are stored during simulation

using the two different methods to be compared.

C. Comparison

The comparison will be divided into three parts. The first

is to compare a base case, where the number of parcels, nF,

is kept constant along with the number of cells, nCells. The

second part will be comparing the methods when changing

nCells, whereas the third part will change nF. All simulations

will be carried out until all droplets/parcels have exited the

domain at z = 0, which takes around 4 s. The time step will

be Δt = 1 ms.
1) Base Case: The base case will compare the energy rates

between the phases. A hollow cone is generated with the same

specifications as previously described, but only consisting of

8 nodes and 6 faces. The continuous domain is divided into

100 cells. This case is made in order to exaggerate the pros

and cons of the methods. The results can be seen in Fig. 12.

The results shown in Fig. 12 is showing the energy rate

per unit volume between the two phases, q̃. It can be seen

that q̃ is largest at z = 3.0 m, where the discrete phase

is injected. A consequence of the low parcel count is that

the face-parcel method yields a fluctuating energy rate, when

compared with the tri-parcels method. The figure to the right

is smooth despite the low parcel count. By integrating the

energy rates according to (15) the temperature can be obtained

q kW
m3

z
[m

]

−100 −50 0
0

1

2

3

4

5

6

7

q kW
m3

−100 −50 0

Tri-parcelFace-parcel

Fig. 12 A comparison between the energy rates per unit volume for the base
case. q̃ fluctuated using the face-parcel method, whereas it is smooth using

the tri-parcel method despite the low parcel count

throughout the continuous domain. This has been shown in

Fig. 13.

It can be seen that the temperatures of the two methods

follow each other closely, though the tri-parcel method is

more smooth compared with the face-parcel method. The

outlet temperature at z = 7.0 m is 85.5 and 86.2 ◦C for the

face- and tri-parcel methods respectively, which is a relatively

large difference. This outlet temperatures will be used in the

following analyses to compare the two methods as well.

2) Cell Change: This analysis serves to compare the two

methods as the number of cell is changed, nCells. The analysis

will be carried out with the sprayer represented with nF = 101
and nN = 68, so the results are almost independent of the

parcel count. nCells has been varied from 20 to 250, where

the results can be seen in Fig. 14.

Fig. 14 is showing the outlet temperature of the continuous

domain as a function of nCells. It can be seen that there

is a small difference between the two methods of about

0.01 K, so when compared to the absolute temperature

difference from the inlet to the outlet, the relative difference

is (0.01 K) / ((230 − 86.5) K) = 0.007 %, so the difference

is negligible. It can however be seen that the rate at which

the graphs settle at a final value is different. The tri-parcel

method settles slightly faster, which was found by fitting an

exponential decaying function to the data. These functions can

be seen in the figure, where the settling constants are 18.33 and

14.84 cells for the face- and tri-parcel methods respectively.

Also, the tri-parcel method has less fluctuations, thus yielding

a more stable method. However, as the absolute temperature

fluctuations are so small, the effect is minor, but the results

are only used for comparing the methods.

3) Parcel Change: This analysis investigates the outlet

temperature of the two methods when changing the number of

parcels, nF, from 8 to 251. The number of cells will be held

constant at nCells = 100. The results can be seen in Fig. 15.

As seen in the figure, the number of parcels, nF, does not

affect the outlet temperature significantly after ≈ 75, and the

largest difference in the outlet temperatures from nF � 50 is

T [◦C]

z
[m

]

75 100 125 150 175 200 225
0

1

2

3

4

5

6

7

Tri-parcel
Face-parcel

Fig. 13 The temperature of the continuous domain using the two methods.
The final temperatures at z = 7 m are almost equal
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T

Fig. 14 The outlet temperature as a function of nCells with a constant
number of parcels, nF = 101. Exponential decaying functions have been

fitted to the results in order to determine the settling time for the two
methods
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Fig. 15 The outlet temperature as a function of the parcel count, nF, with a
constant number of cells, nCells = 100

about 0.1 K . The tri-parcel method is also closer to its final

value at low values of nF, which is seen by the spans of 0.65
and 0.27 K for the face- and tri-parcel methods respectively.

The fluctuations are also smaller using the tri-parcel method,

where the outlet temperature is almost constant after ≈ 75.

4) Computational Requirements: The computational

requirements were investigated by timing the execution of the

two methods. The code has been optimized in Matlab using

its profiler [10], where the time consumption of each part of

the code is analysed, after which the code can be optimized.

As such, the comparison between the two methods should be

fair. Based on numerous simulations, the relative difference

in computational time was computed. The results showed that

the computational requirements using the tri-parcel method

was about five times greater compared with the face-parcel

method. This difference is primarily caused by the number of

interpolations required using the tri-parcel method, which is

computationally expensive.

V. DISCUSSION

A. Multiple Droplet Sizes

When seeding liquid droplets as a discrete phase, multiple

droplet sizes will usually be present. These typically follows

some predefined distribution, where the Rosin-Rammler

distribution is common. This distribution correlates the mass

fraction with the droplet size. When modelling multiple droplet

sizes, each injection point will seed multiple parcels, each

with a different droplet size. Some of these droplets might

flow upwards and other downwards dependent on their size.

The tri-parcel method can be applied to such cases as well

by constructing tri-parcels, which are spanning in between

different sized droplets. This has been illustrated in Fig. 16.

dA

dA

dA

dB

dB
dB

Fig. 16 An illustration of the tri-parcel method, when using multiple droplet
sizes. The arrows are indicating the direction of the nodes and the textured

area is indicating the tri-parcel, which is spanning between the different
sized droplets

Two different sizes of droplets have been shown in Fig. 16,

dA and dB, where all droplets with a diameter of dA are falling

downwards and dB are flowing upwards. As the formulation

of the exchange rates are based on bilinear interpolation of the

conserving properties, along with the surface area rate through

each trapezoid, the previously stated equations can directly be

used to model multiple droplet sizes.

B. Unstructured Mesh Implementation

This paper has focused on plug flow, where the properties

of the continuous phase are constant in the radial direction.

However, when coupling discrete has continuous phases

though computational fluid dynamics, CFD, the mesh will vary

in all directions. This complicates the use of tri-parcels, as each

parcel would have to be split at each intersection with a cell

face. This would be very computationally demanding, although

the exchange rates would be smoothed out in a similar manner

as the plug flow models.

VI. CONCLUSION

Two methods have been compared for coupling a continuous

and a discrete phase. A basic stream tube approach was used as
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a baseline, where parcels were interacting with the continuous

phase at its current position. This method can cause spikes

and fluctuating exchange rates, which the second method

addresses.

The alternative method described in this paper represents the

parcels as triangular surfaces, tri-parcels. These surfaces are

spatially propagated using the corner nodes of the tri-parcels,

which move according to the governing equations of particle

dynamics. At each time step, the surfaces of the tri-parcels

are split and subdivided, after which bilinear interpolation is

used to evaluate the surface integral. After the exchange rates

have been calculated for each subdivided surface, these can be

summed for each cell in the continuous phase. The resulting

exchange rate was found to be smooth and continuous.

The results showed that the tri-parcel method proved to

be more stable and converged slightly faster, when compared

with the stream tube approach. However, the computational

requirements were found to be about five times greater for

the tri-parcels, as numerous interpolations were required using

the alternative method. The overall comparison between the

two method did not yield a large difference, where the outlet

temperature was investigated. As such, the alternative method

is not advantageous, if only the overall characteristics is of

interest. However, if the exchange rates are important, the

tri-parcel method provides better results, which yields more

accurate and realistic results.
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