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 
Abstract—Classical matrix calculus and Routh-Hurwitz stability 

conditions, applied to the snake-like motion of the conical wheel axle, 
lead to the conclusion that the hunting mode is inherently unstable, and 
its natural frequency is a complex number. In order to analytically 
solve such a complicated vibration model, either the inertia terms were 
neglected, in the model designated as geometrical, or restrictions on 
the creep coefficients and yawing diameter were imposed, in the 
so-called dynamical model. Here, an alternative solution is proposed 
to solve the hunting mode, based on the observation that the bullet 
train wheel axle is equipped with cylindrical wheels. One argues that 
for such wheel treads, the geometrical hunting is irrelevant, since its 
natural frequency becomes nil, but the dynamical hunting is significant 
since its natural frequency reduces to a real number. Moreover, one 
illustrates that the geometrical simplification of the wheel causes the 
stabilization of the hunting mode, since the characteristic quartic 
equation, derived for conical wheels, reduces to a quadratic equation 
of positive coefficients, for cylindrical wheels. Quite simple analytical 
expressions for the damping ratio and natural frequency are obtained, 
without applying restrictions into the model of contact. Graphs of the 
time-depending hunting lateral perturbation, including the maximal 
and inflexion points, are presented both for the critically-damped and 
the over-damped wheel axles. 
 

Keywords—Bullet train, dynamical hunting, cylindrical wheels, 
damping, stability, creep, vibration analysis. 

I. INTRODUCTION 

RADITIONALLY, vibration analysis associated to the 
snake-like movement of the railway vehicle, is performed 

under the assumption that the wheel tread is slightly conical [1], 
[2], and moreover, the whole wheel axle can be circumscribed 
by a double-cone [3], [4]. Simplest analytical expression for the 
natural frequency of the wheel axle hunting mode was found 
based on a so-called geometrical model [1], [2], in which the 
inertial effect, i.e. the mass of the wheel axle, was neglected. 
Since geometrical model cannot predict the dissipation induced 
by the contact of the wheels with the rails [5], [6], in absence of 
damping, once started, the hunting vibration of the wheel axle 
cannot be naturally halted [7], [8]. Moreover, as emphasized in 
this work, the geometrical model cannot describe the hunting 
motion of a wheel axle equipped with cylindrical wheel treads, 
which are commonly employed by the bullet trains [9], [10]. 

Improvement of the geometrical hunting vibration model, by 
including the inertial effect, was achieved under different types 
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of assumptions regarding the creep ratio f  (ratio of the lateral 

creep coefficient to the longitudinal creep coefficient), and also 

regarding the dimensionless contact width b  (ratio of the track 
span to the yawing diameter of gyration) of the wheel axle [4], 
[11]. Thus, hunting analysis is customarily simplified by 
considering that the lateral creep coefficient almost equals the 
longitudinal creep coefficient ( 1f ) [1]-[6], [11]-[15]. 

Additionally, unitary dimensionless contact width ( 1b ) was 
widely used, and this assumption is acceptable for various types 
of railway carriages [16]-[18]. Recently, the severer restriction 

,1 fb  usually used in the study of the hunting motion, was 

replaced by a milder restriction ( 0)( 22  fb ) [4]. Based on the 

derived expressions for the damping coefficients and damped 
natural frequency, one clarified the influence of the train speed, 
wheel conicity, dimensionless mass of the wheel axle, creep 
ratio, and, ratio of the track span to the yawing diameter, on 
these dynamic parameters [4], [11]. Unfortunately, even these 
advanced models fail to properly depict the hunting movement 
for the simpler constructive case of a wheel axle furnished with 
cylindrical wheel treads. 

Accordingly, in this work, the vibration model is improved 
to allow for the accurate evaluation of the damping and stability 
associated to the dynamical hunting motion for the bullet train 
wheel axle, of negligible wheel conicity. 

II. HUNTING MODEL FOR THE RAILWAY WHEEL AXLE 

EQUIPPED WITH CONICAL WHEEL TREADS 

Due to the conical geometry of the wheels, values of contact 
radius with the rails are different at the left and right wheels, 
and this produces a wedge effect that opposes the lateral 

perturbation   and the angular perturbation   [4]. Hunting 
vibration of the railway wheel axle can be described by the 
following set of two differential equations [1]-[4], [11]: 
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where m  denotes the mass of the wheel axle, 2

zmR  is the 

yawing moment of inertia, corresponding to a rotation of the 
wheel axle around the vertical z  axis, zR  is the yaw gyration 
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radius, 1f  is the longitudinal creep coefficient, and 2f  is the 

lateral creep coefficient. Creep coefficients are taken for the 
whole wheel axle, i.e. they include the creep effects at both the 
left and right contact points of the wheels with the rails. 

Neglecting in (1), the inertial terms of translation ( m ) and 
rotation ( 2

zmR ), i.e. neglecting the mass of the wheel axle 

( 0m ), and applying Laplace transformation to the simplified 
set of equations, the characteristic equation of the geometrical 
hunting mode can be obtained as [1]-[4], [11]: 
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where r  is the contact radius of the unperturbed wheel axle, b 

is the semi-span of the parallel rails,  is the slope of the 

conical wheel tread, and V is the velocity of the wheel axle 
along the rails. Under such severe simplification of the model, 
from (2) a real value for the natural circular frequency of the 
geometrical hunting motion is obtained as [1]-[4], [11]: 

 

rb
Vg

                                        (3) 

 

Since (2) does not contain a term in ,s  it appears that in the 

absence of damping, once excited, the hunting vibration of the 
wheel axle cannot be naturally attenuated [4]. Moreover, since 
for negligible wheel conicity ( 0 ), the natural circular 
frequency becomes nil ( 0g ), and it seems that the 

geometrical model cannot describe the hunting for the wheel 
axle furnished with cylindrical wheel treads. 

Concerning the dynamical hunting mode, if the inertia terms 
are not neglected in (1), after performing the Laplace transform, 
a quartic characteristic equation, with a missing term in ,s  is 
obtained as [4], [11]: 
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Thus, polynomial coefficients of (4) are given by [4]: 
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where 

12 / fff   is the creep ratio, i.e. the ratio of the lateral 

creep coefficient 2f  to the longitudinal creep coefficient ,1f  

)/(1 mVfc   is the creep circular frequency, and 
zRbb /  is 

the dimensionless contact width, i.e. the ratio of the track span 

b2  to the yawing diameter zR2  of gyration. 

Routh-Hurwitz stability conditions for quartic characteristic 
equation can be generally written as [19], [20]: 
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Evaluating the conditions (6) for the quartic equation (4), one 

observes that the first four conditions are satisfied as follows: 
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However, since the last condition of (6) is not satisfied: 
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the wheel axle hunting occurs as an inherently unstable motion. 

Moreover, by rewriting (1) of the dynamical hunting mode in 
matrix form [8], [21]: 
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where the mass matrix  M  is given by: 
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and the damping matrix  ,C and the stiffness matrix  K  are 

given by: 
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In these circumstances, the characteristic equation attached 

to the natural circular frequency n  of the system can be 

written as [8], [21]: 
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leading to the following quartic equation in :n  
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42224  Afb ngcn                (13) 

 
Thus, although a real value (3) was found for the natural 

circular frequency of the geometrical hunting motion, from (13), 
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an imaginary value, i.e. a complex number is obtained for the 
natural circular frequency of the dynamical hunting movement: 

 

ifbgcn  2                              (14) 

 
Physical significance of (14) can be explained as follows. 

Linear system of equations (1) can be generally decoupled into 
two state space modes, with four components, corresponding to 
the generalized displacements ),(  and velocities ),(    

[22]. The state space modes are defined by means of the 
complex eigenvectors of the system containing magnitudes and 
phase angles. The appearance of spatially varying phase angles 
implies travelling wave behavior of the mode shape as the 
oscillation proceeds through a cycle. This is a major and 
important difference from the synchronous standing oscillation 
found for the classical damped systems. The complex modal 
coordinates, which determine the modal amplitude and the 
modal phase, can be defined by means of the eigenvectors and 
the initial conditions. This feature is induced by the normality 
properties of the complex eigenvectors [22]. Moreover, from 

(14), one observes that for negligible wheel conicity ( 0 ), 
the geometrical hunting frequency becomes nil ( 0g ), and 

hence, the natural circular frequency becomes zero ( 0n ). 

Consequently, it seems that also the dynamical models, 
previously proposed [4], [11], cannot describe, without proper 
adjustment, the hunting movement of the wheel axle supplied 
with cylindrical wheel treads. 

III. HUNTING MODEL FOR THE RAILWAY WHEEL AXLE 

EQUIPPED WITH CYLINDRICAL WHEEL TREADS 

In the case of bullet trains carriages, such as the Japanese 
bullet train, Shinkansen, the geometrical hunting mode of the 
wheel axle appears as irrelevant since for cylindrical wheel 
treads ( 0 ) the geometrical circular frequency becomes nil 

( 0)/(  rbVg  ). However, although the last coefficient of 

(4) becomes nil ( 0222
0  fbA gc ), the dynamical hunting 

mode occurs as still significant, since the characteristic quartic 
equation (4) reduces to the following quadratic equation: 
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In the case of cylindrical treads, all three coefficients of the 

quadratic equation (15) are positive (see (5)), i.e., they have the 
same sign. Therefore, based on the Routh-Hurwitz stability 
conditions [19]-[20], the dynamical hunting mode appears as 
stabilized. 

Solutions of (15) are real and can be calculated as: 
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Then, the following three possibilities can be taken into 

account: 

1) In the case ,2 fb   solutions (16) reduce to: 
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2) In the case ,2 fb   solutions (16) reduce to: 
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                        (18) 
 

3) In the case ,2 fb   solutions (16) reduce to: 
 

2
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In order to identify the damping spontaneously occurring at 

the contact between the cylindrical wheels and the rails, during 
the hunting motion of the railway wheel axle, one pays 
attention to similarities between (17)-(19), and solutions (20): 
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which correspond to (21), i.e. to the characteristic equation of a 
classical damped one-degree of freedom vibration system, 
consisted of a spring connected in parallel to a dashpot [7], [8]: 
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Here, n  is the natural circular frequency, and   is damping 

ratio. Real solutions of the characteristic equation (21) can be 
obtained only in the case when the mechanical system is 
over-damped, i.e. ,1  or critically-damped, i.e. 1  [7]. 

Note that, solutions (20) in correlation with (17) for ,2 fb   and 

(19) for ,2 fb   allow for identification of the damping ratio   

and natural frequency n  as follows: 
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On the other hand, solutions (20) in correlation with (18) for 

,2 fb   permit the identification of the damping ratio   and 

natural frequency n  as: 
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From (22), the partial derivatives of the damping ratio can be 

calculated as: 
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From derivatives (24), one observes that the minimal value 

of the damping ratio 1min   is attained for fb 2  (see Figs. 

1 and 2). Supplementary, an inflexion point is to be expected 
for 23bf   (see Fig. 2). 

Additionally, from (22), values of the damping ratio when b  
and f  tend to zero and infinity can be determined as: 
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IV.  RESULTS AND DISCUSSIONS 

 

Fig. 1 Variation of the hunting damping ratio versus the dimensionless 
contact width, for a wheel axle equipped with cylindrical wheel treads 

 

 

Fig. 2 Variation of the hunting damping ratio versus the creep ratio, 
for a wheel axle equipped with cylindrical wheel treads 

 

Damping ratio associated to the hunting motion of the wheel 
axle, furnished with cylindrical wheel treads, is depending only 
on two parameters. One is a tribological parameter, describing 
the contact of the wheels with the rails through the creep ratio 

,f  and the other is a geometrical parameter ,b  expressing the 

relationship between the span of the rails and the yawing 
diameter of gyration of the railway wheel axle. 

Fig. 1 shows the variation of the damping ratio   versus the 

dimensionless contact width ,b  and Fig. 2 displays the 

variation of the damping ratio   against the creep ratio .f  

As expected from (22)-(25), damping ratio nonlinearly 

decreases for );0( fb  on Fig. 1, and );0( 2bf   on Fig. 2. 

After reaching its minimal value ( 1min  ) for ,2 fb   the 

damping ratio monotonically increases for larger values of the 
dimensionless contact width (Fig. 1) and creep ratio (Fig. 2). 
Expectedly, an inflexion point can be observed on Fig. 2 for 

23bf   that corresponds to a damping ratio of ,3/2i
but the change of convexity is quite mild. 

Natural circular frequency n  (see (22)) is depending 

inversely proportionally to the mass m  and the speed V  of 
the wheel axle, but it varies proportionally to the dimensionless 
contact width ,b  as well as to the geometrical mean of the 

longitudinal 1f  and lateral 2f  creep coefficients. 

A. Case of the Critically-Damped Hunting Motion 

Next, for a wheel axle designed under the condition ,2 fb   

a critically-damped ( 1min  ) hunting motion is achieved (see 

(23) and the points of minimal damping ratio on Figs. 1 and 2). 
In such circumstances, under the following initial conditions: 
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the time depending lateral perturbation  can be obtained as: 
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hunting mode is stable. Note that, in dimensionless form, the 
perturbation (27) can be written as: 
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where  is a dimensionless parameter defined as: 
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can be computed as: 
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one concludes that the graph of the perturbation against time 
has a point of maximum at );( maxet  and an inflexion point at 

),;( iit   as shown by Fig. 3. Values of ,et  ,it  max  and i  

are given by: 
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It can be proved that 1max   for ,0  and 1max   for 

.0  On the other hand, 1 i  for ],461.1;0[  and 

1 i  for .461.1  
 

 

Fig. 3 Variation of the perturbation versus time, obtained for a 
critically-damped wheel axle equipped with cylindrical treads 

B. Case of the Over-Damped Hunting Motion 

Next, for a wheel axle designed under the condition ,2 fb   

an over-damped ( 1 ) hunting motion is achieved (see (22), 

Figs. 1 and 2). In this case, under the same initial conditions 
(26), the dimensionless perturbation 0/)()(  tt   can be 

written as: 
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Again, since ,0)(lim 
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hunting mode is stable. 
Considering the first and second derivatives of ),(t  which 

can be calculated as: 
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one arrives to the conclusion that the graph of the perturbation 
against time has a point of maximum at );( maxet  and an 

inflexion point at ),;( iit   as illustrated by Fig. 4. Values of ,et  

,it  max  and i  are given by: 
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Fig. 4 Variation of the perturbation versus time, obtained for an 
over-damped wheel axle equipped with cylindrical treads 
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From the first and second lines of (35), one observes that the 
time it  corresponding to inflexion point, exceeds the time et  of 

the maximal point: 
 

eei t
fb

fb
f

f

mV
tt 





2

2

2

lnln                      (36) 

V. CONCLUSIONS 

In this paper, one evaluated the damping and stability of the 
dynamical hunting motion associated to the wheel axle of bullet 
trains, supplied with cylindrical treads. Damping ratio and 
natural circular frequency were identified, without imposing 
geometrical and tribological limitations into the vibration 
model. Variation of the hunting lateral perturbation against 
time was explicitly illustrated both for the critically-damped 
and over-damped cylindrical wheels. 

Main conclusions inferred from the performed theoretical 
analysis, can be summarized as follows: 
1) Geometrical hunting mode of the wheel axle associated to 

conical treads appears as irrelevant for cylindrical wheels, 
since the geometrical circular frequency becomes zero. 

2) Although the dynamical hunting mode for conical wheels 
is inherently unstable, it stabilizes for cylindrical wheels. 
This can be explained by the fact that the characteristic 
quartic equation, derived for conical wheels, simplifies to a 
quadratic equation, of positive coefficients, for cylindrical 
wheels. 

3) Damping ratio depends only on the creep ratio, which is a 
tribological parameter, and on the dimensionless contact 
span, which is a geometrical parameter. Minimal damping 
is gained when the creep ratio equals the dimensionless 
contact span. 

4) Natural frequency depends inversely proportionally to the 
mass and velocity of the wheel axle of cylindrical treads, 
but it varies proportionally to the dimensionless contact 
span, as well as, to geometrical mean of the longitudinal 
and lateral creep coefficients. 
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