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Quantum Markov Modeling for Healthcare
Carla Silva, Marcus Dahlem, Ins Dutra

Abstract—A Markov model defines a system of states, composed
by the feasible transition paths between those states, and the
parameters of those transitions. The paths and parameters may be
a representative way to address healthcare issues, such as to identify
the most likely sequence of patient health states given the sequence
of observations. Furthermore estimating the length of stay (LoS) of
patients in hospitalization is one of the challenges that Markov models
allow us to solve. However, finding the maximum probability of
any path that gets to state at time t, can have high computational
cost. A quantum approach allows us to take advantage of quantum
computation since the calculated probabilities can be in several states,
ending up to outperform classical computing due to the possible
superposition of states when handling large amounts of data. The
aid of quantum physics-based architectures and machine learning
techniques are therefore appropriated to address the complexity of
healthcare.
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I. INTRODUCTION

THIS work explores machine learning algorithms in a

quantum framework [1], [2], in particular, quantum

machine learning (QML) through a real-world application.

Comparison of classical learning algorithms and their quantum

versions, have been made, and it shows clear differences in

computational complexity and learning performance. Quantum

theory is bringing a new metamorphosis in technology and

information processing. We are now embracing the world of

qubits, where the two computational basis are represented by

|0〉 and |1〉, behaving separately or in superposition, where

it is possible the combination of the two, unlike the bits,

always either 0 or 1. Qubit is a quantum variable as it has

characteristics both continuous and discrete. However, we only

extract the binary details from a qubit, we can’t know the full

information of the superposition, only the combination of 0’s

and 1’s it picks. This work focuses on the study of the length

of stay (LoS), calculated on a circuit containing quantum

gates. LoS may be used as an indicator of the perspective

of healthcare activity in hospitals. A shorter stay of patients

in hospitalization will reduce the cost per discharge and switch

care from inpatient to less expensive arrangements. When

a patient arrives, it is therefore advantageous to be able to

foresee his/her stay, e.g, how many days in hospitalization,

given the conditions he/she presents. Goal that we aim to

achieve by predicting the LoS variable and thus building a
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Markov model using the Viterbi algorithm and a quantum

approach. In the Markov property, the state of a Markov chain

is directly observed in each time step, hence the current state

of a chain depends only on the previous state. The Markov

chain is represented by the initial state and transition matrix,

a stochastic matrix. A Markov chain can be depicted by a

directed graph, a state diagram. The vertices of the graph are

associated with states and each edge represents the probability

of going from one state to the other. In a Markov chain where

states are not observed directly, we obtain a hidden Markov

model (HMM). The transition probabilities control the way

the hidden state (number of stay days) at time t is chosen

given the hidden state at time t-1.The quantum approach

allows us to handle a large amount of data since the transition

matrices, product of patient’s conditions, can have very large

dimensions, translating into a huge time consuming processing

in the search space. We apply a quantum logic gate approach,

since a basic quantum circuit operating on a small number of

qubits can help achieve speed-up.

II. BACKGROUND AND RELATED WORK

Quantum data processing explores the significance of using

quantum mechanics instead of classical practices to model

information and information processing [3]. Nowadays, we

raise the question of how much faster are quantum computers

than standard computers for relevant problems, leading to

the importance of computing speedup measures (e.g. criteria

cost, criteria complexity) [4]. In information processing, low

sample complexity is associated with efficient learning, and

therefore low time complexity. According to studies, the

best quantum learner has much less time complexity than

a leading classical learner [5]. Most of machine learning

problems presupposes manipulating and classifying huge

numbers of vectors in high-dimensional spaces, and quantum

computers are good at those kinds of tasks in large tensor

product spaces, therefore quantum machine learning provides

speed-ups over classical computers [6]. Quantum computation

and quantum information share fundamental concepts from

quantum mechanics to computer science [7]. Such as, when

two waves encounter they overlap and interact, sometimes they

build a big wave, sometimes they cancel each other, but usually

it is a combination of both, it is when superposition occurs

[8]. When groups of particles cannot be described separately

due to interaction, we are present the quantum entanglement

[9], [10]. And sometimes for efficient proposes we may need

to operate in a small number of qubits, that is when we use

a quantum logic gate [11]. In this work, we take advantage

of some of these features, that we use in the design of the

quantum circuit:



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:12, No:8, 2018

154

Hadamard−H − 1√
2

[
1 1
1 −1

]
(1)

Pauli− Y −
[

0 −i
i 0

]
(2)

Pauli− Z −
[

1 0
0 −1

]
(3)

Doing research concerning the length of stay (LoS) of

patients in hospitalization, is not a novelty [12], [13]. Besides,

using a discrete time Markov process for cardiovascular,

neurological, respiratory, gastrointestinal, trauma and other

diagnostic categories has already been created [14]. As well as

using continuous-time Markov processes to analyze temporal

trends of LoS [15]. Moreover, it has been a discussed problem

[16] but it seems there is a lake of studies finding LoS in a

quantum procedure. In fact, there are few quantum applications

to real-world problems, particularly in the healthcare domain.

What, given the existence of more and more clinical records,

makes sense to start reasoning about an order of magnitude

greater to solve issues that arise. Many of these concerns are

solved by machine learning but these models can be very

costly and time consuming [17].

III. EXPERIMENTS SETUP

To achieve the results we use a quantum simulator and a

real quantum device. A quantum simulator shows information

concerning an abstract mathematical function connected to

a physical model [18]. A simulator should assess the

relevance of the model and the accuracy in describing the

real system in consideration. As known, quantum computers

are conceived to outperform classical computers by running

quantum algorithms [19].

A. Dataset

We use the Diabetes130US dataset available at the

repository OpenML with dimension: 101.766 rows and 50

columns. The dataset presents 10 years (1999-2008) of clinical

care at 130 US hospitals and integrated delivery networks. The

data contains attributes such as patient number, race, gender,

age, admission type, time in hospital (at least 1 day and

at most 14 days), medical specialty of admitting physician,

number of lab test performed, HbA1c test result, diagnosis,

number of medication, diabetic medications, number of

outpatient, inpatient, and emergency visits in the year before

the hospitalization, etc.

B. Quantum Platform

We use the IBM Quantum Experience (QX) which offers

the possibility to connect to an IBM quantum processor via

the IBM Cloud. We can run algorithms and explore tutorials

and simulations in a quantum computing environment. The

experiments were implemented in the Python programming

language using the Quantum Information Software Kit

(QISKit), a software development kit (SDK) for working with

the Open Quantum Assembly Language (OpenQASM) and

the IBM Q experience (QX). We set up the API and execute

the program through a user IBM token and url. We use as

backend the ibmqx5 (16 qubits), ibmqx4 (5 Qubits) and the

ibmqx qasm simulator.

C. Algorithm Implementation

For this work, we selected one variable to study, insulin,

and how this variable is related with our outcome variable,

LoS.

1) create state space and initial state probabilities of the

variable of interest (e.g. insulin) and of the outcome

variable (e.g. time in hospital)

2) create transition probabilities Fig. 1 of each one

3) create a function that maps transition probability

dataframe to markov edges and weights and create a

graph object for each one

4) create a matrix of observation (emission) probabilities

with the observable states and the hidden states

5) run the quantum Viterbi function

We begin by setting the quantum program specifications:

the circuit name, quantum registers name and size, and the

classical registers name and size (SPECS).

Algorithm 1: Quantum Viterbi

1 function qViterbi (pi, pt, pe, obs);
Input : initial probabilities, transition matrix, emission

matrix, observable states
Output: path, delta, phi

2 qp ← QuantumProgram(specs=SPECS)
3 qc ← qp.get circuit(”qViterbi”)
4 q ← qp.get quantum register(”q”)
5 c ← qp.get classical register(”c”)
6 states ← shape(pe)[0]
7 n ← shape(obs)[0]
8 path ← zeros(n)
9 delta ← zeros((states, n))

10 phi ← zeros((states, n))
11 delta[:, 0] ← pi * pe[:, obs[0]]
12 phi[:, 0] ← 0
13 qc.h(q[0])
14 for t ∈ {1, . . . , n} do
15 qc.y(q[t])
16 for s ∈ states do
17 delta[s, t] ← max(delta[:, t-1] * pt[:, s]) * pe[s,

obs[t]]
18 phi[s, t] ← argmax(delta[:, t-1] * pt[:, s])+1
19 end
20 qc.u1(t/π,q[1])
21 end
22 path[n-1] ← argmax(delta[:, n-1])
23 for t ∈ {n− 2,−1,−1} do
24 qc.z(q[t])
25 path[t] ← phi[int(path[t+1]), [t+1]]
26 end
27 qc.measure(q, c)
28 qp.set api(token, url)
29 ibmqx ← qp.execute([”qViterbi”],

backend=’ibmqx qasm simulator’)
30 ibmqx4 ← qp.execute([”qViterbi”], backend=’ibmqx4’)
31 ibmqx4.get data(”qViterbi”)
32 QASM source ← qp.get qasm(”qViterbi”)
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Fig. 1 Transition probabilities of insulin, four types of states: down, no, up
and steady

The Viterbi algorithm give us the best path, through a

recursive optimal solution of estimating the state sequence of

a discrete-time finite-state Markov process.

IV. RESULTS

A. Parameters of the Hidden Markov Model

According to the data set in consideration, observing the

initial probabilities shown in Table I we can notice that the first

days have higher values. Which allow us to assume that short

stays in hospitalization are more probable than long stays.

TABLE I
TIME IN HOSPITAL INITIAL PROBABILITIES OF EACH DAY

days probabilities
1.0 0.139614
2.0 0.169251
3.0 0.174479
4.0 0.136824
5.0 0.097931
6.0 0.074082
7.0 0.057573
8.0 0.043148
9.0 0.029499

10.0 0.023014
11.0 0.018228
12.0 0.014229
13.0 0.011890
14.0 0.010239

Through the diagram we can analyze the probabilities of

changing state, with the associated value in each arrow. Arrows

pointing to the state itself indicate the likelihood of remaining

the same. In this case, from highest to lowest, Down, followed

by Steady and then Up and finally No. Which allows us to say

that the most difficult state to change is when the insulin is

going down.

As a way of uncovering the probabilities associated with

the four states of insulin and days of hospitalization we show

some of the complexity of the emission matrix diagram in Fig.

2.

In order to represent the quantum system we created, we

present the Bloch sphere where we can visualize qubit states

and gates. We placed the H gate, known as the Hadamard gate,

on the qubit 0, then we add Pauli Y gate to the varying qubit

t in the quantum register, afterwards we add the first physical

Fig. 2 Part of the emission probabilities of insulin states in 14 days of
hospitalization

gate u1 to the qubit 1, and finally we add the Pauli Z gate to

the varying qubit t.

B. Quantum Environment

Fig. 3 Quantum sphere

In the appendix we present more details about the

experimental setting on the quantum infrastructure we used.

Fig. 4 Quantum circuit

V. DISCUSSION

Through the proposed algorithm it is possible to know

how many days the patient should be in hospitalization

given a sequence of insulin states by multiple observations.

The purpose of the algorithm in the quantum version arises

from the need to predict multiple episodes. Hidden Quantum

Markov Models (HQMMs) [20] are suitable for learning

models from data, some algorithms have been proposed

[21]. The existence of new quantum technology leads us

to take advantage of building classical algorithms (e.g.



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:12, No:8, 2018

156

Viterbi algorithm [22]) to a new computational approach and

challenge [23]- [25].

VI. CONCLUSIONS AND FUTURE WORK

This work studied the outcome variable insulin in the

diabetes diagnostic, which allows us to forecast the length of

a patient stay in hospitalization according to the state of the

insulin having into account all possible states. We achieve the

results in a good computational time given by the integration

of quantum methods in a classical algorithm. For further work,

we aim to calculate the LoS considering all conditions of the

patient, having in count all the risk factors.

APPENDIX

A. IBM QASM-Language Program
//OPENQASM 2.0
IBMQASM 2.0;
include "qelib1.inc";

qreg q[5];
creg c[5];

h q[0];
y q[1];
u1(0.318309886183791) q[1];
y q[2];
u1(0.636619772367581) q[1];
y q[3];
u1(0.954929658551372) q[1];
y q[4];
u1(1.273239544735163) q[1];
z q[3];
z q[2];
z q[1];
z q[0];
measure q[0] -> c[0];
measure q[1] -> c[1];
measure q[2] -> c[2];
measure q[3] -> c[3];
measure q[4] -> c[4];
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