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Abstract—The paper discusses the subinterval-based numerical
method for fractional derivative computations. It is now referred
to by its acronym – SubIval. The basis of the method is briefly
recalled. The ability of the method to be applied in time stepping
solvers is discussed. The possibility of implementing a time step size
adaptive solver is also mentioned. The solver is tested on a transient
circuit example. In order to display the accuracy of the solver –
the results have been compared with those obtained by means of a
semi-analytical method called gcdAlpha. The time step size adaptive
solver applying SubIval has been proven to be very accurate as
the results are very close to the referential solution. The solver is
currently able to solve FDE (fractional differential equations) with
various derivative orders for each equation and any type of source
time functions.
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I. INTRODUCTION

FRACTIONAL calculus is a field dealing with the concept

of fractional order derivatives and integrals or, generally

– differintegrals [1].

It has been lately a popular topic due to its many

applications that are tested in various fields e.g.

• control systems, where fractional PID controllers are

studied [2], [3],

• electromagnetism – where materials with complex

properties are modeled [4], [5],

• circuit theory (which this paper concerns), where

fractional coils can be useful in modeling coils with

ferromagnetic cores [6], [7] and fractional capacitors are

useful in modeling supercapacitors [8], [9],

• viscoelasticity analyses [10], [11],

• biomedical signal analyses [12], [13].

Over the years many definitions of fractional derivatives

have been proposed [14]. This study concerns one of the

most popular ones – proposed by Caputo in 1967 [15]. Only

fractional derivatives of order α ∈ (0, 1] are considered. They

can be described by the equation:

taD
α
tb
x(t) =

1

Γ(1− α)

∫ tb

ta

x(1)(τ)

(t− τ)α
dτ. (1)

In most cases when the above equation appears ta is the initial

time instance and tb is equal to a “current” time instance t.
The above generalized differintegral is introduced for further

use. Also, the study uses an interval-based notation, where

Ξ = [ta, tb] and hence (1) can be written as:

dαΞx(t) = taD
α
tb
x(t) (2)
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The possibilities, through which one can solve problems

with appearing fractional derivatives could be divided into

three main categories:

• evaluations of analytical solutions – if a problem is simple

enough then it can be put in the form of fractional state

equations, which have a general solution basing on the

Mittag-Leffler function [16],

• semi-analytical methods [17], [18] – also aiming at

deriving formulae for solutions rather than introducing

approximations at an early stage,

• numerical methods [19]-[21] – which often consider

approximations at an early stage; numerical methods are

often able to solve the widest variety of problems.

This study concerns a numerical method, while analytical and

semi-analytical methods are used only for verification when

the method is modified and exemplary solutions are checked.

II. THE STUDY OF SUBIVAL

This study revolves around the subinterval-based numerical

method, which has been first proposed in the paper [22]. It is

now more often referred to by its acronym – SubIval.

Over these couple of years improvements have been made to

the method [23]-[25] leading to better efficiency and allowing

faster computations.

The method relies on a partition of the interval

Ξ = [t0, tnow] to M subintervals:

dαΞx(t) =
M∑
k=1

dαΞk
x(t), (3)

where the intervals denoted by Ξk (k = 1, 2, . . .M ) form a

continuous set of closed subintervals.

The method uses approximations in each of these

subintervals, which results in the general formula:

dαΞx(t) ≈
M∑
k=1

dαΞk
x̃k(t). (4)

For a more detailed description of SubIval – the reader is

referred to the paper [26]. There it is also explained how the

subintervals are established (this is done through an original

algorithm).

SubIval has been designed with the thought of working well

in a typical time-stepping solver, where the variables computed

at each time instance t = tnow are treated as unknowns but

values at previous time steps are treated as known values and

are not modified anymore. Through this the implicit formula

can be applied:

dαΞx(t) ≈ axnow + b, (5)
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where xnow is the value of x(t) computed for t = tnow.

The values a and b are computed through polynomial

differintegration, which can be done using analytical formulae

as described e.g. in [27].

III. APPLICATION OF SUBIVAL IN A TIME-STEPPING

SOLVER

Currently SubIval is implemented in a DLL available at

[29]. It can aid in solving FDAE (fractional differential

algebraic equations) in the general form:{
dαx(t) = f(x(t),y(t), t),

0 = g(x(t),y(t), t),
(6)

where x(t) is the vector of state variables, y(t) contains

any remaining computed variables, dαx(t) is a vector of the

fractional derivatives (with α representing a vector of the

derivative orders).

The way it can be applied can be explained through the

following steps of the solver:

(1) define the initial values for each state variable xi; define

the order αi of the fractional derivative dαi

Ξ xi(t); define

the initial time instance t0; send the information on these

values to the SubIval DLL,

(2) set the time step index j = 1
(3) set the initial time step Δt,
(4) define the time instance t1 = t0 +Δt,
(5) send tj to the SubIval DLL,

(6) for each dαi

Ξ xi(t) obtain a and b and apply the

approximation (5) – this step leads to a system of

equations,

(7) solve the system of equations to obtain x(t) and y(t) for

the current time instance,

(8) send the obtained solution for x(t) to the SubIval DLL,

(9) increment j,

(10) apply the choice for the next time instance tj = tj−1+Δt,
(11) if tj−1 is less than the selected ending time of the analysis

then return to step (5), otherwise end the process.

IV. STEP SIZE ADAPTIVE SOLVER

The time stepping solver can be improved so that Δt is

adjusted according to an error estimation. It has been proven in

a parallel study [28] that the error of the SubIval computations

can be approximated through the formula:

e ≈ cΔtp−α, (7)

where p is the polynomial order of the SubIval computations

(more on the polynomial orders can be found e.g. in the paper

[26]) and α is the derivative order of the variable for which

the error is estimated. According to this error estimation the

time step size is modified through its multiplication by the

coefficient:

η = p−α

√
e

ectrl
. (8)

In the above equation e is the relative difference between

differintegrals computed for two different polynomial orders

(the differintegral is computed close to t = tnow – more on

this in [28]) and ectrl is a measure of the desired accuracy.

Fig. 1 Exemplary transient circuit example (the fractional elements are
denoted by parentheses and the order of the element)

V. SOLVERS FOR OCTAVE AND MATLAB

There are solvers available at [29] that base on SubIval.

Both a simple constant time step size solver and an adaptive

solver have been implemented. They have been implemented

with the thought to work both in Matlab [30] and its freeware

alternative – GNU Octave [31].

The solvers are so far implemented to solve the following

system of FDE (fractional differential equations):

dαx(t) = Ax(t) +Bv(t), (9)

where x(t) contains N state variables, v(t) is the vector of

M source time functions, A is an N ×N matrix and B is an

N ×M matrix.

VI. COMPUTATIONAL EXAMPLE

A simple circuit example has been brought forth to display

the usefulness of the SubIval adaptive time step size solver.

The problem is presented in Fig. 1.

For the demonstration a circuit has been deliberately chosen,

for which one can obtain a solution by means of another

method – one which is both easily applicable and has a

completely different basis than that of SubIval. Such a method

is the semi-analytical one called gcdAlpha – it has been

discussed in [32] and is applied to obtain the referential

solution.

The formulation of the circuit equations and how the terms

in (9) are obtained is explained in the Appendix.

The gcdAlpha method itself sometimes requires a significant

amount of time to solve a problem in comparison to the

SubIval solver; however, it is a method only designed in order

to produce referential solutions when designing the SubIval

solver. Hence, its accuracy is important, but the computation

speed – not as much.
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Fig. 2 Comparison of results (state variable time functions) obtained with
the SubIval solver and the gcdAlpha method

A comparison of the results obtained with the SubIval solver

and the gcdAlpha method is depicted in Fig. 2. ectrl = 0.05%
has been selected for the computations. The final time instance

of the analysis is Tmax = 3 · 10−3 s.

TABLE I
RELATIVE ERROR VALUES FOR EACH STATE VARIABLE (VALUES

ROUNDED TO THE NEAREST THOUSANDTH

variable average error, %
iα 0.076
uβ 0.053
uκ 0.062
iγ 0.049

By looking at the figure itself – a difference between the

results cannot be noticed. A relative difference (for each state

variable x) between the numerical and semi-analytical results

is computed for each node selected by the numerical solver:

ej = 100 · |x(tj)− xj |
max

j=1,2,...nt

|x(tj)| %, (10)

where j is the index of the node, tj is the corresponding time

instance, x(tj) is the result obtained through gcdAlpha and xj

is the result obtained for tj through the numerical solver. The

average of the computed error values, for each state variable,

is given in Table I.

VII. CONCLUSION

A study concerning the application of SubIval (the

subinterval-based numerical method) in time-stepping solvers

has been discussed.

The solvers are designed to solve initial value problems

with fractional derivatives. The basics of the method have been

recalled from previous papers [22], [26].

The general form of the problems that the solvers are aimed

at dealing with have been given (6), along with the ones the

solvers currently support (9).

The possibility of applying time step size adaptivity has also

been recalled [28].

A test example for the SubIval solver has been given in the

form of a transient circuit with fractional coils and fractional

capacitors.

The test example has also been solved by using the

gcdAlpha method [32] (a semi-analytical method) to obtain

a very accurate referential solution by means of a method

operating on a completely different basis.

The numerical results show a good resemblance to the

referential solution. Additionally, an error value has been

computed – this allowed to verify the numerical solution.

APPENDIX

The circuit equations are first expressed in the following

form [26]:{
MIy(t) +MIIx(t) = Tv(t),

dαx(t) +MIIIy(t) +MIVx(t) = 0N ,
(11)

where 0N denotes a vector of N zeros, while dαx(t) is the

vector of fractional derivatives of the state variables (as in (9)),

y(t) contains any remaining useful variables (the vector length

is denoted by Ny), T is an N×M matrix, MI is an Ny×Ny

matrix, MII is an Ny×N matrix, MIII is an N ×Ny matrix,

and MIV is an N × N matrix. There are many possibilities
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on how to treat the circuit (e.g. a general formulation of node

potential equations as in [26]); in this study – an approach

has been chosen where initially not many equations need to

be formulated. The state variable vector consists of the coil

currents and the capacitor voltages:

x(t) = [ iα(t) uβ(t) uκ(t) iγ(t) ]T. (12)

The vector of fractional derivative orders is given by:

α = [ α β κ γ ]T. (13)

The auxiliary variable vector, on the other hand, consists of

the coil voltages and capacitor currents:

y(t) = [ uα(t) iβ(t) iκ(t) uγ(t) ]T. (14)

The v(t) vector contains only the time function for the

voltage source:

v(t) = [ E(t) ]. (15)

With the above in mind: N = 4, Ny = 4 and M = 1.

In the discussion below the time dependency notation of the

variables is omitted (e.g. iα(t) is now simply written as iα).

From Kirchhoff’s first law one can derive the equation:

iα − iβ − iκ − iγ = 0, (16)

which gives the following entries for the MI and MII

matrices:
MI 1,2 = −1,
MI 1,4 = −1,
MII 1,1 = 1,
MII 1,4 = 1.

(17)

From Kirchhoff’s second law the following equation can be

obtained:

iαR1 + uα + iβR2 + uβ = E, (18)

along with:

uκ + iκR3 − iβR2 − uβ = 0, (19)

and:

uγ + iγR4 − iβR2 − uβ = 0. (20)

From (18) one can obtain the entries:

MII 2,1 = R1,
MI 2,1 = 1,
MI 2,2 = R2,
MII 2,2 = 1,
T2,2 = 1.

(21)

From (19) one obtains:

MII 3,3 = 1,
MI 3,3 = R3,
MI 3,2 = −R2,
MII 3,2 = −1,

(22)

while from (20):
MII 4,4 = 1,
MI 4,4 = R4,
MI 4,2 = −R2,
MII 4,2 = −1.

(23)

In the case of this study MIV is a zero matrix; MIII is filled

with entries that result from the differential equations of the

coils and capacitors. For the Lα coil the differential equation

is:

Lα t0D
α
t iα = uα, (24)

for the Cβ capacitor:

Cβ t0D
β
t uβ = iβ , (25)

while for the Cκ capacitor:

Cκ t0D
κ
t uκ = iκ. (26)

Finally, for the Lγ coil:

Lγ t0D
γ
t iγ = uγ . (27)

The differential equations yield the following entries for

MIII:
MIII 1,1 = − 1

Lα
,

MIII 2,2 = − 1
Cβ

,

MIII 3,3 = − 1
Cκ

,

MIII 4,4 = − 1
Lγ

.

(28)

After the vectors are set up and the matrices are filled –

to obtain the matrices of (9) one can apply the following

formulae:

A = MIII(M
−1
I MII), (29)

and:

B = −MIII(M
−1
I T ). (30)
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