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Real Time Lidar and Radar High-Level Fusion for
Obstacle Detection and Tracking with Evaluation

on a Ground Truth

Hatem Hajri, Mohamed-Cherif Rahal

Abstract—Both Lidars and Radars are sensors for obstacle
detection. While Lidars are very accurate on obstacles positions
and less accurate on their velocities, Radars are more precise on
obstacles velocities and less precise on their positions. Sensor
fusion between Lidar and Radar aims at improving obstacle
detection using advantages of the two sensors. The present
paper proposes a real-time Lidar/Radar data fusion algorithm
for obstacle detection and tracking based on the global nearest
neighbour standard filter (GNN). This algorithm is implemented
and embedded in an automative vehicle as a component generated
by a real-time multisensor software. The benefits of data fusion
comparing with the use of a single sensor are illustrated through
several tracking scenarios (on a highway and on a bend) and
using real-time kinematic sensors mounted on the ego and tracked
vehicles as a ground truth.

Keywords—Ground truth, Hungarian algorithm, lidar Radar data
fusion, global nearest neighbor filter.

I. INTRODUCTION

DATA fusion [1]–[3] is the process of combining

multiple data sources in order to provide a better

decision. Today data fusion is used in various fields such

as military, medical and mobile robotics. In the field of

autonomous driving, data fusion has multiple benefits. In

fact autonomous vehicles are often equipped with different

sensors through which they communicate with the external

world. A multisensor fusion takes advantages of each sensor

and provides more robust and time-continuous informations

than sensors used separately.

State of the art Lidars, Radars and Cameras fusion.
Several earlier works considered benefits of combining

sensors such as Lidars, Radars and Cameras. For example,

[4] presents a Lidar-Radar fusion algorithm based on Kalman

filter and shows how fusion improves interpretation of road

situations and reduces false alarms. Subsequently [5] uses

Cramer-Rao lower bound to estimate performance of data

fusion algorithms. The paper [6] considers Lidar-Radar

fusion with applications to following cars on highways.

In order to test the performance of their fusion algorithm,

authors of [6] provide a study of mean square errors

of relative distances and velocities in a highway tracking

scenario using least squares polynomial approximation of
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sensors data as a ground truth. Another Lidar, Radar and

Camera fusion approach based on evidence theory apppears

in [7] with applications to the classification and tracking

of moving objects. More recently, [8] focuses on fusion of

multiple cameras and Lidars and presents tests on real world

highway data to verify the effectiveness of the proposed

approach.

Contribution of the paper. The present paper is

concerned with data fusion between Lidar and Radar. In

vue of the state of the art, we can distinguish two different

general fusion methods which were applied for Lidar and

Radar: Kalman filter and evidence theory. We believe that

approaches which apply one of these methods agree on

the main steps. On the other hand, despite the previously

mentionned works, the litterature still clearly lacks a

quantitative comparison between these sensors outputs such

as relative coordinates, velocities, accelerations etc and their

fusion result in the presence of a ground truth at least on

one obstacle. Because of the lack of a ground truth, authors

of these papers were led to work with simulated data or

manually manage real data in order to create a ground truth

and evaluate results.

The aim of this paper is twofold. First it proposes a

real-time high-level fusion algorithm between Lidar and

Radar based on the GNN filter which in turn is based

on Kalman filter. This algorithm is presented with several

mathematical and implementation details which go along

with it. Second the paper proposes a ground truth generation

method to evaluate the performance of the proposed

algorithm while focusing on the main outputs of Lidar and

Radar which are relative coordinates and speeds of obstacles.

This method can be applied regardless scenarios types

(highways, bends etc) and weather conditions. Our ground

truth is generated using two synchronised autonomous cars

equipped with real-time kinematic (RTK) sensors. Beyond

data fusion, our method can be applied to test performance

of sensors such as Lidars, Radars and Cameras.

Experiments are carried out on two prototypes of the

autonomous vehicle of VEDECOM used as ego and obstacle

vehicles. Fig. 1 displays the sensor architecture of this

prototype. It has five Lidars ibeo LUX with horizontal fields

of view of 110o mounted such that they provide a complete

view around the car. These Lidars send measurements to

the central computation unit (Fusion Box) which performs
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fusion of measured features, object detections and tracks at

the frequency of 25 Hz. A long-range Radar ARS 308 of

frequency 15 Hz is mounted at the front of the car with

a horizontal view of −28o,+28o. The vehicle is moreover

equipped with a RTK sensor with precisions 0.02 m on

position and 0.02 m/s on velocity and a CAN bus which

delivers odometry informations.

Fig. 1 Sensor configuration: Five lidars, one radar and one RTK sensor

The fusion algorithm uses informations from Lidar/Radar

and the CAN bus. RTK sensors will be used for performance

evaluation.

Organisation of the paper. The content of this paper is

as follows. Section II develops the fusion method used in the

paper. Section III gives more details on the implementation

and integration into vehicle of the proposed algorithm.

Section IV presents our ground truth generation method and

the experiments (car followings on highways/bends) carried

out using the two vehicles to collect data. The obtained

ground truth data set will be published in a future paper

with a more careful study and sensitivity analysis of the

generation method. This ground truth is used to evaluate the

mean square erros of Radars/Lidars and fusion measurements

of relative positions and velocities of the obstacle vehicle.

In addition several plots of temporal evolutions of these

measurements are given showing interesting informations

about their smoothness and unavailability periods. Results

show advantages of data fusion comparing with one sensor.

II. KALMAN FILTER FOR DATA FUSION

Consider a target (or state) which moves linearly in

discrete time according to the dynamic x(k) = F (k)x(k −
1)+v(k) and an observation z of it by a sensor S which takes

the form z(k) = H(k)x(k)+w(k). Assume v(k), k = 1, · · ·
and w(k), k = 1, · · · are two independent centered Gaussian

noises with covariances PS and NS respectively. Kalman

filter is known to give an estimation of x(k) when only

z(1), · · · , z(k) are observed. From a mathematical point of

view, the problem amounts to calculating the conditional

mean E[x(k)|Zk] where Zk = (z(1), · · · , z(k)). Introduce

the notations x̂(i|j) = E[x(i)|Zj ] which is the conditional

mean of x(i) knowing Zj and its conditional covariance

P (i|j) = E[(x(i)− x̂(i|j))(x(i)− x̂(i|j))T |Zj ].

Kalman filter has an explicit solution which is determined

recursively. Assume x(0) is a Gaussian distribution with

mean x̂(0|0) and covariance P (0|0). Knowing the estimation

x̂(k−1|k−1), x̂(k|k) is calculated following these two steps.

(A) PREDICTION STEP. Compute x̂(k|k−1) and P (k|k−1)
by:

x̂(k|k − 1) = F (k)x̂(k − 1|k − 1)

P (k|k − 1) = F (k)P (k − 1|k − 1)FT (k) + PS

This step requires the knowledge of z(1), · · · , z(k − 1).
(B) UPDATE STEP. When z(k) becomes available the final

solution is obtained as follows

x̂(k|k) = x̂(k|k − 1) +W (k)(z(k)−H(k)x̂(k|k − 1))

P (k|k) = P (k|k − 1)−W (k)S(k)WT (k)

with

W (k) = P (k|k − 1)HT (k)S−1(k) (Kalman gain)

S(k) = NS +H(k)P (k|k − 1)HT (k)

The matrix S(k) is the covariance of the innovation

ν(k) = z(k) − H(k)x̂(k|k − 1) = z(k) − ẑ(k|k − 1).
The innovation measures the deviation between the estimates

provided by the filter and the true observations. Its practical

interest lies in the fact that (under the Gaussian assumption)

the normalised innovation q(k) = νT (k)S(k)−1ν(k) is a χ2

distribution with dim(z(k)) degrees of freedom (see [3], [9]).

As a consequence, with a high probability α, the observation

z(k) associated with the object x(k) belongs to the area

{z : d2 = (z − ẑ(k|k − 1))TS(k)−1(z − ẑ(k|k − 1)) ≤ γ}
where α is such that P(χ2 < γ) = α. This area is

known as the validation gate. When several measurements

z are available for one specific object, the χ2 distribution

makes it possible to identify those measurements which

may correspond to the underlying object by applying a

hypothesis test as follows: If there are observations in the

validation gate choose z which minimizes d2 as the only

valid observation. Otherwise no observation is associated.

This solution is known as the nearest neighbour filter. The

solution which consists in averaging all obsevations which

fall in the validation gate is known as the probabilistic

data association filter (see [3] for more background on

probabilistic filters). In practice, which is the case for

Radar/Lidar, several tracked objects and new measurements

can be available simultaneously. The task of associating new

measurements with the underlying observed objects is known

as the data association problem. This problem is dealt with

in Section III by first solving a global optimization problem

and second updating the list of objects using the nearest

neighbour filter. The obtained filter is known as the GNN

filter.

In the present paper each obstacle (old state or new

observation) is represented as a vector of its relative

coordinates and velocities [x y vx vy]
T . It is assumed that

obstacles move according to the constant velocity motion

model: if Δ denotes the elapsed time between the k and k+1
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sensor data emissions, the matrices F and H describing the

state and observation evolutions are given by

F (k) =

⎛
⎜⎜⎝
1 0 Δ 0
0 1 0 Δ
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ , H(k) = I4

The content of this paper can be adapted to other motion

models such as the constant acceleration motion model.

We choose the constant velocity model for two reasons.

First Lidars do not send informations about accelerations of

obstacles. Second the constant velocity model requires less

unkown parameters to estimate than the constant acceleration

model.

III. REAL TIME IMPLEMENTATION

This section gives details of the implementation of the

real-time fusion module between the two sensors Lidar

ibeo LUX and Radar ARS 308. This module was first

implemented in Matlab/Simulink and then embedded in the

automative vehicle as a component generated by the software

RTMaps (Real Time, Multisensor applications) [10]. The

RTMaps software is widely used for real-time applications in

mobile robotics as it allows to synchronise, record and replay

data from different sensors. The proposed fusion module is

an iterative algorithm which is run as soon as a sensor data

arrives. Simulink delay functions offer a tool for this kind of

problems as they allow to store the last value of a module.

The following Fig. 2 shows the Simulink diagram used to

generate the fusion module.

Fig. 2 The Simulink diagram

After a data by a sensor Sk (Lidar or Radar) is received at

time tk, this algorithm outputs a fused set of obstacles FOk.

The main characteristics of each obstacle (other outputs such

as identity, age and so on will not be detailled) are 1) a

vector [x, y, vx, vy]
T where x, y (resp. vx, vy) are the relative

(with respect to the ego-vehicle frame) coordinates (resp.

velocities) of the object and 2) an uncertainty 4 × 4 matrix

of the object. The input of the algorithm at time tk is the

previous fused set of obstacles FOk−1, the linear and angular

velocities of the ego-vehicle at time tk and the sensor data

consisting in relative coordinates x, y and speeds vx, vy of

the detected obstacles all at time tk. The angular and linear

velocities are available on the CAN bus. Since this sensor

does not generate data at the same moments as Lidar or

Radar, in practice an approximation value of these quantities

at time tk are taken (for example the last known ones before

tk).

The fused list is initialized when the first sensor data

arrives. For each object in this list, the vector [x, y, vx, vy]
T

of relative coordinates and velocities given by the sensor is

stored. The uncertainty of each object is initialized to the

corresponding sensor’s uncertainty NS .

Assume known the last fused list of objects FOk−1 at time

tk−1 updated after reception of data by the sensor Sk−1 and

assume a new sensor data arrives at time tk by the sensor

Sk. The update FOk of FOk−1 follows these steps.

(a) Tracking. Call Rk−1 and Rk the ego-vehicle

frames at times tk−1 and tk. Each object ok−1 =
[xk−1, yk−1, vk−1

x , vk−1
y ]T ∈ FOk−1 with uncertainty Ik−1

is first tracked in the frame Rk−1 under the constant velocity

hypothesis. Then it is mapped to the new frame Rk by a

rotation of its relative coordinates and relative velocities.

Call ω and v the instantaneous angular and linear velocities

of the ego-vehicle at time tk and define the following

estimates of the cap angle and travelled distance θ = ω ×
Δ, d = v × Δ where Δ = tk − tk−1. Call ok−1,t =
[xk−1,t, yk−1,t, vk−1,t

x , vk−1,t
y ]T the new object and Ik−1,t its

uncertainty in Rk. More explicitly, the following identities

hold: [xk−1,t, yk−1,t, vk−1,t
x , vk−1,t

y ]T

=

(
Rθ 0
0 Rθ

)⎛
⎜⎜⎝
xk−1 +Δvk−1

x − d cos(θ)
yk−1 +Δvk−1

y − d sin(θ)
vk−1
x

vk−1
y

⎞
⎟⎟⎠

and

Ik−1,t =

(
Rθ 0
0 Rθ

)
(FIk−1FT + PSk

)

(
Rθ 0
0 Rθ

)T

where Rθ is the rotation matrix of angle θ and F is given

in the previous section.

(b) Association. In this setp, each new sensor measurement

is associated with at most one tracked object that corresponds

best to it. For this, the classical Mahalanobis distance will

be used as a similarity measure. This distance is defined for

any tracked object ok−1,t with uncertainty Ik−1,t in Rk and

new observation zi by

d2k,i = (ok−1,t − zi)T (Ik−1,t)−1(ok−1,t − zi).

The association problem can be reformulated in the following

optimization form: find the set (ck,i) which minimizes∑
k,i ck,id

2
k,i subject to the constraints

∑
k ck,i = 1 for each

i,
∑

i ck,i = 1 for each k and ck,i ∈ {0, 1} for all k and

i. A well known solution to this problem is given by the

Hungarian algorithm [11]. This algorithm was implemented

in Matlab/Simulink and subsequently used in the fusion

module. Notice if there are less tracked objects than new

observations, a tracked object is associated with exactly one

observation and if not it may or may not be associated.

(c) List update. The fused list of objects is updated as

follows. First for a tracked object ok−1,t with uncertainty

Ik−1,t which is associated with an observation zi, the latter

is accepted as an observation of ok−1,t if it falls in the

validation gate arround ok−1,t that is if d2k,i < γ with γ
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a quantile of order 0.9 of the χ2 distribution with 4 degrees

of freedom. In this case both ok−1,t and Ik−1,t are updated

as in Kalman correction step based on the observation zi. If

the object is not associated with an observation, it is removed

from the list. Another possibility is to continue tracking

absent obstacles for a while. However we did not choose

this option since Lidars and Radars already track absent

obstacles. Finally new observations that are not associated

with tracked objects are added to the list as for the first

fused list. To summarize, the new list FOk is composed of

tracked objects associated with new observations and updated

by Kalman filter and new observations not associated with

tracked objects.

IV. EXPERIMENTS AND RESULTS

The last section is devoted to the generation of ground

truth for the evaluation of the proposed data fusion algorithm

(denoted Fusion in brief) and for comparisons between

Lidar, Radar and Fusion. The focus will be on relative

positions/velocities x, y, vx, vy of the target vehicle.

Ground truth generation. To generate the ground truth,

we used two synchronised autonomous vehicles. The ego

vehicle is equipped with Lidar and Radar and both vehicles

are equipped with RTK sensors. The idea behind this

generation process is that given two moving points A and

B represented by their positions and velocities in a global

frame R and knowing the angular velocity of A, it is possible

to deduce the positions and velocities of B in the moving

frame of A (composition of movements formula). In practice,

these informations are used:

(1) global coordinates and velocities in the reference

frame R0 of RTK sensors of the two vehicles during

experiments all obtained from the RTK sensors.

(2) heading of the ego vehicle in R0 during experiments

obtained from the RTK sensor mounted on this vehicle.

These informations in combination with the composition

of movements formula provide ultra-precise estimations of

the relative positions/velocities of the target vehicle in the

ego vehicle frame. In fact, at each time t, informations (1)

give the relative coordinates and speeds with the ego-vehicle

identified to a point (that is without consideration of its

heading). A rotation of angle given by the heading at

time t (obtained from (2)) gives the desired estimations. In

order to perform comparison, one has to find the target car

characteristics (xt, yt, vxt, vyt) sent by Lidar/Radar/Fusion

at a given time t. For this, the nearest obstacle to the ground

truth position at time t which is non static was considered

as the target car viewed by Lidar/Radar/Fusion. This method

gives the desired obstacle most all the time. Since sensors

have different frequencies, linear interpolation was used to

get an estimate of any quantity (position/velocity) which is

not available at a given time.

Evaluation of the fusion algorithm. In order to estimate

the uncertainty matrices PS and NS for both Lidar and

Radar involved in the algorithm, we used a ground truth

collected during 10 minutes. We set all off-diagonal entries of

these matrices to 0 and tolerate more error than the obtained

values. To evaluate the fusion algorithm, we generated

new data in two challenging circuits: car followings on

a highway and a highly curved bend. In each case, the

same car-following scenario is repeated seven times. For

each case, 4 figures displaying variations of the relative

coordinates and velocities x, y, vx, vy in one scenario are

shown along with the ground truth. We choose one scenario

among seven because of space limitations. The two plots at

the bottom (green and black refering to Radar and RTK) are

the true ones (without translation). For better visualization,

those at the midlle (red and black refering to Lidar and

RTK) and the top (blue and black refering to Fusion and

RTK) correspond to the true ones + offset and true ones

+ 2*offset. The offset is specified with each figure’s title.

Radar/Lidar/Fusion points are represented by small squares

joined by lines with the same colors and RTK points are

represented by continuous curves (linear interpolation of the

values). In addition, two tables representing the mean square

errors (MSE) of x, y, vx, vy for Radar/Lidar/Fusion are given

for all the seven car following experiencies. These errors are

calculated with respect to the RTK output considered as a

ground truth according to the formula

MSE on q =
1

N

N∑
t=1

(qSensort − qRTKt)
2

In this formula, the notation qSensor with q ∈
{x, y, vx, vy} and sensor ∈ {Radar,Lidar,RTK, Fusion}
refers to q of the target as seen by sensor, qSensort is the

value of qSensor at time t and N is the number of samples.

Runtime performance. Multiple tests show that the

fusion algorithm is able to treat 50 obstacles in less than 15

microsecondes. This period is negligible compared to periods

of Lidar and Radar making the algorithm suitable for fusion

in real time.

A. Car-Following on a Highway

The first scenario is a tracking, shown in Fig. 3, of the

target vehicle on a highway at high speed (between 90 and

100 km/h). We repeated the same experience on the same

portion of the highway seven times and obtained a record of

more than 6 minutes.

Fig. 3 Tracking on a highway

The next figures display respectively the variations of x, y
(in metre) vx, vy (in metre/second) as a function of time (in
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second) of the target vehicle by Radar/Lidar/Fusion and RTK

in one experience among the seven.
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Fig. 4 Variations of x (in m) with Radar (green)/Lidar (red)/Fusion (blue)
in comparison with RTK (black) as a function of time (in s). Offset=4
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Fig. 5 Variations of y with Radar/Lidar/Fusion. Offset=4
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Fig. 6 Variations of vx with Radar/Lidar/Fusion. Offset=4
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Fig. 7 Variations of vy with Radar/Lidar/Fusion. Offset=4

Table I shows the mean square erros (MSE) on

x, y, vx, vy by Radar,Lidar,Fusion corresponding to the

seven car-following experiences.

TABLE I
MSES OF x, y, vx, vy BY /RADAR/LIDAR/FUSION

Radar Lidar Fusion
MSE on x 0.33 0.55 0.39
MSE on y 0.43 0.16 0.21
MSE on vx 0.15 0.28 0.19
MSE on vy 0.25 0.31 0.27

B. Car-Following on a Bend
The second scenario is a tracking, shown in Fig. 8, on a

succession of highly cruved bends. We repeated the same

experience seven times getting a record of more than 6

minutes.

Fig. 8 Tracking on a bend

Fig. 9 shows the trajectory in the world frame of the ego

vehicle obtained from the RTK sensor.

-50 0 50 100 150 200
-50

0

50

100

150

200

250

Fig. 9 Trajectory of the ego vehicle. The starting point is (0, 0)
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Variations of the relative x, y (in metre) vx, vy (in

metre/second) as a function of time (second) in one

experience among the seven are displayed in the next 4

figures.
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Fig. 10 Variations of x (in m) with Radar (green)/Lidar (red)/Fusion (blue)
in comparison with RTK (black) as a function of time (in s). Offset=5
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Fig. 11 Variations of y with Radar/Lidar/Fusion. Offset=4
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Fig. 12 Variations of vx with Radar/Lidar/Fusion. Offset=4
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Fig. 13 Variations of vy with Radar/Lidar/Fusion. Offset=4

Table II shows the mean square erros (MSE) on

x, y, vx, vy by Radar,Lidar,Fusion corresponding to the

seven experiences.

TABLE II
MSES OF x, y, vx, vy BY RADAR/LIDAR/FUSION

Radar Lidar Fusion
MSE on x 0.8 0.61 0.65
MSE on y 0.5 0.15 0.19
MSE on vx 0.16 0.45 0.29
MSE on vy 0.33 0.38 0.36

C. Comments

(a) The plots of x and y are relatively smooth for

Lidar/Radar/Fusion in both scenarios. In contrast, the

plots of vx and vy for Lidar present multiple brutal

transitions and piecewise constancies. These drawbacks

are minimal for Radar and Fusion.

(b) Multiple non detection periods of the target are observed

for Radar especially in the second scenario. This can be

explained by the fact that the target is not in the field

of view of the sensor or also by a sensor malfunction.

(c) It is remarkable that Radar was more accurate on x
than Lidar in the first scenario. This fact is supported

by the experiment presented in [6] in which Radar

was more accurate than Lidar on the relative distance

=
√
x2 + y2.

(d) Experiments lead to the following conclusion. First, in

terms of accuracy, Fusion provides a good compromise

value between Radar and Lidar. Second, Fusion is

more robust against unavailability of Lidar and Radar.

Unavailability of information has dangerous impact in

autonomous driving. This problem is very unlikely to

occur for Fusion as the latter combines two sensors.

D. Conclusion and Future Works

This paper presented a real-time fusion algorithm between

Lidar and Radar which was implemented and successfully

integrated into the autonomous car. This algorithm is based

on the GNN filter and outputs multiple characteristics of the

detected objects such as their relative positions/ velocities

and uncertainties. Performance of Fusion in comparison with

Radar and Lidar was evaluated through multiple tracking
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scenarios (on a highway and a bend) using two synchronised

vehicles and relying on data coming from ultra-precise RTK

sensors as a ground truth. Benefits of Fusion were illustrated

through two main central ideas: accuracy regarding the

ground truth and robustness against sensors malfunctions. In

future works, we plan to conduct experiencies in challenging

conditions and use ground truth to compare our approach

with the evidence theory approach [7].
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