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 
Abstract—In this paper, longitudinal vibration of a micro-beam 

in micro-scale fluid media has been investigated. The proposed 
mathematical model for this study is made up of a micro-beam and a 
micro-plate at its free end. An AC voltage is applied to the pair of 
piezoelectric layers on the upper and lower surfaces of the micro-
beam in order to actuate it longitudinally. The whole structure is 
bounded between two fixed plates on its upper and lower surfaces. 
The micro-gap between the structure and the fixed plates is filled 
with fluid. Fluids behave differently in micro-scale than macro, so the 
fluid field in the gap has been modeled based on micro-polar theory. 
The coupled governing equations of motion of the micro-beam and 
the micro-scale fluid field have been derived. Due to having non-
homogenous boundary conditions, derived equations have been 
transformed to an enhanced form with homogenous boundary 
conditions. Using Galerkin-based reduced order model, the enhanced 
equations have been discretized over the beam and fluid domains and 
solve simultaneously in order to obtain force response of the micro-
beam. Effects of micro-polar parameters of the fluid as characteristic 
length scale, coupling parameter and surface parameter on the 
response of the micro-beam have been studied. 
 

Keywords—Micro-polar theory, Galerkin method, MEMS, 
micro-fluid. 

I. INTRODUCTION 

HE solid-fluid interaction vibration is very important in 
the view point of structure performance and disaster 

prevention, for example in industries such as elevated water 
tanks and liquefied natural gas. Also, it is very important in 
the field of MEMS designing and manufacturing. Many works 
have been done on the behavior of liquid sloshing in circular 
cylindrical containers that are excited horizontally, 
considering the damping effect that liquid tanks have on the 
vibration of the structure under excitation [1]-[3]. Senda and 
Nakagawa have reported a linear analysis on the effect of 
liquid tank on the horizontal vibration of the cylinder [4], then 
experimental [5], [6] and nonlinear analyses have been 
reported [7]. Many studies have been done on the effect of 
fluid as an added mass on the vibration of the structure such as 
cylinders and spheres moving in fluid with acceleration. The 
added mass is a characteristic of fluid loading [8]; that concept 
of it for a supported plate is known from several theories as 
the slender wing theory [9], the traveling wave's solutions 
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[10], two-dimensional [11], or three dimensional [12], linear 
aerodynamic theory. Researches on the added mass of 
vibrating cylinders in water showed that the added mass of 
first mode fluid is equal to the fluid mass displaced by the 
cylinder [13], but it is not true for higher modes. Studying a 
cantilever plate in an axial flow also showed that the fluid 
loading has the effect of added mass and added damping and 
stiffness on the plate [14]. A formula was suggested by Sinha 
in 2003 for added mass of vibrating of perforated plate type 
structures submerged in fluids that designers could evaluate 
the structural dynamic of these structures without conducting a 
model test [15]. 

Recently, many researches have been done on micro-
electro-mechanical systems (MEMS) in modern technologies 
and the focalization of researchers on this field is increasing 
rapidly. MEMS led to the reduced costs and energy 
consumptions and improved sensors performance. These 
micro-scale devices have found utility in several fields such as 
accelerometers [16], pressure sensors [17], micro-pumps [18], 
viscometers [19], micro-resonators [20]-[22] and so forth. 
Most of these micro-devices deal with a solid structure usually 
a micro-beam in interacting with a micro-scale fluid media. 
This causes the advance study on the behavior of micro-
structures when immersed in a micro-fluid media. In one of 
the researches, dynamic characteristic and forced response of 
an electrostatically-actuated micro-beam subjected to fluid 
loading was investigated by Rezazadeh et al. [23]. They 
showed that fluid loading decreases the natural frequency of 
the micro-beam and because of higher electric coefficient and 
increment of electrical stiffness and decrement of total 
stiffness, maximum amplitude of the micro-beam decreases. 
Transversally vibrating micro-beams in micro-resonators have 
also been studied extensively. In micro-resonators, the air in 
the gap squeezes, causing the squeeze film damping 
phenomenon, which is the fundamental energy dissipation 
mechanism. Pandey and Pratap obtained damping 
characteristics of the resonator for the first three modes of 
vibration. In that work, static deflection due to DC load was 
neglected [24]. Younis and Nayfeh used perturbation method 
to obtain bias deflection of the micro-plate under different 
ambient pressures [25]. Chaterjee and Pohit obtained squeeze 
film characteristics of cantilever micro-resonators for higher 
modes of vibration under different ambient pressure 
conditions [26], [27]. 

In the researches mentioned above, the fluid in the micro-
gap is modelled based on classical theories. Numerous 
experimental results indicate that, fluid flow moves differently 
in micro-scale than macro-scale. Hence, the Navier-Stokes 
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equations become incapable of explaining the micro scale 
fluid transport phenomena in the study of micro and nano-
scale fluid mechanics. The theory of micro-polar fluids was 
introduced by Eringen [28], [29], which contains the effect of 
and couple stresses and local rotary inertia, and provides a 
mathematical model for behavior of certain liquids such as 
blood, polymer and so forth. Today, researches show that in a 
micro-scale fluid field, micro-polar fluid theory is a useful tool 
for modeling the flow in micro-devices [30]-[32]. 

II. GOVERNING EQUATIONS 

The constitutive equations of the fluid field based on micro-
polar theory considering the non-symmetric stress tensor 

 f f
ij   and the couple stress tensor  f f

ijCo Co , are as 

following [31]: 
 

, , , ,( ) ( ) ( )ff f f f
ij k k ij i j j i j i ijk kσ p λ V δ μ V V k V ε G         (1) 

 

, ,,
ff f f f f f

ij ij i j j ik kCo α G δ β G γ G  
                                       

(2) 

 

where the symbols denote; p : hydrodynamic pressure, 
f : 

bulk viscosity coefficient, 
fμ : classical shear viscosity 

coefficient, fk : vortex viscosity coefficient, f f fα ,β ,γ : spin 

gradient viscosity coefficients, ijkε : Levi-Civita symbol, ijδ : 

the Kronecker delta, 
f

iV : velocity components and 
f

iG : 

micro-rotation components. 
Here, the coefficients satisfy following inequalities [31]: 
 

0fk  , 3 2 0f f fλ k μ   , 2 0f fμ k                           (3) 
 

3 2 0f fα γ  , f f fγ β γ   , 0fγ                                 (4) 
 

The balance equations of the fluid field based on micro-
polar theory can be expressed as: 

 

,
f f f f

ij j i iσ ρ f ρ V                                                               (5) 

 

,
ff f f f f f

ij j ijk i ikjCo ε σ ρ c ρ J G                                           (6) 

 
Equation (5) presents the balance of linear momentum, 

while (6) presents the balance of angular momentum. f
if and 

f
ic  are the body forces and body couples per unit volume, fρ

is the density of the fluid, iV  and f
iG  are the velocity and 

micro-rotation components and fJ denotes micro inertia 
density of the fluid, which is absent in the classical mechanics. 
By substituting the constitutive (1), (2) into the balance (5), 
(6), the conservation equations for the micro-polar fluid with 
constant physical properties can be obtained [31], [32]: 

,( ) 0
f

f
i i

ρ
ρ V

t


 


                                                              (7) 

 
ff f f f f f f f

j, ji i, jj ijk ,i i ik, j(λ μ )V (μ k )V k ε G p ρ f ρ V       

            (8) 
 

2f f f f f f f f f f f f f
j, ji i, jj ijk k, j i i i(α β )G γ G k ε V k G ρ c ρ J G      

                (9) 
                                                                                   

with new non-dimensional parameters fCP,L  as [31]: 

 

2

f

f f

k
CP

μ k



, c

f
L

L
l

 ,
4 2

f

f f

γ
l

μ k



                  (10) 

 

where cL  is a reference quantity of dimension, fL  

characterizes the relationship between the geometric 

dimension of the flow cL  and the physical properties of the 

fluid. In the limiting case, for fL , the micro-rotation vector 

is equal to one half of the vector of the fluid stream vorticity: 
Parameter ; 0 1;CP CP   characterizes coupling between the 

vortex viscosity coefficient fk  and the shear viscosity 

coefficient fμ . In other words, it represents the dependency 

of micro-rotations to macro-rotation (classical rotation) in the 
fluid field. If the value of the coupling parameter 
approximates zero, then the equations of the linear and angular 
momentums become independent of each other and the linear 
momentum transforms into the classical Navier-Stocks 
equations for Newtonian fluids. 

The constitutive equations for an isotropic elastic beam 
based on micro-polar elasticity theory considering the stress 

tensor  b b
ijσ   and the couple stress tensor  b b

ijCo Co  are 

as follows [33]: 
 

2 )b b b b b b b b b
ij kk ij ij ijk k kσ (λ e )δ ( μ k )e k ε (r G    

                
(11) 

 
b b b b b b b
ij k,k ij i, j j,iCo α G δ β G γ G  

                                        
(12) 

 
And these equations for a piezoelectric material are as 

follows [33]-[35]: 
 

2pi pi pipi pi pi pi pi pi Pi Pi
ij ij ij ijk k kkk k kijσ (λ e )δ ( μ k )e k ε (r G ) e E      

                                                                                         (13) 
 

,
pipi pi pi pi pi pi

ij ij i, j j ik,kCo α G δ β G γ G                                      (14) 

 

where b , b , pi , pi are classical Lame type constants of 

the micro-beam and piezoelectric material, respectively. 

, , ,b b b bk   and , , ,pi pi pi pik    are new micro-polar 
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constants due to couple stresses. 
b pi
i iG ,G are micro-rotation 

components of the micro-beam and piezoelectric material. pi
kije

are piezoelectric constants. Pi
kE is an electric field due to the 

voltage applied to the piezoelectric material. b pi
i ir ,r are 

macro-rotation components of the micro-beam and 

piezoelectric material while b
ije , pi

ije are the macro-strain 

tensors that have the following relations with the micro-beam 

displacement bU  and the piezoelectric material displacement
piU : 

 

1

2
b b

i ijk k, jr ε U ,
1

2
pipi

i ijk k, jr ε U                                            (15) 

 

1

2
b b b
ij i, j j,ie (U U )  ,

1

2
pi pi pi
ij i, j j,ie (U U )                             (16) 

 

where ijkε  is permutation symbol. So, the conservation 

equations for the elastic beam and piezoelectric material based 
on micro-polar theory can be obtained as [33]-[36]: 
 

b b b b b b b b b b b b
j, ji i, jj ijk k, j i i(λ μ )U (μ k )U k ε G ρ f ρ U       (17) 

 

2b b b b b b b b b b b b b b
j, ji i, jj ijk j,k i i i(α β )G γ G k ε U k G ρ c ρ J G       (18) 

 
pipi pi pi pi pi pi pi

j, ji i, jj ijk k, j

pi pipi pi pi pi
i ikij k, j

(λ μ )U (μ k )U k ε G

ρ f e E ρ U

   

   
                    (19) 

 

2

pipi pi pi pi pi pi
j, ji i, jj ijk j,k

pi pi pi pi pi pi pi
i i i

(α β )G γ G k ε U

k G ρ c ρ J G

  

                                    (20) 

 
With the following technical elastic properties [33]: 
 

(2 )(3 2 ) 2
, ,

2(2 2 )

2 2

b b b b b b b
b b

b b b

b
b

b b b

k k k
E G

k

k

   
 


 

   
 

 


 

       (21) 

 

2

b b
b
t b b
l

k

 






,
2(2 )

b
b
b b b

l
k







, ( )
2

b
b

b b

k
CP

k



(22) 

                                     

where b
if , pi

if , b
ic , pi

ic  are the body forces, body couples 

per unit volume of the micro-beam and piezoelectric material, 

respectively. b and pi  are the micro-beam and piezoelectric 

material densities. b
iU and pi

iU  are micro displacement 

components. bJ and piJ  denote micro inertia densities and 

, , , , , ( )b b b b b b
t bE G l l CP  are Young modulus, Shear modulus, 

Poisson's ratio, the characteristic length in torsion, the 
characteristic length in bending and coupling number of the 
micro-beam, respectively. 

A. Case Study 

For investigating the effect of a micro-scale fluid on the 
longitudinal vibration of a micro-beam, the mathematical 
model shown in Fig. 1 is proposed. It is made up of a micro-
beam sandwiched between two piezoelectric layers and a 
micro-plate at its free end. The whole structure is assumed to 
be made of polycrystalline silicon. Two external forces act on 
the structure. The first one is a shear force that acts on the 
micro-plate due to the physical properties of the surrounding 
fluid and the second one is a longitudinal force created by an 
AC voltage applied to the piezoelectric layers. The 
surrounding fluid is bounded between two parallel–oriented 
surfaces in order to control the magnitude of the shear force. It 
is assumed that the both upper and lower surfaces of the 
micro-plate are smooth. 

 

 

Fig. 1 Schematic of the proposed model with the piezoelectric layers 
immersed in micro- scale fluid bounded by two fixed plates 

 
The following assumptions are considered in order to 

simplify (7)-(9) and (17)-(20): 
1. The fluid is assumed to be incompressible. 
2. There are no body forces and body couples acting along x 

direction. 
3. The beam is considered an isotropic elastic beam with 

constant properties. 
4. There are no couple stresses in longitudinal vibration of 

the beam 
5. There is no Pressure gradient in x direction. 

Consequently (7)-(9) and (17)-(20) are simplified to: 
 

f f f f f
i, jj ijk k, j i(μ k )V k ε G ρ V                                             (23) 

 

2f f f f f f f f
i, jj ijk j,k i iγ G k ε V k G ρ J G                                    (24) 

 

2 b b b b
i, jj i( μ )U ρ U                                                                  (25) 
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2 pi pi pi pi pi pi
i, jj kij k, j i( μ )U e E ρ U                                                 (26) 

 

By supposing ( )pi pi b b
s sE A E A E A   in which ,b bE A ,

,s sE A  are the Young modulus of beam, cross section area of 

beam, Young modulus of micro-plate, and cross section area 
of the micro-plate, respectively, and the fluid field can be 
considered one-dimensional. Considering the Cartesian 
coordinate system shown in Fig. 1, and neglecting the effect of 
electric field on piezoelectric layers, equations of motion of 
the fluid field and also equation of motion governing 
longitudinal displacement of the micro-beam can be simplified 
to: 

 
2

2
f f f fv v g

ρ (μ k ) k
t zz

  
  

 
                                           (27) 

 
2

2
2f f f f fg v g

ρ J k g k γ
t z z

  
   

         
                             (28) 

 

 
2 2

02 2
*

eq b eq b

u u
(EA) τA δ(x L ) ( A) m δ(x L )

x t
 

    
 

      (29) 

 

 

* *
0 0

0 0

( ) ; ( )

; ( )  

b bL L

b b

pi pi b b pi pi b b
eqeq

A x L dx A m x L dx m

A A A E A E A EA

   

  

   

   

  
        (30) 

 

where pi piA t b , bA tb . v  and u  are the velocity 
component of the fluid and displacement component of the 
micro-beam in x  direction, g  is the micro-rotation 

component of the fluid in y direction,   is the wall shear 

stress of the fluid acting on the lower and upper surfaces of the 

micro plate, 0m  is the mass of the micro- plate, A  is the area 

of the upper and lower surfaces of the micro-plate, and bL  is 

the length of the micro-beam, respectively. It should be noted 
that, for simplicity, the inertial force owing to the mass of the 
micro-plate and the shear force due to physical properties of 
the fluid are assumed to be singular distributed loads with zero 
load intensity through the whole length of the beam and 
infinite intensity at its end. 

Accompany boundary conditions of (27) and (28) at 0z   

and z h  are: 
 

(0, ) 0v t  ,
( , )

( , ) ( )
bL t

u
v h t t

t


 


                                     (31) 

 

( 0)(0, ) ( ) ( )z
v

g t s A t
z 


  


, ( )( , ) ( ) ( )z h
v

g h t s B t
z 


  


  (32) 

 

where s  is a constant such that 0 1s   and is called surface 

parameter. In the case when 0s   (strong concentration), the 

microstructure does not rotate with respect to the surface. The 

case when 0.5s   (weak concentration), the micro-structures 
spin is equal to fluid vorticity [37]. ( )t , ( )A t  and ( )B t  are 

the time varying functions. 
As the boundary conditions are time varying, ( , )v z t  and 

( , )g z t are introduced as follows: 
 

( , ) ( , ) ( )
z

v z t w z t t
h

                                                        (33) 

 

( ) ( )
( , ) ( , ) ( ) ( )

B t A t
g z t z t z A t

h


                                  (34) 

 
Using (33) and (34), the governing equations of motion of 

the fluid field can be rewritten as: 
 

 
2

2
( , ) ( )

( ) ( ) ( )( ( ) ( ))

f f

f

f f

f f

w k w
w z t

t z

k z k
t A t B t

z h h





 

  
  

 


   




                           (35) 

 

2

2

2 ( ) ( )
( ( , )) ( , ) ( ) ( )

( ) ( ) ( )
( )( ) ( ) ( ) ( )

f

f f

f f

f f f f

k B t A t
z t z t z A t

t hJ

k w t B t A t
z A t

z h hJ J z




 
 

          

   
    

 

 
 (36) 

 
Therefore the accompanying boundary conditions of (31) 

and (32) take the following homogenous form: 
 

(0, ) ( , ) 0w t w h t                                                                (37) 
 

(0, ) ( , ) 0t h t                                                                (38) 
                                   

Boundary conditions of (29) are: 
 

(0, ) 0u t 
                                                                            (39) 

 

 
   

31

( , )

( , )

( )
( ) 0 ( )

p p b b P
z

eq
l t eq

u
N l t E A E A A e E

x

u u f t
EA f t f t

x x EA


  


 

     
 




            (40) 

 

where 
2

z
pi

Vpi
E

t
  is the uniform electric field in z  direction 

due to the voltage ( piV ) applied to the piezoelectric layers, 

and 31e is the equivalent piezoelectric coefficient for the one-

dimensional problem. Due to the time variability of the 
boundary conditions, by introducing ( , )u x t as: 
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( , ) ( , ) ( )u x t x t xf t 
                                                        (41) 

 
Equation (29) can be rewritten as: 
 

   

 

2

0 2

2
*

2

( , ) ( ) ( ) ( )

( )

eq b

beq

x t A m x L f t x
t

EA A x L
x

  

  

 
      


  







         (42) 

 
With the corresponding homogenous boundary conditions: 
 

(0, ) 0t  ,
( , )

0
bL tx





                                                     (43) 

III. NUMERICAL SOLUTIONS 

Many modern mathematical models pose challenges when 
used in numerical simulations, due to complexity and large 
dimension. Model order reduction reduces the computational 
complexity of these problems. In this work, we have applied 
Galerkin based reduce order model to solve the coupled 
equations of solid and fluid media. Galerkin methods are a 
class of methods for converting a continuous operator such as 
a differential equation to a discrete problem. In this method, 
we express an unknown function as a linear combination of a 
set shape functions. A Galerkin approximation precision 
depends on number and type of the shape functions. The 
accuracy of Galerkin method depends on number and type of 
the shape functions. 

In this work approximate solutions for ( , )w z t , ( , )z t and 

( , )x t are searched in the following form: 
 

1

( , ) ( , ) ( ) ( )
M

M j j
j

w z t w z t a t z


  
  

                                   (44) 

 

1

( , ) ( , ) ( ) ( )
p

p j j
j

z t z t b t z


                                          (45) 

 

1

( , ) ( , ) ( ) ( )
N

N j j
j

x t x t q t x  


                                       (46) 

 

where, ( )j z , ( )j z  and ( )j x  are the shape functions which 

satisfy geometrical boundary conditions (37), (38), and (43), 
respectively. The shear stress of the fluid acting on the micro-
plate is expressed in the following form: 
 

 
( , )

( , ) ( , )

( )
(( ) ) ( ) ( , ) ( )f f f f f f

h t
h t h t

w t
k k g k k h t B t

z z h

   
  
         
   

              (47) 
 

in which 

1

( ) ( ) ( ) ( )
N

b j j b
j

t f t L q t L 


                                             (48) 

 

(0, )

( )
( )

t

w t
A t s

z h

 
   
  

,
( , )

( )
( )

h t

w t
B t s

z h

 
   
  

     (49) 

 

Substituting the ( , )Mw z t , ( , )p z t , ( )t , ( )A t , and ( )B t  

into (47), it can be rewritten as: 
 

1 1

1

1

1

1
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( )
1

( ) ( ) ( )

M N
f f I

j j j j b
j j

M
I

j j
jpf

j jj N

b j j b
j

k a t h f t l q t L
h

a t h

k b t h s

f t L q t L
h

  





 







  
      
  

  
  
  
  
   
   

    
      

 






 

 

(50) 

 
Substituting (44)-(46) and (50) into (35), (36) and (42), and 

using the Galerkin method, the following reduced order 
models can be obtained: 

 

(1) (1) (1) (1)

1 1 1 1

(1) (1) (1) (1)

1 1 1

; 1,2,......,

N N N M

j ij j ij j ij jij
j j j j

M P P

j j jij ij ij i
j j j

M q C q K q S a

D a F b E b P i M
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  
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
      (51) 

 

(2) (2) (2) (2)

1 1 1 1

(2) (2) (2) (2)

1 1 1

; 1,......

N N N M

ij j ij j ij j ij j
j j j j

M P P

ij j ij j ij j i
j j j

M q C q K q S a
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   

  

  

   

   

  

  


              (52) 

 

(3) (3) (3) (3)

1 1 1 1

(3) (3) (3) (3)

1 1 1

; 1, 2,....

N N N M

j ij j ij j ij jij
j j j j

M P P

j j jij ij ij i
j j j

M q C q K q S a

D a F b E b P i N

   
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    

   

  
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
 (53) 

 
where the corresponding coefficients are: 
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(1) (1)
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              (54) 

IV. NUMERICAL RESULTS AND DISCUSSIONS 

As a case study, a Silicon beam with a pair of piezoelectric 
layers is considered. The geometric and material properties are 
listed in Table I. 

The gap between the micro-plate and the parallel surfaces (
h ) is considered to be μm30 . Shape functions which satisfy 

the boundary conditions (37), (38) and (43), respectively, are 
considered as following: 

( ) sini
i

z z
h

    
 

                                                             (55) 

 

( ) sini
i

z z
h

    
 

                                                             (56) 

 

(2 1)
( ) sin

2i
b

i
x x

L


 

  
 

                                                   (57) 

 
Frequency response of the micro-beam immersed in a 

micro-scale fluid is shown in Fig. 2. As illustrated, by 
increasing the number of the used shape functions ( N ), the 
obtained results converge, and for 6N  , the obtained result 
is considered acceptable. As shown in Table II, for the case 
when the effect of the shear force is not considered, the first 
calculated natural frequency of the system for 6N   is the 
same as the first natural frequency of the cantilever beam 
having a concentrated mass at the free end with 1.1% error. 

 
TABLE I 

GEOMETRICAL AND MATERIAL PROPERTIES OF THE MICRO-BERAM, 
PIEZOELECTRIC LAYERS AND MICRO-PLATE 

properties Micro-beam 
Piezoelectric 

layer 
Micro-plate 

Width  4 μm  4 μm  400 μm  

thickness 2 μm  1 μm  0.05 μm  

length 100 μm  100 μm  400 μm  

Young's 
modulus 

169 Gpa  78.6 Gpa  169 Gpa  

density 2331 3kg/m  7600 3kg/m  2331 3kg/m  

pV  40 volt  

31e   -9.29  

 
TABLE II 

VALUES OF FIRST NATURAL FREQUENCY OF THE SYSTEM (MHZ)  

1N  2N 
 

3N  4N   5N   6N  Theorical result [38] 

4.96 4.752 4.683 4.660 4.629 4615 4.564 

 

Fig. 2 Tip vibration amplitude of the micro-beam versus exciting 
frequency for different number of shape functions 

 
Tip vibration amplitude of the micro-beam versus exciting 

frequency for different values of fluid coupling parameter is 
shown in Fig. 3. Also, tip vibration amplitude of the micro-
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beam for different values of the voltage applied to the 
piezoelectric layers is shown in Fig. 4. As shown in Fig. 3, 
lower values of resonance frequency and amplitude are 
observed in fluids with higher values of coupling parameter. 
Analyzing the results, we can say that in fluids with higher 
value of coupling parameter, due to having higher value of 
vortex viscosity coefficient, micro-rotations are more 
dependent to macro-rotation. It led to higher damping and 
inertial effects on the longitudinal vibration of the micro-

beam. In the case of classical fluid ( 0)CP , the results are in 

good consistence with the results obtained in [12]. As shown 
in Fig. 4, the resonance amplitude of the micro-beam is also a 
function of voltage applied to the piezoelectric layers. It 
means that applying higher voltages to the piezoelectric layers 
the resonance amplitude of the micro-beam increases. It 
should be noted that the exciting frequency of the piezoelectric 
layers should be in the range of the first natural frequency of 
the micro-beam. 

 

 

Fig. 3 Tip vibration amplitude of the micro-beam versus exciting 
frequency for different values of coupling parameter 

 
Effects of the characteristic length scale and surface 

parameter of the micro-scale fluid, on dynamic response of the 
micro-beam are investigated and shown in Figs. 5 and 6. The 
results of Fig. 5 show that in fluids with lower value of length 
scale parameter, dependency of micro-rotations to macro-
rotation is more considerable than in fluids with higher values 
of length scale. Consequently, fluids with lower values of 
length scale have more damping and inertial effects on 
vibration of the micro-beam than fluids with higher values of 
length scale. Fig. 6 shows that in the case of strong 
concentration damping effect of fluid is more considerable 
than in the case of weak concentration. As we know, slip 
boundary conditions decreases damping effect of fluid, 
consequently in the case of no-spin boundary condition, the 
fluid has more damping effect than in the case of spin 
boundary conditions. 

 

 

Fig. 4 Tip vibration amplitude of the micro-beam in the micro-polar 
fluid versus exciting frequency for different values of voltage applied 

to thepiezoelectric layers 
 

 

Fig. 5 Tip vibration amplitude of the micro-beam versus exciting 
frequency for different values of fluid characteristic length scale ( )l  

 

 

Fig. 6 Tip vibration amplitude of the micro-beam versus exciting 
frequency for different values of surface 

V. CONCLUSION 

In this paper, the longitudinal vibration of a micro-beam in 
interacting with a micro-scale fluid media was investigated. A 
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mathematical model was proposed and the coupled governing 
equations of motion of fluid field and longitudinal vibration of 
the micro-beam were derived. The obtained equations were 
discretized and solved using a Galerkin-based reduced order 
model. It was shown that physical properties of the micro-
scale fluid have dissipative and inertial effects on the dynamic 
response of the micro-beam. The effect of coupling parameter 
and length scale of the micro-scale fluid were studied and the 
results showed that in fluids with higher values of coupling 
parameter and lower values of length scale due to more 
dependence of micro-rotations to macro-rotations, inertial and 
damping effects of fluid are more considerable. The effect of 
surface parameter on dynamic response of the micro-beam 
was studied. We showed that lower values of resonance 
frequency and resonance amplitude and consequently more 
damping and inertial effects are observed in the case of weak 
concentration. Also, applying different voltages to 
piezoelectric layers showed that higher voltages result in 
higher amplitudes of vibration. It should be noted that, the 
presented mathematical model can be introduced as a micro-
sensor for measurement of physical properties of micro-scale 
fluids. 
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