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Unified Gas-Kinetic Scheme for Gas-Particle Flow
in Shock-Induced Fluidization of Particles Bed

Zhao Wang, Hong Yan

Abstract—In this paper, a unified-gas kinetic scheme (UGKS)
for the gas-particle flow is constructed. UGKS is a direct modeling
method for both continuum and rarefied flow computations. The
dynamics of particle and gas are described as rarefied and continuum
flow, respectively. Therefore, we use the Bhatnagar-Gross-Krook
(BGK) equation for the particle distribution function. For the gas
phase, the gas kinetic scheme for Navier-Stokes equation is solved.
The momentum transfer between gas and particle is achieved by the
acceleration term added to the BGK equation. The new scheme is
tested by a 2cm-in-thickness dense bed comprised of glass particles
with 1.5mm in diameter, and reasonable agreement is achieved.

Keywords—Gas-particle flow, unified gas-kinetic scheme,
momentum transfer, shock-induced fluidization.

I. INTRODUCTION

MANY situations in engineering processes or in nature

lead to nonstationary two phase flow: shock-induced

powder compaction; behavior of the particles cloud ejected

from the free surface of a plate subjected to a strong shock

and etc. [1]. The numerical investigation of the gas-particle

flow has made great progress since two decades ago.

It is well known that the two main approaches

are Baer-Nunziato (B-N) model [2]–[4] and multiphase

particle-in-cell (MP-PIC) method [5]–[9]. The meaning of

physical quantities is different due to the different modeling

scales. Firstly, the B-N model and its derived Saurel-Abgrall

(S-A) model [3] are established based on the macroscopic

scale, for which the particle is a special type of fluid, and

the macroscopic phase interface between gas and particle can

be captured. Therefore, the S-A model is also applicable to

the calculation of multifluid flow such that the particle volume

fraction needs to be updated by a transport equation. While the

MP-PIC is based on the mesoscopic scale, and the particles are

considered as solid with fixed size. The density of the particles

is defined relative to its own volume. For MP-PIC, the motion

of particles is described by the distribution function, in which

the apparent density of particle is used. So the particle volume

fraction can be directly obtained through the ratio of particle

density to apparent density instead of the similar transport

equation in the B-N model.

In addition, the definition of particle pressure is also

different. For B-N model, the particle pressure is determined

by the stiffened gas equation of state with the parameters
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of liquid water [3]. For MP-PIC, the pressure obtained by

the integration of the distribution function is only indicative

of the thermal motion of the particles, which corresponds to

the ideal equation of state. Meanwhile, the part of pressure,

which is different from the ideal state equation, is reflected

by buoyancy and the solid stress [9]. Another key difference

is the characterization of temperature. For the B-N model, the

temperature of the particles is the expression of heat, but its

specific microscopic meaning is not clear. As far as MP-PIC

is concerned, when the size of particle is small enough, it can

be assumed that the temperature of the particles is dominated

mainly by the thermal motion, which is similar to that for

dusty gas [10]. Whereas the particles are relatively large, the

temperature of the particles is primarily the characterization

of the thermal contribution made by the molecules inside the

particles. In this case, it is reasonable to add the temperature

as another dimension to the distribution function [6].

Through the above comparison, it can be found that MP-PIC

method is superior to B-N model, the reason for which is

that the modeling scale of former is mesoscopic and the

description of physical quantities is more profound than the

latter. However, the computational cost of MP-PIC method is

quite expensive due to the lagrangian characteristics of PIC

technique and the decoupling of transport and collision term.

Recently, a unified gas-kinetic scheme (UGKS) has been

developed for the whole Knudsen number regime based

on the gas-kinetic BGK model, with discretized particle

velocity space [11]. UGKS is a direct modeling method

for both continuum and rarefied flow computations. The

method has achieved great success in the non-equilibrium

flow [12]–[14]. Compared with the B-N model, UGKS is

better to describe the non-equilibrium effect of the particles.

Furthermore, there is no need to solve the volume fraction

transport equation. Compared with MP-PIC, the coupling of

transport and collision terms is the main advantage of UGKS.

Therefore, the calculation cost is relatively small.

Based on the above considerations, the construction of

UGKS for the gas-particle flow is necessary. For UGKS, the

dynamics of particle and gas are described as rarefied and

continuum flow, respectively. The new scheme is tested by the

shock-induced fluidization of a particles bed. The experimental

results are used for the validation of the UGKS, and reasonable

agreements have been achieved.This paper is organized as

follows. The UGKS is presented in Section II. Section III is

the numerical test case to validate the proposed method. The

last section is the concluding remarks.
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II. METHODOLOGY

In this section, we describe the details of the governing

equations of particle and gas, respectively, and based on which

the UGKS for gas-particle flow is constructed. In reality, the

gas flow is treated as continuum. Therefore, in order to reduce

the computational cost, the gas-kinetic scheme (GKS) [15] is

used to describe the gas flow.

A. Unified Gas-Kinetic Scheme for Particle Phase

1) Model: For the particle phase equation, we use

the Bhatnagar-Gross-Krook (BGK) ( [16]) for the particle

distribution functionfp (xp, up, t),

∂fp
∂t

+
∂upfp
∂x

+
∂ωpfp
∂x

=
Mp − fp

τp
, (1)

where xp is the particle position, up is the particle velocity,

τp is the relaxation time of particles, Mp is the equilibrium

distribution function, and ωp is the particle acceleration which

is given by

ωp = Dp (Ug − up)− 1

ρp

∂Pg

∂x
+

1

θρp

∂ηP
∂x

. (2)

In the above equation, Dp is the drag experienced by

particles, Ug is the macroscopic velocity of gas, ρp is the

density of particle material, θ is the particle volume fraction,

and Pg is the gas pressure. Numerically, the interface between

a single particle and gas cant be resolved, while the grid size

is smaller than the particle size, the simulated virtual particles

cant retain their shape as the real particles. Thus, ηP is the

equivalent attraction which prevents the virtual particles from

being scattered. Taking into account the more virtual particles,

the greater the equivalent attraction, the specific form of ηP
is modeled as

ηP = CafθρP , (3)

where Caf is the coefficient of attractive force which can be

determined by the experiment [1].

In addition, the drag experienced by particles, Dp is given

by

Dp = Cd
3

8

ρg
ρp

|Ug − up|
rp

, (4)

where ρg is the density of gas, rp is the radius of the particles

and Cd is the drag coefficient. The value of Cd is also obtained

by experiment [1].

It should be emphasized that considering that the thermal

motion of the particles plays a minor role [1], the collision

term at the right end of (1) is negligible. That is to say, for

the sake of simplicity, the following equation can be used to

describe the dynamic of the particle phase,

∂fp
∂t

+
∂upfp
∂x

+
∂ωpfp
∂up

= 0. (5)

2) Reduced Model: The UGKS is a scheme for

capturing the time evaluation of particle distribution function

fp (xp, up, t), in which the particle velocity space up is

discretized. In order to reduce the computational cost, reduced

distribution functions [17] are used in the computation, and

defined as,

Hp =

∫
fpdvdw,Bp =

∫ (
v2 + w2

)
fpdvdw. (6)

As a result, the relationship between the macroscopic flow

variables and distribution functions can be written in terms of

the moments of Hp and Bp,

Wp =

⎛⎝ ρ̃p
ρ̃pU

(1)

ρ̃pE
(1)

⎞⎠ =

∫ ⎛⎝ Hp

upHp
u2
p

2 Hp +
1
2Bp

⎞⎠dup, (7)

where ρ̃p is the density of particle relative to the mesh size.

Then, the particle volume fraction θ can be obtained by,

θ =
ρ̃p
ρp

(8)

Multiplying (5) by vector and integrating the vector

equation, the following system is obtained,

∂φp

∂t
+

∂upφp

∂x
+

∂ωpφp

∂up
= 0, (9)

where φp = (Hp, Bp)
T

. The construction of UGKS for

particle phase is based on (9).

3) Unified Gas-Kinetic Scheme: The unified gas-kinetic

scheme is a finite volume method. The physical space in 1D is

divided into control volumes Ωi . The temporal discretization

is denoted by tn the n-th time step. The particle velocity

space is discretized in order to capture the non-equilibrium

distribution. The discrete distribution functions in physical and

velocity spaces are denoted by

H
n
p,i = H

n
p,i,α = Hp (tn, xi, up,α) , B

n
p,i = B

n
p,i,α = Bp (tn, xi, up,α) .

(10)

With the discrete particle velocity points, the moments of

the particle distribution functions can be obtained by numerical

quadrature over velocity space,

Wn
p,i =

∑⎛⎜⎝ καH
n
p,i

καH
n
p,iup,α

κα

(
u2
p,α

2 Hn
p,i +

1
2B

n
p,i

)
⎞⎟⎠ , (11)

where κα is the weight of numerical quadrature. The UGKS

method for particle phase is constructed in the following.

Firstly, for convenience, the model equation (9) is split into

following two equations,

∂φp

∂t
+

∂upφp

∂x
= 0, (12)

∂φp

∂t
+

∂ωpφp

∂up
= 0. (13)
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If (12) and (13) are denoted by Υ0 and Υ1 respectively,

then we can obtain [18],

Hp (x, t+Δt) ≈ Υ1 (Δt)Υ0 (Δt)Hp (x, t) . (14)

Secondly, (12) is solved by the following steps. Through

integrating (12) over the control volume Ωi in a physical space

and in a time interval (tn, tn+1) , we can obtain,

φn+1
p,i,α = φn

p,i,α +
1

Δx

tn+1∫
tn

up,α

(
φp,i−1/2,α − φp,i+1/2,α

)
dt.

(15)

In the above system, the construction of the time-dependent

particle distribution function φp,i−1/2,α at the cell interface

is the central ingredient for the development of UGKS. The

detailed method to determine φp,i−1/2,α is seen in [11].

Thirdly, the MUSCLE scheme is used to solve (13).

The evolution of particle distribution function over time is

corresponding to (13),

φn+1
p,i,α = φn

p,i,α +
1

Δup

tn+1∫
tn

(
ωp,i,α−1/2φp,i,α−1/2

− ωp,i,α+1/2φp,i,α+1/2

)
dt.

(16)

For simplicity, the forward temporal integral is used, i.e.

φn+1
p,i,α = φn

p,i,α +
Δt

Δup

(
ωn
p,i,α−1/2φ

n
p,i,α−1/2

− ωn
p,i,α+1/2φ

n
p,i,α+1/2

)
. (17)

Then, the distribution function of the interface in velocity

space can be reconstructed from the initial distribution. That

is,

ωn
p,i,α−1/2φ

n
p,i,α−1/2 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ωn
p,i,α−1φ

n
p,i,α−1 + σωφ

α−1

1

2
Δup,

ωn
p,i,α−1/2 > 0

ωn
p,i,αφ

n
p,i,α − σωφ

α

1

2
Δup,

ωn
p,i,α−1/2 < 0

(18)

where σωφ
α is the slope of ωn

p,i,αφ
n
p,i,α at the velocity point

up,α . The value of σωφ
α can be obtained by van Leer limiter,

i.e.

σωφ
α = (sign (s1) + sign (s2))

|s1| |s2|
|s1|+ |s2| , (19)

in which, sign (s1) is the signal function, and s1 =(
ωn
p,i,αφ

n
p,i,α − ωn

p,i,α−1φ
n
p,i,α−1

)
/ (up,α − up,α−1) , s2 =(

ωn
p,i,α+1φ

n
p,i,α+1 − ωn

p,i,αφ
n
p,i,α

)
/ (up,α+1 − up,α) .

As described above, inserting (15) and (17) into (14), one

obtains the reduced distribution functions φn+1
p,i,α. Then the

macroscopic variables can be updated by (11). In the next step,

we will show you how to construct the gas-kinetic scheme for

gas phase.

B. Gas-Kinetic Scheme for Gas Phase
For the gas phase, according to the conservation principle,

the evolution equation of the macroscopic variables can be

written as,

εn+1
i Wn+1

g,i = εni W
n
g,i +

1

Δx

(
�Fg,i−1/2 − �Fg,i−1/2

)
+ Sn

i ,

(20)

in which, Wn
g,i is the macroscopic variables of gas, i.e.

Wn
g,i =

(
ρng,i, ρ

n
g,iU

n
g,i, ρ

n
g,iE

n
g,i

)T
. εni is the gas volume

fraction, therefore, εni = 1 − θni . �Fg,i−1/2 is the interfacial

flux of macroscopic variables, thus

�Fg,i−1/2 =

tn+1∫
tn

∫
ug

(
ψ1Hg,i−1/2 + ψ2Bg,i−1/2

)
dudt,

(21)

where ψ1 =
(
1, u, u2

2

)T

, ψ2 =
(
0, 0, 1

2

)T
.

In addition, Hg,i−1/2 and Bg,i−1/2 are the reduced

distribution function of gas, therefore similar to

(6),Hg,i−1/2 =
∫
fg,i−1/2dvdwdξ,Bg,i−1/2 =∫ (

v2 + w2
)
fg,i−1/2dvdwdξ , and ξ is microscopic velocity

corresponding to the internal degrees of freedom. Furthermore,

fg,i−1/2 is the gas distribution function at the cell interface.

Since gas is treated as continuum, the GKS scheme is used

to obtain fg,i−1/2, and its expression is as [15],

fg,i−1/2 (u, t, ξ) =
(
1− e−t/τg

)
Mg0

+
(
τg

(
−1 + e−t/τg

)
+ te−t/τg

)(
āLH[u]

+ āR (1−H[u])

)
uMg0

+ τg

(
t/τg − 1 + e−t/τg

)
ĀMg0

+ e−t/τg

((
1− (t+ τg)ua

L
)
H[u]ML

g

+
(
1− (t+ τg)ua

R
)
(1−H[u])MR

g

)
+ e−t/τg

(−τgA
LH[u]ML

g +−τgA
R (1−H[u])MR

g

)

,

(22)

where H[u] is the Heaviside function, τg is the relaxation

time of gas. Mg0 is the equilibrium gas distribution function

at the cell interface at the initial moment of each iteration.

ML
g and MR

g are the equilibrium gas distribution functions

at the left and right of cell interface respectively. In

addition, āL, āR, Ā, aL, aR, AL, AR are local constants. How

to determine the above spatial and temporal gradients for the

equilibrium distribution function was explained in [15].
Once the distribution function at the cell interface

fg,i−1/2 (u, t, ξ) is determined, the flux in (20) can be obtained

through (21). Then, the next step to consider is the source

term Sn
i in (20). Based on the conservation of momentum

and energy exchange between gas and particle, it is available

that,

Sn
i = −ΔWn

p,i, (23)

in which,

ΔWn
p,i =

∑⎛⎜⎝ καΔHn
p,i

καΔHn
p,iup,α

κα

(
u2
p,α

2 ΔHn
p,i +

1
2ΔBn

p,i

)
⎞⎟⎠, (24)
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where Δφn
p,i =

(
ΔHn

p,i,ΔBn
p,i

)T
is the changes of particle

distribution functions contributed by the interaction between

gas and particle, i.e.

Δφn
p,i =

Δt

Δup

(
Ωn

p,i,α−1/2φ
n
p,i,α−1/2 − Ωn

p,i,α+1/2φ
n
p,i,α+1/2

)
.

(25)

In (25), Ωn
p,i,α−1/2 = Dn

p,i

(
Un
p,i − up,α−1/2

)− 1
ρp

∂Pn
p,i

∂x .

It can be seen that inserting (21) and (23) into (20), one can

update the macroscopic variables of gas.

C. Numerical Procedure

In summary, the procedure of UGKS for the gas-particle

two phase flow is as follows:

a. Equations (15) and (21) are used to obtain flux of

particle and gas respectively at the cell interface in

physical space.

b. Equation (16) is used to obtain the flux of particle at

the cell interface in velocity space, and then update the

macroscopic variables of particle by (11).

c. Obtain the source term in (20) by (23). Therefore, the

macroscopic variables of gas are updated.

d. The time evolution solution of the flow field can be

obtained by iterating through the above three steps.

III. NUMERICAL TEST

In order to validate the proposed method above, the

shock-induced fluidization of a particles bed [1] is tested.

A. A Single Layer of Particles

As described above at Section II-A1, the drag coefficient Cd

in (4) and attractive coefficient Caf in (3) are both determined

by experiment result. So a single layer of 2mm diameter

particles is used to obtain the exact values of these two

coefficients. The parameters of the problem are given in Table

1.

TABLE I
PARAMETERS OF A SINGLE LAYER OF PARTICLES

Quantity Value

Air preshock density 1.2kg/m3

Incident shock Mach number 1.3
Particle density 2500kg/m3

Through numerical calculations, as Fig. 1 shown, the cloud

front trajectories between UGKS and experiment matches

good when Cd = 12, Caf = 20.

B. Dense Bed

In order to validate the proposed scheme, as Fig. 2 shown,

a dense bed which consists of 2cm of 1.5mm diameter glass

particles is tested. The parameters of the problem are identical

with that in Table I. In addition, the initial particle volume

fraction in the bed is 0.65. The initial pressure is uniform and

set to 105Pa.

Time(ms)

C
lo

ud
 fr

on
t p

os
iti

on
 (c

m
)

0 0.5 1 1.5 2 2.5 3 3.50

5

10

15 UGKS, upper
UGKS, lower
EXP, upper
EXP, lower

Fig. 1 Cloud front trajectories from single layer bed of 2mm diameter glass
spheres subject to Mach 1.3 shock in air

As far as UGKS for gas-particle flow is concerned, the

computational domain is divided into 1400 cells and CFL=0.9.

For particle phase, the velocity space [-284m/s, 284 m/s] is

discretized with 140 mesh points. Fig. 3 shows the comparison

of pressure signals upstream and downstream of the cloud

with time between UGKS and experiment as well as the

code by Rouge in [1]. It is seen that the result computed by

UGKS is better than that by Rouge, and matches better with

experiment. Fig. 4 shows the upper and lower front trajectories.

Similarly, the trajectories calculated by UGKS and measured

by experiment are in good agreement. It should be stated that

for UGKS, as Fig. 5 shown, the particle cloud is divided into

two parts, the dense and dilute ones. Therefore, we choose

the boundary of the dense and dilute regions as the lower and

upper front of one-dimensional cloud.

From the above analysis, the conclusion can be drawn that

UGKS for gas-particle is successfully constructed. However, it

is unsatisfactory that pressure value downstream of the cloud

rising too fast after 4ms, resulting in a poor match with the

experiment. This is an issue that needs to be taken care of in

further research.

IV. CONCLUSION

In this paper, a unified gas-kinetic scheme for gas-particle

flow is developed. UGKS is a direct modeling method for

both continuum and rarefied flow computations due to the

couplng of transport and collision terms, which is suitable for

describing the non-equilibrium effect of the particles based

on the mesoscopic scale. The new scheme has been tested in

shock-induced fluidization of a particles bed. The experimental

results are used for the validation of the UGKS, and reasonable

agreement is achieved. In order to further develop the current

scheme for engineering applications, the collisions between

the particles and the heat conduction between the particles

and gas will be implemented into UGKS in the near future.
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Fig. 2 Rogue et al. (1998) fluidization shock tube test. A shock at Mach number 1.3 is created by the expansion of the high pressure gas, equivalent to a
shock created by a piston moving at 151 m/s [1]
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0.3

UGKS
Code by Rouge
EXP

Fig. 3 Pressure signals upstream and downstream of the cloud; transducer
location 11cm below and 4.3 mm above the support, 2 cm bed of 1.5mm

diameter glass spheres subject to Mach 1.3 shock in air
(Cd = 12, Caf = 20)
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Fig. 4 Cloud upper and lower front trajectories from 2 cm bed of 1.5mm
diameter glass spheres subject to Mach 1.3 shock in air

(Cd = 12, Caf = 20)
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Fig. 5 Gaseous volume fraction distribution from 2 cm bed of 1.5mm
diameter glass spheres subject to Mach 1.3 shock in air

(Cd = 12, Caf = 20,4.5ms)
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