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 
Abstract—An electrical generator able to harness energy from the 

water waves and designed as a double-cone geared motor-generator 
(DCGMG), is proposed and theoretically investigated. Similar to a 
differential gear mechanism, used in the transmission system of the 
auto vehicle wheels, an angular speed differential is created between 
the cones rolling on two concentric circular rails. Water wave acting 
on the floating DCGMG produces and a gear-box amplifies the speed 
differential to gain sufficient torque for power generation. A model 
that allows computation of the speed differential, torque, and power of 
the DCGMG is suggested. Influence of various parameters, regarding 
the construction of the DCGMG, as well as the contact between the 
double-cone and rails, on the electro-mechanical output, is 
emphasized. Results obtained indicate that the generated electrical 
power can be increased by augmenting the mass of the double-cone, 
the span of the rails, the apex angle of the cones, the friction between 
cones and rails, the amplification factor of the gear-box, and the 
efficiency of the motor-generator. Such findings are useful to 
formulate a design methodology for the proposed wave-powered 
generator. 
 

Keywords—Wave-powered electrical generator, double-cone, 
circular concentric rails, amplification of angular speed differential. 

I. INTRODUCTION 

T global scale of the Earth, the electrical power generation 
from the energy of sea and ocean waves has same potential 

as the hydraulic and geothermal electric power generation [1], 
[2]. However, such huge source of alternative energy appears as 
under-developed, since the structural integrity of the devices 
proposed up to now cannot be guaranteed under the extreme 
loading conditions of heavy sea waves and tsunamis [3], [4]. 

Quite a large variety of systems for power generation from 
water waves are using buoys fixedly attached to rods, pendular 
buoys hinged to rods, and pendular buoys hinged between them 
[1]-[6]. Wave movement is converted either into the alternative 
translational motion of a bar, or into the rotational motion of a 
shaft coupled to a dynamo. By employing a suitable mechanism, 
the reciprocating motion of the bar can be further transformed 
into the rotational motion of a shaft. On the other hand, 
electricity can be directly obtained from the reciprocating 
motion of the bar by using inductive, piezoelectric or dielectric 
devices. 

As alternative to buoyant generators, gyroscopic [7]-[10] and 
double-cone [11] power generators were proposed. On one 
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hand, waves rotate the floater of the gyroscope, and this 
rotational motion is transmitted to the gyroscopic precession 
axis that is linked to the shaft of a dynamo [10]. On the other 
hand, in the case of the previously suggested double-cone 
generators [11], the rotational motion of the buoy, is changed 
into the rotational and translational motion of a magnetized 
double-cone, which is rolling on divergent-convergent rails, 
materialized by using either straight V-rails or eccentric 
circular rails Movable magnetic double-cone extends a 
fluctuating field across the electrical conductors wound inside 
the rails, electricity being achieved via electromagnetic 
induction [11]. 

In this paper, a different wave-powered electrical generator, 
using a DCGMG that runs on two circular concentric rails is 
investigated. In the case of the proposed device, instead of 
employing a double-cone consisted of two rigidly coupled 
cones [11]-[16], relative rotation between cones is allowed by 
using a geared motor- generator. Similar to a classical 
differential gear [17], [18], an angular speed difference 
between cones can be produced and multiplied by the gear-box 
of the motor-generator. Purpose of this study is to clarify the 
effect of different geometrical and tribological parameters on 
the power output of the DCGMG. 

II. DESCRIPTION OF THE PROPOSED DCGMG 

DCGMG consists of a geared motor-generator, housed by a 
double-cone, which is travelling on two concentric circular rails, 
of outer radius ,oR  and inner radius iR  (Figs. 1 and 2). 

Classical rigid double-cone [11]-[16], composed of two 
fixedly joined cones, is replaced by a double-cone where the 
relative rotation motion between the inner and outer cones is 
permitted by a rotational-link, i.e. by a geared motor-generator. 
In a possible design of the DCGMG, inner cone accommodates 
the casing of the motor-generator, and its shaft is press-fitted 
into the outer cone, along the axis of symmetry of the DCGMG 
assembly. Inner and outer cones have the same height ,H  base 

radius ,R  and apex angle )./(tan 1 HR  Since a space of 

thickness t  is provided between cones, the total height of the 
DCGMG becomes tHHt  2  (Figs. 1, 2). Similar to 

differential gears, used in the transmission of autovehicle 
wheels, the outer cone is running along the longer outer rail, 
and hence, it rotates faster than the inner cone, which is running 
along the shorter inner rail. Such difference of angular speed 
between the inner and outer cones is amplified by the gear-box 
of the motor-generator. Hence, enough difference of angular 
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speed between stator and rotor is obtained to gain electrical 
power generation. 

Movement of the DCGMG is attenuated by the inherent 
friction between the cones and the rails, but it can be sustained 
if wave energy is supplied from time to time into the system. 
Thus, waves of random direction, height and period are able to 
produce random rotation of the buoy, and implicitly of the rails. 
Quite small inclination angles of the tracks are sufficient to 
sustain the motion of revolution of the DCGMG around the 
rails, and to produce the angular speed differential between the 
inner and outer cones. Besides, full revolution of the DCGMG 
around the center of the rails is not a mandatory condition to 
achieve electrical power generation. 

Table I shows the nomenclature associated to the proposed 
DCGMG. 
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Fig. 1 Schematic view of the proposed wave-powered electrical 
generator consisted of a DCGMG running on two circular concentric 

rails 
 

TABLE I 
NOMENCLATURE ASSOCIATED TO THE PROPOSED DCGMG ASSEMBLY 

Property Notation and units 

Base diameter of the inner and outer cones 2R [mm] 

Total height (length) of the DCGMG Ht [mm] 

Height of the inner and outer cones H [mm] 

Apex angle of the inner and outer cone Ψ [deg] 

Thickness of the space between the cones t [mm] 

Total mass of the DCGMG m [g] 

Mass of the outer cone mo [g] 

Mass of the inner cone mi [g] 

Moment of inertia of the outer cone Io [kgꞏmm2] 

Moment of inertia of the inner cone Ii [kgꞏmm2] 

Outer radius of the rails Ro [mm] 

Inner radius of the rails Ri [mm] 
Dynamic sliding friction coefficient at the contact of 

the inner cone with the inner rail 
μi [-] 

Dynamic sliding friction coefficient at the contact of 
the outer cone with the outer rail 

μo [-] 

Moment of inertia of the shaft and rotor of the 
geared motor-generator 

Is [kgꞏmm2] 

III. THEORETICAL MODEL: CONTACT RADIUS AND THE 

ANGULAR SPEED DIFFERENTIAL OF THE DCGMG 

Tangential speeds, corresponding to the contact points P and 
Q of the DCGMG with the inner and outer circular rails, can be 

written as (see Fig. 2): 
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where ia  is the contact radius of the inner cone with the inner 

rail, oa  is the contact radius of the outer cone with the outer rail, 

i  is the angular speed of the inner cone, o  is the angular 

speed of the outer cone, and   is the revolution speed of the 
DCGMG around the center O of the rails. 
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Fig. 2 Geometrical and kinematical parameters describing the contact 
of the DCGMG with the circular concentric rails 

 
On the other hand, a geometrical relationship connecting the 

height of the DCGMG, the span of the rails, and the contact 
radii, can be obtained as follows (see Fig. 2): 

 


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RRtHH                      (2) 

 
Theoretical model will be developed under the assumption 

that the inner contact radius equals the outer contact radius: 
 

aaa oi                                      (3) 
 
Condition (3) is similar to the working condition of 

differential gears used in transmission system of the 
autovehicle wheels, in which the left and right tires have the 
same contact radius with the road. Besides, such condition can 
be easily achieved from a practical standpoint, for concentric 
circular rails, where the span of the tracks io RR   is constant. 

Under the imposed running condition (3), the contact radius of 
DCGMG with the rails can be written as: 

 

 tan)1(5.0 ito RHRa                           (4) 
 

where tH  is the dimensionless height of the DCGMG, and iR  

is the dimensionless radius of the inner rail, defined as: 
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Since the span of the rails io RR   should be smaller than the 

height tH  of the DCGMG ),( tio HRR   and since the inner 

radius iR  should be smaller than the outer radius oR  of the 

rails ),( oi RR   the following inequality can be obtained for the 

dimensionless radius of the inner rail: 
 

11  it RH                                (6) 
 
Next, from (1) in connection with (3) and (4), the angular 

speeds of the outer and inner cones can be derived as: 
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          (7) 

 
Results (7) agree with the intuitive kinematics of the 

DCGMG, i.e. outer cone, which is running along the longer 
outer rail, rotates faster than inner cone, which is running along 
the shorter inner rail. Therefore, the difference of angular speed 
between the inner and outer cones can be written as: 
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In order to completely describe the angular speed differential, 

the revolution speed   of the DCGMG around the center O of 
the rails should be determined, as shown in the next section. 

IV. THEORETICAL MODEL: CONTACT FORCES AND THE 

REVOLUTION SPEED OF THE DCGMG 

In order to find the contact forces, i.e. the normal forces QN


(  

and )PN


 as well as the frictional forces QfF ,(


 and ),,PfF


 

acting in the contact points P and Q, and then, in order to obtain 
the revolution speed   of the DCGMG around the center O of 
the rails, the Newton’s Law of Dynamics, concerning the mass 
center O1 of the DCGMG, can be written as (see Fig. 3): 

 

0,,
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Note that QfF ,


 and PfF ,


 are sliding friction forces, taken 

along the conical generatrices, and they can be calculated as: 
 

PiPfQoQf NFNF   ,, ;                     (10) 

 
where o  is the sliding friction coefficient at the contact of the 

outer cone with the outer rail, and i  is the sliding friction 

coefficient at the contact of the inner cone with the inner rail. 

On the other hand, kmg


  is the force of gravity, and 

jRm m


2  is the centrifugal force acting on the DCGMG, where 

the mean radius of the rails is given by (see Fig. 2): 
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Next, projection of (9) along the axes O1y and O1z leads to: 
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Fig. 3 Equilibrium of forces and moments acting on the DCGMG 
 

Since (12) gives a set of two equations with three unknowns 
),,,( PQ NN  in order to completely solve the problem, a third 

equation should be added. For instance, in an approximate but 
simplified approach, one might assume that the normal force at 
the inner contact point P equals the normal force at the outer 
contact point Q ).( PQ NN  In such conditions, (12) leads to 

the following approximate contact forces: 
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and, the approximate revolution speed of the DCGMG, around 
the center O of the rails: 
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However, a correct approach of the problem requires the 

addition of the equilibrium equation at rotation of the DCGMG 
around the axis O1x (see Fig. 3). Since the gravitational and 
centrifugal forces pass through the point O1, their moments are 
nil. Consequently, the rotational equilibrium is dictated by the 
moments corresponding to the normal and frictional forces, 
leading to the following relationship between QN  and :PN  
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21 fNfN PQ                                 (15) 

 
where the functions 1f  and 2f  of (15) can be defined as: 
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In such circumstances, (12) in correlation with (15)-(16) 

leads to the following exact contact forces: 
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and, the exact revolution speed of the DCGMG, around the 
center O of the rails: 
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On one hand, one observes that: 
 

1212 0cossin)( ffHff iot         (19) 
 

which leads to the conclusion that the outer contact force QN  is 

larger than the inner contact force ,PN  a result consistent with 

equilibrium of moments on the DCGMG (see Fig. 3). 
On the other hand, after some manipulations, (18) can be 

rewritten as: 
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where the constant C  can be calculated as: 
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in which o  and i  are the friction angles, given by: 
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Note that the more complex but exact solutions for contact 

forces and revolution speed, given by (17) and (20), resemble 
somewhat the approximate but simpler solutions, given by 
(13)-(14). However, the usage of (17) and (20) in the analytical 
and numerical calculations becomes less convenient. 

Additionally, since ,02   from (20) combined with (21), 

one obtains a new restrictive condition on the dimensionless 
radius of the inner rail, which comes to replace the right part of 
the inequality (6), as follows: 
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in which C  denotes the ratio ].tan)(2/[  ioC   

V. THEORETICAL MODEL: TORQUE AND POWER AT THE SHAFT 

OF THE DCGMG 

In order to determine the torque acting on the shaft of the 
DCGMG, one should take into account the equation of dynamic 
equilibrium at rotation around the axis O1y, for the outer cone 
(see Fig. 4), and also for the inner cone (see Fig. 5). 

Firstly, Fig. 4 leads to the following equation of rotational 
dynamic equilibrium: 

 

tofoo MaFI  ,                              (24) 

 
where oI  is the moment of inertia of the outer cone (see Table 

I), o  is the angular acceleration of the outer cone, a  is the 

radius of contact given by (4), ofF ,  is the rolling friction force 

acting on the outer cone, and tM  is the torque acting on the 

shaft of the DCGMG. 
On the other hand, Fig. 5 leads to the following set of 

equations of dynamic equilibrium, one equation being for the 
rotation of the inner cone, and the other for the rotor of the 
motor-generator, which is housed inside the inner cone: 
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where iI  is the moment of inertia of the inner cone (Table I), 

sI  is the moment of inertia of the shaft-rotor assembly of the 

motor-generator (Table I), i  is the angular acceleration of the 

inner cone, s  is the angular acceleration of the shaft-rotor 

assembly of the motor-generator, ifF ,  is the rolling friction 

force acting on the inner cone, and rM  is the resistant electro- 

magnetic torque occurring between the rotor and stator. 
Additionally, the angular speeds and accelerations satisfy the 

following relationships (see the DCGMG construction and (7)): 
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Combining (24)-(26), one finds after several manipulations 

the following expression for the torque acting on the shaft of 
the DCGMG: 
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It can be argued that ratio of the moments of inertia satisfies 

the following relations: 
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and in such conditions, torque at the shaft of the DCGMG can 
be approximately, but quite accurately, calculated as: 
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Fig. 4 Equilibrium of moments on the outer cone around O1y axis 
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Fig. 5 Equilibrium of moments on the shaft-rotor assembly, and on the 
stator-inner cone assembly, around the O1y axis 

 
In order to completely determine the torque, one should add 

the equation of equilibrium at rotation around the axis O1z of 
the DCGMC (see Fig. 6), as follows: 
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Since the arms of frictional forces ofF ,  and ,,ifF  are 

identical: 
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equality of the rolling friction forces is implicitly achieved: 
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Fig. 6 Equilibrium at rotation of the DCGMG around the O1z axis, and 
the Newton’s Law of Dynamics applied to the mass center O1, along 

the O1x axis 
 

Next, the Newton’s Law of Dynamics, applied to the mass 
center O1 of the DCGMG, along the O1x axis can be written as: 
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where   is the angular acceleration at the revolution of the 
DCGMG, around the center O of the circular rails (see Fig. 6). 

Substituting in (29) the contact radius a  as given by (4), and 
the results (32)-(33), one obtains the following expression for 
the torque acting on the shaft of the DCGMG: 
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Taking the angular acceleration   for the movement of 
revolution of the DCGMG around the center of the rails, as the 
ratio of the angular speed   to the wave period T  (Fig. 7): 

 

T/                                         (35) 
 

torque acting on the shaft of the motor-generator becomes: 
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Fig. 7 Sea and ocean wave spectrum 
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While the best range of wave period for power generation is 
T 8-13 s (see Fig. 7), the angular speed   can be substituted 

in (36) from (14), leading to an approximate expression for the 
torque computation: 
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or from (20), giving an exact formula for the torque calculus: 
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      (38) 

 
Then, the mechanical power inputted at the shaft of the 

motor-generator used in the construction of the DCGMG, and 
the electrical power outputted by DCGMG can be calculated as: 

 

mecheltmech PPMP   ;                 (39) 
 

where   is the efficiency of the motor-generator [19]-[21]. 

Substituting in (39) the torque (36), and the angular speed 
differential   as given by (8), the mechanical power can be 
rewritten as: 
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Term 2  can be substituted in (40) from (14), leading to the 
following approximate expression for the calculus of the 
mechanical power: 
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or from (20), furnishing the next exact formula of computation 
for the mechanical power: 
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VI. RESULTS AND DISCUSSIONS 

Fig. 8 shows, based on (4)-(6) and (23), the linear ascending 
variation of the dimensionless radius of contact oRaa /  

versus the dimensionless radius iR  of the inner rail. As 

expected, radius of contact decreases at augmentation of the 
dimensionless span iR1  of the rails. 

iR

 tan)1(5.0/ ito RHRaa

D
im

en
si

on
le

ss
 r

ad
iu

s 
of

 c
on

ta
ct

, a
[-

]

0 1
tH1

CH t1

tan5.0 tH

)1(tan5.0 CHt 

Working 
range of the 

DCGMG

iR

 tan)1(5.0/ ito RHRaa

D
im

en
si

on
le

ss
 r

ad
iu

s 
of

 c
on

ta
ct

, a
[-

]
D

im
en

si
on

le
ss

 r
ad

iu
s 

of
 c

on
ta

ct
, a

[-
]

0 1
tH1

CH t1

tan5.0 tH

)1(tan5.0 CHt 

Working 
range of the 

DCGMG

 

Fig. 8 Variation of the dimensionless radius of contact versus the 
dimensionless radius of the inner rail 

 

Concerning the parameter ]tan)(2/[  ioCC   that 

occurs in the description of the results presented by Figs. 8-21, 
three distinct cases can be taken into account (see (21)-(22)). 
Concretely, regarding the magnitude of the friction coefficient 

o  at the contact of the outer cone with the outer rail, relative to 

the friction coefficient i  at the contact of the inner cone with 

the inner rail, three distinct cases can be defined as: 
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Next, Fig. 9 shows based on (14) the nonlinear descending 

variation of the dimensionless approximate revolution speed 

a  of the DCGMG versus the dimensionless radius iR  of the 

inner rail. 
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Fig. 9 Variation of the dimensionless approximate revolution speed of 
the DCGMG versus the dimensionless radius of the inner rail 



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:12, No:9, 2018

593

 

 

It is useful to observe that, similar to (43), for the parameter 
],tan)(2/[)(*  ioioC   which occurs on Figs. 9- 

21, three distinct cases can be taken into account, as follows: 
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Next, Fig. 10 shows, based on (20), the valley-like variation 

of the dimensionless exact revolution speed   of the DCGMG 
versus the dimensionless radius iR  of the inner rail, obtained 

under the condition .2/tHC   Compared to the approximate 

speed ,a  the exact speed   shows a different pattern of 

variation against the radius of the inner rail. Thus,   tends to 
infinity for ,1 CHR ti   and displays a minimum for 

.21 CHR ti   On the other hand, Fig. 11 shows, based on 

(20), the nonlinear ascending variation of the dimensionless 
exact revolution speed   of the DCGMG versus the 
dimensionless radius iR  of the inner rail, obtained under the 

condition ,2/tHC   i.e. under the following restriction: 
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Fig. 12 compares the results separately presented by Figs. 

9-11, concerning the revolution speed of the DCGMG, 
obtained using the approximate solution (14), and the exact 
solution (20), for both conditions 2/tHC   and .2/tHC   
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Fig. 10 Variation of the dimensionless exact revolution speed of the 
DCGMG versus the dimensionless radius of the inner rail, obtained 

under the condition: 2/tHC   
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Fig. 11 Variation of the dimensionless exact revolution speed of the 
DCGMG versus the dimensionless radius of the inner rail, obtained 

under the condition: 2/tHC   

 

One observes that the approximate speed a  appears to be 

smaller than the exact speed ,  and the augmentation of ,C  

i.e. the augmentation of the friction at the outer cone (see (45)) 
is beneficial for the amplification of the revolution speed. In 
conclusion, despite the complexity of analytical and numerical 
calculus, design of the water wave-powered generator should 
be performed based on the exact expression for the revolution 
speed of the DCGMG. 

Fig. 13 shows, based on (8) combined with (14), the non- 
linear descending variation of the approximate difference of 
angular speed a  between the outer and inner cones of the 

DCGMG versus the dimensionless radius iR  of the inner rail. 

On the other hand, Fig. 14 shows, based on (8) combined 
with (20), the valley-like variation of the exact difference of 
angular speed   between the outer and inner cones of the 

DCGMG versus the dimensionless radius iR  of the inner rail. 
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Fig. 12 Comparison of the results concerning the variation of the 
dimensionless revolution speed of the DCGMG versus the 

dimensionless radius of the inner rail 
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Fig. 13 Variation of the approximate difference of angular speed 
between the outer and inner cones of the DCGMG versus the 

dimensionless radius of the inner rail 
 

Exact difference of angular speed   displays a minimum 

for :)2/(31 CCHR ti   
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and tends to infinity for ti HR 1  and for .1 CHR ti   

Fig. 15 compares the results separately presented by Figs. 13 
and 14, concerning the difference of angular speed between the 
outer and inner cones of the DCGMG obtained by using the 
approximate and exact solutions. As expected, the approximate 
difference of angular speed a  has a different pattern of 

variation against the radius of the inner rail, and it is smaller 
than the exact difference of angular speed   for any .iR  
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Fig. 14 Variation of the exact difference of angular speed between the 
outer and inner cones of the DCGMG versus the dimensionless radius 

of the inner rail 
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Fig. 15 Comparison of the results concerning the variation of the 
difference of angular speed between the outer and inner cones of the 

DCGMG versus the dimensionless radius of the inner rail 
 

Next, by imposing in (8) the condition  1, i.e. during one 
complete revolution of the DCGMG around the center O of the 
rails, the differential of the number of rotations between the 
outer and inner cones, can be written as: 
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Accordingly, the differential N  decreases at augmentation 

of the dimensionless radius iR  of the inner rail. 

Fig. 16 shows, based on (37), the mountain-like variation of 
the dimensionless approximate torque 0,,, / tatat MMM   at the 

shaft of the geared motor-generator versus the dimensionless 
radius iR  of the inner rail, where the referential torque 0,tM  is 

defined as follows: 
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Thus, torque atM ,  displays a maximum for ,3/1 ti HR   

and becomes nil for ,1 ti HR   as well as for .1iR  

Fig. 17 shows, based on (38), the nonlinear variation of the 
dimensionless exact torque 0,/ ttt MMM   at the shaft of the 

geared motor-generator versus the dimensionless radius iR  of 

the inner rail. Note that the torque tM  starts from a nil value at  

,1 ti HR   displays a maximum for ,21 CHR ti   as well 

as a minimum for ,3/1 ti HR   and finally tends to infinity 

for .1 CHR ti   Such torque distribution is obtained under 

the condition that the point corresponding to the maximal value 
of the torque ( CHR ti 21 ) exceeds ,1 ti HR   i.e. under 

the condition .2/1C  Moreover, minimal value of the torque 
can be reached only under the condition that the square root 
exists, i.e. under the restriction .3/1C In order to fulfill such 
condition, the following inequality, concerning the friction 
coefficient at the contact between the outer cone and the outer 
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rail, should be satisfied: 
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Thus, (45) and (49) determine the range in which the friction 

coefficient o  of the outer contact can be selected for a given 

friction coefficient i  of the inner contact, and for a given 

geometry of the wave-powered generator. 
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Fig. 16 Variation of the dimensionless approximate torque at the shaft 
of the motor-generator versus the dimensionless radius of the inner rail 
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Fig. 17 Variation of the dimensionless exact torque at the shaft of the 
motor-generator versus the dimensionless radius of the inner rail 

 
Fig. 18 compares the results separately presented by Figs. 16 

and 17, concerning the dimensionless torque at the shaft of the 
DCGMG, found by using the approximate and exact solutions. 
As expected, the approximate torque atM ,  has a different 

pattern of variation against the radius of the inner rail, and it is 
smaller than the torque tM  for any .iR  
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Fig. 18 Comparison of the results concerning the variation of the 
dimensionless torque at the shaft of the motor-generator versus the 

dimensionless radius of the inner rail 
 

Fig. 19 shows, based on (41), the nonlinear descending 
variation of the dimensionless approximate mechanical power 

0,,, / mechamechamech PPP   inputted at the shaft of the geared motor- 

generator versus the dimensionless radius iR  of the inner rail, 

where the referential power 0,mechP  is defined as follows: 

 

2
0, 2 t

o
mech H

T

mgR
P                               (50) 

 

Thus, power amechP ,  displays a maximum for ,1 ti HR   

and becomes nil for .1iR  

Fig. 20 shows, based on (42), the valley-like variation of the 
dimensionless exact mechanical power 0,/ mechmechmech PPP   

inputted at the shaft of the geared motor-generator versus the 
dimensionless radius iR  of the inner rail. One observes that the 

power mechP  starts from a finite value at  ,1 ti HR   displays 

a minimum for ,21 CHR ti   and then, tends to infinity for 

.1 CHR ti   Again, such mechanical power  distribution is 

obtained under the condition that the point corresponding to the 
minimal value of the torque ( CHR ti 21 ) exceeds 

,1 ti HR   i.e., under the condition .2/1C  Moreover, in 

fact, a severer restriction )3/1( C  should be imposed, as 

argued in the previous analysis of the torque (see (49)). 
Fig. 21 compares the results separately presented by Figs. 19 

and 20, concerning the dimensionless mechanical power at the 
shaft of the DCGMG, found by using the approximate and 
exact solutions. As expected, the approximate power amechP ,  

has a different pattern of variation against the radius of the 
inner rail, and it is smaller than the torque mechP  for any .iR  
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Fig. 19 Variation of the dimensionless approximate mechanical power 
inputted at the shaft of the motor-generator versus the dimensionless 

radius of the inner rail 
 

iR

CHR

R
P

P

P
P

ti

i
amech

mech

mech
mech 




1

1
,

0,

0 1
tH1

CH t1


CH

C

t  1

1

2

*

CH t21

3/1

2/1




C

C

Conditions:

D
im

en
si

on
le

ss
 e

xa
ct

 
m

ec
ha

ni
ca

l p
ow

er
, P

m
ec

h
[-

]

CH

CC

t1

4 2*

iR

CHR

R
P

P

P
P

ti

i
amech

mech

mech
mech 




1

1
,

0,

0 1
tH1

CH t1


CH

C

t  1

1

2

*

CH t21

3/1

2/1




C

C

Conditions:

D
im

en
si

on
le

ss
 e

xa
ct

 
m

ec
ha

ni
ca

l p
ow

er
, P

m
ec

h
[-

]
D

im
en

si
on

le
ss

 e
xa

ct
 

m
ec

ha
ni

ca
l p

ow
er

, P
m

ec
h

[-
]

CH

CC

t1

4 2*

 

Fig. 20 Variation of the dimensionless exact mechanical power 
inputted at the shaft of the motor-generator versus the dimensionless 

radius of the inner rail 
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Fig. 21 Comparison of the results concerning the variation of the 
dimensionless mechanical power inputted at the shaft of the 

motor-generator versus the dimensionless radius of the inner rail 

Based on (42) and Fig. 20, one discerns the influence of the 
various geometrical and contact parameters on the mechanical 
power inputted at the shaft of the DCGMG. Thus, mechP  varies 

directly proportionally to the mass m  of the DCGMG, to the 
gravitational acceleration ,g  to the radius oR  of the outer rail, 

to the third power of the dimensionless span iR1  of the rails, 

and to the sum of the sliding friction coefficients io    at the 

contact between the cones and the rails. On the other hand, 

mechP  varies inversely proportionally to the mean dimensionless 

radius )1(5.0 iR  of the rails, and to the period T  of the waves 

(Fig. 7). Thus, the proposed water wave-powered generator is 
intended to mainly operate in the regime of gravitational waves 
induced by the wind, in the proximity of the highest peak of the 
power spectrum, i.e. for wave periods of T 8-13 s (see Fig. 7). 
Moreover, analyzing the denominator of (42) in correlation 
with (45) and (49), which determine the allowable range of 
selection for the outer contact friction coefficient o  for a 

given inner contact friction coefficient ,i  one concludes that 

it is desirable to provide as large as possible friction coefficient 
at the outer contact. In such case, augmentation of the apex 
angle of the cones is beneficial for the effect of power 
generation. 

VII. CONCLUSIONS 

In this work, a wave-powered electrical generator that uses a 
DCGMG was proposed and its output was theoretically 
evaluated. It appears that, in order to augment the generated 
electrical power, the designer has the following options: 
1) To increase the mass of the DCGMG; 
2) To increase the span of the rails, which can be achieved by 

increasing the outer radius of the rails and/or by decreasing 
the inner radius of the rails; 

3) For a given sliding friction coefficient at the contact of the 
inner cone with the inner rail, to increase as much as 
possible the sliding friction coefficient at the contact of the 
outer cone with the outer rail; 

4) To augment the apex angle of the cones, under limitations 
previously discussed in the results section; 

5) To provide large amplification factor for the gear-box used 
in the construction of the geared motor-generator; 

6) To select a motor-generator of high electro-mechanical 
efficiency. 

REFERENCES 
[1] B. Drew, A. R. Plummer, and M. N. Sahinkaya, “A Review of Wave 

Energy Converter Technology,” Journal of Power and Energy, 223, pp. 
887–902, 2009. 

[2] R. Kempener, and F. Neumann, Wave Energy Technology. Abu Dhabi: 
International Renewable Energy Agency, 2004, pp. 1–28. 

[3] J. Twidell, and T. Weir, Renewable Energy Sources. New York: Taylor & 
Francis, 2006, pp. 400–429. 

[4] P. Meisen, and A. Loiseau, Ocean Energy Technologies for Renewable 
Energy Generation. San Diego: Global Energy Network Institute, 2009, 
pp. 1–27. 

[5] R. Waters, Energy from Ocean Waves. Uppsala University: PhD Thesis, 
2008, pp. 1–132. 



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:12, No:9, 2018

597

 

 

[6] A. S. Kumar, “Simple and Nonstop Buoyant Arm Wave Energy 
Converter,” International Journal of Innovative Research & 
Development, 3(10), pp. 180–183, 2014. 

[7] H. K. Sachs, and G. A. Sachs, “Mechanism for Generating Power from 
Wave Motion on a Body of Water,” US Patent, 4,352,023, pp. 1–16, 
1982. 

[8] V. Orlando, “System for Generating Electrical Energy from Sea Waves,” 
US Patent, 239,643, pp. 1–15, 2014. 

[9] G. Bracco, E. Giorcelli, and G. Mattiazzo, “Performance Assessment of a 
2DOF Gyroscopic Wave Energy Converter,” Journal of Theoretical and 
Applied Mechanics, 53, pp. 195–207, 2015. 

[10] H. Kanki, “Gyro Wave Activated Power Generator and a Wave 
Suppressor using the Power Generator,” US Patent, 7,003,947, pp. 1–11, 
2006. 

[11] B. Suciu, “Solution to the Problem of Contact between a Double-Cone 
and Two Eccentric Circular Rails used in the Construction of a 
Wave-Powered Electrical Generator,” Transactions of the JSME, 83(853), 
pp. 17.00093.1–12, 2017 (in Japanese). 

[12] A. A. Gallitto, and E. Fiordilino, “The Double Cone: A Mechanical 
Paradox or a Geometrical Constraint?,” Physics Education, 46, pp. 
682–684, 2011. 

[13] S. C. Gandhi, and C. J. Efthimiou, “The Ascending Double-Cone: A 
Closer Look at a Familiar Demonstration,” European Journal of Physics, 
26, pp. 681–697, 2005. 

[14] B. Suciu, “On the Kinematics of a Double-Cone Gravitational Motor,” 
International Journal of Science and Engineering Investigations, 5(53), 
pp. 1–7, 2016. 

[15] B. Suciu, “Frictional Effects on the Dynamics of a Truncated Double- 
Cone Gravitational Motor, International Journal of Mechanical, 
Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 
11(1), pp. 28–38, 2017. 

[16] N. Balta, “New Versions of the Rolling Double Cone,” Physics Teacher, 
40, pp. 156–157, 2002. 

[17] H. A. Rothbart, Mechanical Design and Systems Handbook. New York: 
McGraw-Hill, 1985, pp. 7–173. 

[18] R. C. Juvinall, and K. M. Marshek, Fundamentals of Machine Component 
Design. London: John Willey & Sons, 2006, pp. 1–769. 

[19] J. A. Stratton, Electromagnetic Theory. London: McGraw-Hill, 1941, pp. 
185–222. 

[20] K. M. Rao, Elements of Electrical Engineering. New Delhi: I.K. 
International Publishing, 2015, pp. 1–227. 

[21] A. Pramanik, Electromagnetism. New Delhi: PHI Learning, 2014, pp. 
12–621. 

 
 
Barenten Suciu was born on July 9, 1967. He received Dr. Eng. Degrees in the 
field of Mech. Eng. from the Polytechnic University of Bucharest, in 1997, and 
from the Kobe University, in 2003. He is working as Professor at the 
Department of Intelligent Mech. Eng., Fukuoka Institute of Technology. He is 
also entrusted with the function of Director of the Electronics Research Institute, 
affiliated to the Fukuoka Institute of Technology. He is member of JSME and 
JSAE. His major field of study is the tribological and dynamical design of 
various machine elements. 


