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Abstract—In this paper, we show that the conjecture of Chv�́�tal, 

which states that any 1-tough graph is either a Hamiltonian graph or its 
complement contains a specific graph denoted by F, does not hold in 
general. More precisely, it is true only for graphs with six or seven 
vertices, and is false for graphs with eight or more vertices. A theorem 
is derived as a correction for the conjecture. 
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I. INTRODUCTION 

VER since Chv�́�tal introduced the concept of toughness of 
graphs, numerous studies have been done, see [1] for a 

survey. In [2], which was originally published in 1973, Chv�́�tal 
posted seven conjectures. Five of the conjectures regard the 
existence of a minimum toughness that guarantees a certain 
cycle structure in any graph, one of them is about the 
Hamiltonicity of 2-tough neighborhood-connected graphs, and 
the other one relates the existence of a Hamiltonian cycle of any 
1-tough graph with its complement graph. These conjectures 
are inspiring and have led to a bountiful harvest of results. So 
far, the minimum toughness 𝑡  which makes the conjecture 
“there exists 𝑡  such that every 𝑡 -tough graph is hamiltonian” 
hold has not been found. The best result by now is published by 
Bauer et al. [3], who showed that if such a 𝑡  exists, it must be 

𝑡 . For Chv�́�tal’s conjecture regarding the Hamiltonicity of 

any 1-tough graph and its complement, which is presented 
below, much fewer researches are done.  
Conjecture 1. (see [2]) If G is 1-tough, then either G is 
Hamiltonian or its complement G contains the graph F in Fig. 1 
(a). 

In this paper, we are devoted to the study of the above 
conjecture. Since F has six vertices, it is obvious that 
Conjecture 1 deals with graphs with at least six vertices. We 
shall give graphic examples showing that Conjecture 1 is not 
true when |G| n 8, and a proof that the conjecture holds for 
|G| n ∈ 6,7 . Our corrections of Chv�́�tal’s conjecture will be 
presented as Theorem 5 and 6. This paper is organized as 
follows. Notations, terminologies, and some known theorems 
are given in Section II, and our main results are shown in 
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Fig. 1 (a) The graph F. (b) The complement graph of F, denoted by 𝐹 

II. TERMINOLOGY AND KNOWN RESULTS 

Let G  V, E  be a finite and simple graph with its vertex set 
V and edge set E. Two vertices u and v are adjacent in G if 
u, v ∈ E . For any u ∈ V , the neighborhood of u in G is 

defined by 𝑁 𝑢 𝑣| 𝑢, 𝑣 ∈ 𝐸 ⊂ 𝑉. The degree of u in G, 
denoted by  deg u , is the number |𝑁 u | . The minimum 
degree δ G  of G is defined as δ G  = min{deg u  | u ∈ V}. 
𝜎 𝐺  denotes the minimum degree sum taken over all 
independent sets of k vertices of G. The complement graph 
�̅� 𝑉 , 𝐸  of a graph G  V, E  is defined as V V′ and 
E u, v | u, v  does not belong to E ∀u, v ∈ V . For 
undefined notations and terminologies, we follow [4]. 

A path P between two vertices 𝑣  and 𝑣  is represented by 
P 〈𝑣 , 𝑣 , … , 𝑣 〉, where all vertices are different and every two 
consecutive vertices are adjacent. We also write the path 
P 〈𝑣 , 𝑣 , … , 𝑣 〉  as 〈𝑣 , 𝑣 , … , 𝑣 , 𝑃 , 𝑣 , 𝑣 , … , 𝑣 〉 , where 
𝑃  denotes the path 〈𝑣 , 𝑣 , … , 𝑣 〉 . A path of G is called a 
Hamiltonian path if it traverses all vertices of V exactly once. A 
cycle of G is called a Hamiltonian cycle if the cycle traverses all 
vertices of V exactly once except the beginning vertex and the 
end vertex. We say that a graph G is Hamiltonian if there exists 
a Hamiltonian cycle in G. The circumference c G  of a graph G 
is defined as the length of the longest cycle in G. We define k as 
the vertex connectivity of G, and k G  the number of 
components of G. Suppose G is not a complete graph. We say G 
is t-tough if t is a nonnegative real number and t
|𝑆| 𝑘 𝐺 𝑆⁄ , where S is a vertexcut of G. The maximum real 
number t for which G is t-tough is called the toughness of G, 
and the toughness of any complete graph is ∞. It is known that 
every Hamiltonian graph is 1-tough, and every 1-tough graph is 
2-connected.  

Let 𝐺  and 𝐺  be two graphs. 𝐺  and 𝐺  are called disjoint if 
𝐺  and 𝐺  have no vertex in common. The union of two disjoint 
graphs, 𝐺  and 𝐺 , denoted by 𝐺  𝐺 , is a graph with 
V 𝐺 𝐺 𝑉 𝐺 ∪ 𝑉 𝐺  and E 𝐺 𝐺 𝐸 𝐺 ∪ 𝐸 𝐺 . 
The union of n copies of a graph G is written as nG. Obviously, 
𝐾 𝑛𝐾 . The join of two disjoint subgraphs 𝐺  and 𝐺 , 
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denoted by 𝐺  V 𝐺 , is the graph obtained from 𝐺  𝐺  by 
joining each vertex of 𝐺 to each vertex of 𝐺 . 

Here, we list some known theorems, which will be used in 
the following sections. 
Theorem 1. (see [5], [6].) If G is a 1-tough graph with |G| 

n 11 such that 𝜎 𝐺 𝑛 4, then G is hamiltonian. 
Theorem 2. (see [6], [7].) If G is a 1-tough graph with |G| n
3, then c G  min 𝑛, 𝜎 𝐺 2 . 

We have an immediate result from the above theorem. 
Corollary 1. If G is a 1-tough graph with |G| n 3 such 
that 𝜎 𝐺 𝑛 2, then G is Hamiltonian. 
Theorem 3. (see [8].) Let G be a 1-tough graph on |G| n 3 
vertices with δ G 𝑛 3⁄ . Then c G 5𝑛 6⁄ 1. 
Theorem 4. (see [1].) If G is a 1-tough graph with |G| n
3 and 𝜎 𝐺 𝑛 𝑘 2, then G is Hamiltonian. 

III. MAIN RESULTS 

It is easy to see that the complete bipartite graph 𝐾 , , 
where m 6, is 1-tough, Hamiltonian, and its complement 
𝐾 , 𝐾 ∪ 𝐾  contains F in Fig. 1 (a). Thus, 𝐾 ,  provides a 
family of bipartite graphs which are counterexamples to 
Conjecture 1. For nonbipartite cases, let n 8 , and 𝐷
𝐾 ∨ 𝐾  ∨ 𝐾 } ∪ a, x , b, y , c, z , where 𝑎, 𝑏, 𝑐  are the 

three isolated vertices of 𝐾  and 𝑥, 𝑦, 𝑧 ∈ 𝑉 𝐾 . See Fig. 2 
(a) for an illustration.  

 

 

Fig. 2 (a) The graph 𝐷 . (b) The complement graph of 𝐷 , denoted by 
𝐷  

 
We have the following lemma. 

Lemma 1. For n 8 , 𝐷  is 1-tough, hamiltonian, and its 
complement graph 𝐷  contains the graph F. 
Proof. By brute force, 𝐷  is 1-tough. (In fact, 𝐷  is -tough and 
𝐷  is -tough for n 9 .) Next, we will show that 𝐷  is 
Hamiltonian. Because 𝐾  is a complete graph, there exists a 
Hamiltonian path P in 𝐾  between 𝑥 and 𝑦. Thus 𝐷  has a 
Hamiltonian cycle 〈𝑥, 𝑎, 𝑢, 𝑐, 𝑣, 𝑏, 𝑦, 𝑃, 𝑥〉. On the other hand, 𝐷  
contains the edges, { 𝑎, 𝑏 , 𝑏, 𝑐 , 𝑐, 𝑎 , 𝑎, 𝑦 , 𝑦, 𝑐 , 
𝑏, 𝑥 , 𝑥, 𝑐 , 𝑎, 𝑧 , 𝑧, 𝑏 , which implies that 𝐷  contains the 

graph F. Therefore, 𝐷  serves to illustrate that Conjecture 1 is 
false.  

Theorem 5 affirms that Conjecture 1 is true for graphs with 
six or seven vertices. 
Theorem 5. Let |G| n ∈ 6,7 . If G is 1-tough, then either G is 
Hamiltonian or its complement �̅� contains the graph F. 
Proof. We consider G with |G| 6 first. In this case, we want 

to show that G is Hamiltonian and its complement �̅� does not 
contain F. By Theorem 3, c G   6, so G is a Hamiltonian 
graph. Assume that �̅� contains F, then G must contain fewer 
edges then 𝐹 , the complement of F. See Fig. 1 (b) for an 
illustration of 𝐹 . Since the graph 𝐹  is -tough, G cannot be 
better than -tough, which violates the known condition that G 
is 1-tough. Therefore, �̅� does not contain F. Next, we consider 
G with |G|  7. Note that G being 1-tough implies that k 2. 
There are two cases.  
Case 1. 𝜎 𝐺 7. With Theorem 4, G contains a Hamiltonian 
cycle, denoted by 𝐶 〈1,2,3,4,5,6,7,1〉 . Obviously, E G  
consists of all edges in 𝐶  and possibly more. Let 𝐶  be a cycle 
with length 7 and 𝐶  the complement of 𝐶 . It is easy to see that 
𝐶  does not contain F, so �̅� cannot contain F. As a result, 
Conjecture 1 holds in this case.  
Case 2. 𝜎 𝐺 6. Since k 2, this case occurs only when 
there exists an independent set of three vertices 𝑥, 𝑦, 𝑧  such 
that 𝑑𝑒𝑔 𝑥 𝑑𝑒𝑔 𝑦 𝑑𝑒𝑔 𝑧 2 , and 𝜎 𝐺 6 . 
We shall let V G 𝑥, 𝑦, 𝑧, 𝑎, 𝑏, 𝑐, 𝑑 . Under Case 2, there are 
three major subcases and totally five possibilities for which we 
must provide rigorous proofs. Table I gives an illustration for 
these possible situations. For simplicity, we shall label these 
subcases by (a), (b), (c) and so on. 

 
TABLE I 

CASE ANALYSIS IN THE PROOF CASE 2 IN THEOREM 5 
(a) |𝑁 x ∪ 𝑁 y ∪ 𝑁 z | 2 
(b) |𝑁 x ∪ 𝑁 y ∪ 𝑁 z | 3 
(c) |𝑁 x ∪ 𝑁 y ∪ 𝑁 z | 4 

(d) Two of 𝑁 x , 𝑁 y  and 𝑁 z  are identical.
(e) All of 𝑁 x , 𝑁 y  and 𝑁 z  are different.

(f) None of 𝑁 𝑎 , 𝑁 𝑏 , 𝑁 𝑐  and 𝑁 𝑑  covers 𝑥, 𝑦, 𝑧 . 
(g) One of 𝑁 𝑎 , 𝑁 𝑏 , 𝑁 𝑐  and 𝑁 𝑑  covers 𝑥, 𝑦, 𝑧 .

 
a) |𝑁 x ∪ 𝑁 y ∪ 𝑁 z | 2.  Let 𝑁 x ∪ 𝑁 y ∪ 𝑁 z

𝑎, 𝑏 . Thus, the subgraph induced by 𝑥, 𝑦, 𝑧, 𝑎, 𝑏  is 𝐾 , , 
and G is not Hamiltonian. Removing 𝑎, 𝑏  results in a 
graph with at least four components, so G is -tough or 

weaker. It violates the assumption that G is 1-tough, so this 
case cannot happen. 

b) |𝑁 x ∪ 𝑁 y ∪ 𝑁 z | 3.  Let 𝑁 x ∪ 𝑁 y ∪ 𝑁 z
𝑎, 𝑏, 𝑐 . Removing 𝑎, 𝑏, 𝑐  results in a graph with at least 

four components, so G is --tough or weaker. Again, it 

contradicts the known fact that G is 1-tough, so this case 
should not occur.  

c) |𝑁 x ∪ 𝑁 y ∪ 𝑁 z | 4.There are two possibilities: (d) 
and (e).  

d) Two of 𝑁 x ,  𝑁 y  and 𝑁 z  are identical. W.L.O.G., let 
𝑁 x  𝑁 y 𝑎, 𝑏  and  𝑁 z 𝑐, 𝑑 . In this case, 
removing 𝑎, 𝑏  results in a graph with at least three 
components, so G is -tough or weaker, which violates the 

condition that G is 1-tough, so this case will not happen.  
e) All of 𝑁 x ,  𝑁 y  and 𝑁 z  are different. There are two 

subcases. There are two subcases: (f) and (g). 
f) None of 𝑁 𝑎 ,  𝑁 𝑏 ,  𝑁 𝑐  and 𝑁 𝑑  covers 𝑥, 𝑦, 𝑧 . 

W.L.O.G., let 𝑁 𝑥 𝑎, 𝑏 , 𝑁 y 𝑏, 𝑐 , and 𝑁 𝑧
𝑐, 𝑑 . See Fig. 3 for an illustration. If 𝑎, 𝑑 ∈ E G , then 
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〈𝑎, 𝑥, 𝑏, 𝑦, 𝑐, 𝑧, 𝑑, 𝑎〉  is a cycle of length 7, which is a 
Hamiltonian cycle of G. The argument in Case 1 shows 
that �̅� does not contain F, so Conjecture 1 holds in this 
case. Now, we discuss the situation when 𝑎, 𝑑  does not 
belong to E G . The set of edges among 𝑎, 𝑏, 𝑐, 𝑑  contains 
at most 𝑎, 𝑏 , 𝑏, 𝑐 , 𝑐, 𝑑 , 𝑎, 𝑐 , 𝑏, 𝑑 . Removing 
𝑏, 𝑐  results in a graph with at least three components, so G 

is -tough or weaker. It is not possible.  
 

 

Fig. 3 An illustration for Case 2, (f) in the proof of Theorem 5 
 
g) One of 𝑁 𝑎 ,  𝑁 𝑏 ,  𝑁 𝑐  and 𝑁 𝑑  covers 𝑥, 𝑦, 𝑧 . 

W.L.O.G., let 𝑁 𝑎  be the one covering 𝑥, 𝑦, 𝑧 , and let 
𝑁 𝑥 𝑎, 𝑏 , 𝑁 𝑦 𝑎, 𝑐 , and 𝑁 𝑧 𝑎, 𝑑 . It is easy 
to see that G must be non-Hamiltonian. Moreover, �̅� 
contains the triangle with vertices 𝑥, 𝑦, 𝑧  and the edges 

𝑥, 𝑐 , 𝑥, 𝑑 , 𝑦, 𝑏 , 𝑦, 𝑑 , 𝑧, 𝑏 , 𝑧, 𝑐 . That is, �̅�  contains 
F. Since G is 1-tough, it can be observed that E contains 

𝑏, 𝑐 , 𝑐, 𝑑 , 𝑏, 𝑑  while the edges 𝑎, 𝑏 , 𝑎, 𝑐 , 𝑎, 𝑑  are 
optional. See Fig. 4 for an illustration. We note that the 
graph with 𝑑𝑒𝑔 𝑎 6 is isomorphic to the graph H in [2]. 
Thus, Conjecture 1 is true in this case. 

 

 

Fig. 4 An illustration for Case 2, (g) in the proof of Theorem 5 
 

From the above derivation, we conclude that for any 1-tough 
graph G with |G|  7, either G contains a Hamiltonian cycle or 
G is of the form in Fig. 4, of which the complement contains F. 

The following two lemmas are derived in order to obtain the 
correction for Conjecture 1 for graphs with eight or more 
vertices. We denote the complement of G by �̅�. The graph 𝐹∗ is 
shown in Fig. 5. 
Lemma 2. Let G be a 1-tough graph with |G| n 11. The 
following three statements are equivalent. 

 

Fig. 5 The graph 𝐹∗ 
 

i) There exists some nonadjacent pair 𝑥, 𝑦  in G such that 
𝑑𝑒𝑔 𝑥  𝑑𝑒𝑔 𝑦 𝑛 5. 

ii) There exists an edge 𝑥, 𝑦  of �̅�  such that 𝑑𝑒𝑔 ̅ 𝑥
 𝑑𝑒𝑔 ̅ 𝑦 𝑛 3. 

iii) G contains the graph 𝐹∗. 

Proof. First of all, we want to show (i) implies (ii). Take the 
edge 𝑢, 𝑣  of �̅� such that the nonadjacent vertex pair 𝑢, 𝑣  in 
G satisfies 𝑑𝑒𝑔 𝑢  𝑑𝑒𝑔 𝑣 𝑛 5. Therefore, 𝑑𝑒𝑔 ̅ 𝑢
 𝑑𝑒𝑔 ̅ 𝑣   

 
n  1  𝑑𝑒𝑔 𝑢   n  1  𝑑𝑒𝑔 𝑣  
2n 2 n 5                                                  

n 3.                                                                            
 

Secondly, we need to show (ii) implies (iii). Following (ii), 
there are n – 2 vertices in V �̅� 𝑢, 𝑣 . If 𝑁 ̅ 𝑢 ∩ 𝑁 ̅ 𝑣 ∅, 
then 𝑑𝑒𝑔 ̅ 𝑢 𝑑𝑒𝑔 ̅ 𝑣 1 1 𝑛 2 𝑛. It violates (ii). 
Thus, 𝑁 ̅ 𝑢  and 𝑁 ̅ 𝑣  must have at least three common 
vertices in V �̅� 𝑢, 𝑣 . This implies that �̅� contains the graph 
𝐹∗.  

Finally, we will show (iii) implies (i). This part will be 
shown by deducing a contradiction from the opposite 
assumption. Assume that �̅�  contains the graph 𝐹∗ , and 
𝑑𝑒𝑔 𝑥  𝑑𝑒𝑔 𝑦 𝑛 4 holds for any nonadjacent pair of 
vertices 𝑥, 𝑦  of G. With a simple calculation, one can see that 
𝑑𝑒𝑔 𝑥 deg 𝑦 𝑛 2 holds for any edge 𝑥, 𝑦  of �̅�. As in 
the previous argument, it means that the endvertices 𝑥 and 𝑦 of 
any edge 𝑥, 𝑦  in �̅�  have at most two common neighbors. 
Then, �̅� cannot contain 𝐹∗, which violates (iii). Consequently, 
there must be some nonadjacent pair of vertices 𝑥, 𝑦  in G with 
𝑑𝑒𝑔 𝑥  𝑑𝑒𝑔 𝑦 𝑛 5. 

Lemma 3 can be obtained using the similar derivation as in 
Lemma 2. 
Lemma 3. Let G be a 1-tough graph with |G| n ∈ 8,9,10 . 
The following three statements are equivalent. 
i) There exists some nonadjacent pair 𝑥, 𝑦  in G with 

𝑑𝑒𝑔 𝑥  𝑑𝑒𝑔 𝑦 𝑛 3. 
ii) There exists an edge 𝑥, 𝑦  of �̅� such that 𝑑𝑒𝑔 𝑥

 𝑑𝑒𝑔 𝑦 𝑛 1 
iii) The complement of G, denoted by G , contains the graph 

𝐾 . 
Our correction of Conjecture 1 for graphs with eight or more 

vertices is presented below. 
Theorem 6. Let G be a 1-tough graph with |G| n 8. Then 
a) For n 11, either 𝜎 G 𝑛 4 or 𝐺 contains 𝐹∗. 

b) For n ∈ 8,9,10 , either 𝜎 𝐺 𝑛 2 or 𝐺 contains 𝐾 . 
Proof. We will explain (a), where n 11, in detail and skip the 
similar discussion for (b). There are two cases. 
Case 1. Suppose that 𝑑𝑒𝑔 𝑥  𝑑𝑒𝑔 𝑦 𝑛 4 holds for any 
nonadjacent pair of vertices 𝑥, 𝑦  of G. With Theorem 1, G is 
Hamiltonian. Note that the degree-sum condition is the 
sufficient condition for G to be Hamiltonian, and the converse 
is not true. 
Case 2. Suppose that there exists some nonadjacent pair of 
vertices 𝑥, 𝑦  of G such that  𝑑𝑒𝑔 𝑥  𝑑𝑒𝑔 𝑦 𝑛 5. With 
Lemma 2, it is equivalent to saying that 𝐺 contains 𝐹∗. 

Combining Case 1 and 2, (a) is verified. When we apply 
Corollary 1 for (b) concerning the case where 𝜎 G 𝑛 2, 
the similar difficulty appears. The fact that the degree-sum 
condition provides only the sufficient condition for G to be 
Hamiltonian, not the necessary condition prevents us from a 
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stronger conclusion as in Conjecture 1. 
As a result, Theorem 6 corrects Conjecture 1 for n 8 and 

becomes the best that one can have. 
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