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An Observer-Based Direct Adaptive Fuzzy Sliding
Control with Adjustable Membership Functions

Alireza Gholami, Amir H. D. Markazi

Abstract—In this paper, an observer-based direct adaptive fuzzy
sliding mode (OAFSM) algorithm is proposed. In the proposed
algorithm, the zero-input dynamics of the plant could be unknown.
The input connection matrix is used to combine the sliding surfaces
of individual subsystems, and an adaptive fuzzy algorithm is used to
estimate an equivalent sliding mode control input directly. The fuzzy
membership functions, which were determined by time consuming
try and error processes in previous works, are adjusted by adaptive
algorithms. The other advantage of the proposed controller is that the
input gain matrix is not limited to be diagonal, i.e. the plant could be
over/under actuated provided that controllability and observability
are preserved. An observer is constructed to directly estimate the
state tracking error, and the nonlinear part of the observer is
constructed by an adaptive fuzzy algorithm. The main advantage of
the proposed observer is that, the measured outputs is not limited to
the first entry of a canonical-form state vector. The closed-loop
stability of the proposed method is proved using a Lyapunov-based
approach. The proposed method is applied numerically on a multi-
link robot manipulator, which verifies the performance of the closed-
loop control. Moreover, the performance of the proposed algorithm is
compared with some conventional control algorithms.

Keywords—Adaptive algorithm, fuzzy systems, membership
functions, observer.

[. INTRODUCTION

ARIOUS methods exist for control of nonlinear systems.

Many of the existing methods are model-based. Recent
developments consider less model based methods, for those
practical situations where the plant model is not known
accurately. One such idea is to combine the concept of fuzzy
control with other nonlinear control methodologies [1]-[5]. In
particular, a well-known algorithm is the, so called, adaptive
fuzzy sliding mode (AFSM) method. This approach exploits
the advantages of both sliding mode and fuzzy logic control
schemes.

The idea of AFSM was first proposed by Lin and Chen [6].
The main concept was to use the fuzzy inference to estimate
the required control signal such that the system states
converge towards a predefined sliding surface. An indirect
AFSM algorithm was proposed by Yoo and Ham [7], where
the unknown model was initially estimated by an adaptive
fuzzy approach and the control signal was then designed based
on the sliding mode theory. Generally, direct AFSM
algorithms are more effective than the indirect ones, because
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there are multiple estimation algorithms in the indirect
approaches, while in the direct methods the control signal is
approximated by a single estimation algorithm, and hence they
may converge faster [8].

More recent articles have developed the AFSM method.
Wang et al. [9] used the indirect AFSM algorithm to estimate
the unknown system parts to design an ideal sliding mode
control signal, and also used the direct AFSM approach to
approximate the switching control signal [8]. Wai et al. [10]
used the direct AFSM algorithm to approximate the bound of
the estimation error. Wai [11] used the direct AFSM algorithm
to approximate the switching part of the control signal in such
a way that the chattering phenomenon could be eliminated [8].
In some articles, such as [12], the AFSM algorithm was used
to estimate the plant uncertainties. Wai et al. [13] developed
two cascaded AFSM methods, one for estimating the set point
and another for estimating the control signal. Later on, Hwang
et al. [14] developed a direct AFSM algorithm by a type-2
fuzzy system for control of unknown chaotic systems.
Haghighi and Markazi [15] applied an AFSM method to
control the chaotic motion of the MEMS resonators. Other
researches extend the AFSM method for control of MIMO
nonlinear systems. For example, Tong and Li [16] divided the
nonlinear system into some canonical subsystems, and the
indirect AFSM approach was employed. Aloui et al. [17] used
indirect AFSM for MIMO nonlinear systems, and employed
an adaptive PD term to eliminate the chatter. Poursamad and
Markazi [18] proposed a direct AFSM approach for control of
MIMO chaotic system. In their method, the input gain matrix
is limited to be diagonal. This is a limitation which appeared
in many of the papers proposing the direct AFSM controller
for MIMO systems. This limitation means that the nonlinear
sub-systems could not have any interconnections through their
inputs. Furthermore, determining the fuzzy membership
functions is based on a try and error process, which could be a
time consuming procedure.

The main assumption of the AFSM method is that all the
states are measurable, a matter which may not be the case for
many practical situations [8]. Several papers considered the
observer based AFSM approach for SISO systems [19]-[21]
and also for MIMO plants [22]-[24]. The main limitation of
those methods is that the outputs of the plant must be the same
as the first entries of some canonical-form state vectors, a
matter which restricts the application of the algorithm
considerably [8].

In this article, new direct AFSM controller and observer are
proposed for MIMO systems. In the proposed direct AFSM
controller, it is not necessary for input gain matrix to be
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diagonal. In this method, the sliding surfaces are defined for
each subsystem, firstly. Then, the sliding surfaces are
combined through input gain matrix and used to estimate the
equivalent sliding mode control input vector by an adaptive
fuzzy algorithm. Also, a robust controller is designed based on
the combined sliding surfaces to compensate the fuzzy
estimation error. Moreover, an algorithm is proposed to adjust
the fuzzy membership functions adaptively. In this method,
there is no need to the trial and error procedure for
determining the fuzzy membership functions. Furthermore, an
adaptive fuzzy observer is proposed to estimate the state
tracking error. In the proposed observer, unlike many of the
previous ones, the measured output vector can be any arbitrary
linear combination of the states, as long as the plant remains
observable. In this method, an adaptive fuzzy algorithm is
used to estimate the nonlinear behavior of the observer based
on the observer error.

This paper is organized as follows: MIMO problem
statement is in Section II; the new direct AFSM controller
with adjustable membership functions is described in Section
III; the adaptive algorithms for the proposed controller are
derived in the Lyapunov sense in Section IV; the main idea
and algorithm for the proposed observer is explained in
Section V; the stability analysis is considered in Section VI;
the numerical examples of the applications of the proposed
control method to a MIMO nonlinear robot presented in
Section VII; also, a comparison study between the proposed
algorithm and conventional model based methods is explained
in this section.

II. PROBLEM STATEMENT

In this section the structure of the considered nonlinear
system is introduced. Consider the class of the MIMO
nonlinear system is described by

7" =F(x)+G(x)u, €))]
y =Cx,

I
where z=[z,..,2,]" €R" and Z(')=[Zl(r1), z\m

s Ly
denote the system coordinates and their derivatives,

respectively.

-1
Also x=(z,,..,2\""

Zyron 2o VT =[x, %, ] €R" is the
vector of states, r =[F,,...,I,]', with " r. =n, is the vector
of subsystems orders, u=[u,,..,u,]" €R™ is the control
signal, F(x)=[f,(x),...,

necessarily known function of x, C is the MXN known

f.(x)]" is the smooth and not

output matrix, y e R™ is the system output and G(x) e R™"

is a known input matrix. Further, it is assumed that G™' exists.
The nonlinear system (1) can be equivalently represented in a
state-space form:

X = Ax+B(F(x)+G(x)u), @)
y =Cx,

where,
N
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Furthermore, it is assumed that the pair (A,C) is

observable. The control objective is to design a controller such
that the closed-loop system is stable and the actual output, Yy,

could track the desired output, ¥, closely.

III. AFSM CONTROL WITH ADJUSTABLE MEMBERSHIP
FUNCTIONS

The design procedure for a new direct AFSM controller for
MIMO systems with adjustable membership functions is
explained in this section. Consider (1). If this model was
known exactly, a vector of ideal stabilizing control signal, u®,
could be determined using the sliding mode control
methodology. For this purpose, the sliding surfaces are
defined as

s, =(D+4)17'Z, i=1,.,m, 3)

where D is the time derivative operator, /1, is a user
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specified positive constant, and

Z,=14-1, 4)

where Z; is the desired state trajectory. The vector of sliding

surfaces is then defined as
s=[S,....8, 1" ®)

The ideal control signal, U®® | is derived such that § =0,
ie.,

u® = G(x)’l[—F(x)+ z +H(x)], (6)
where  z,(t) =2y, Zgn] > U =[U,...,uN]"  and

r171 rl—l rl—l JN

>CI D" AT

=1 .

. . il

Hx)=|, , ° in which ijzi_]' .

< N r!(J_r)!

ZCJ- D™ A7,

=1

The time differentiation of § is

| DO+4)"'7 |

s =

D(D+4,)™ 7,

! .
r, PN DY
D'+>CI DA 7,
=1
=z -z + H(x) (7)
! .
r ro=1r,-1 j |5
D™+>Cm D™ "4 7,

j=1

Now consider the case, when F(x) in (1) is not known
exactly. In order to follow the behavior of the equivalent
sliding mode control, a model-free fuzzy algorithm is

proposed to estimate the ideal control signal [8]. Consider m
parallel fuzzy systems, with separate inputs, & , i=1,2,....m,
and using three IF-THEN rules; i.e.,

Rule 1: IF §, is A' THEN u,"* =K/,

Rule 2: TF §; is A> THEN u™ =k?,

Rule 3: IF § is A’ THEN u"* =k,

where, k! q=1,2,3, are fuzzy singleton outputs. Because it
is assumed the system states are not measurable, therefore the

input of fuzzy system is §i instead of S; which is

w»
Il
~~
O
+
N
N
N,

i» ®)

where Z is the estimated value of Z Aiq is a fuzzy set

defined through Gaussian membership functions as

. 1
ﬂpﬁl(si)=—+aiw, )

1+e

R 2
o (8,)=exp —(iJ , (10)

=
(2]

2= an

1+ 6

where @;, C; and O; are membership functions parameters
which will be adjusted adaptively in Lyapunov sense in
Section IV. By singleton fuzzification, product inference
system and center average deffuzification, the output of the
fuzzy algorithm yields as

qi:,kiqﬂAiq (§i )
S (5)

fuz
u.

(12)

i

= A

Defining the firing strength as

qu :3—, (13)

> (6)

g=I
the output of fuzzy system can be rewritten as

u" =k w;, (14)

where, Kk, =[k/',k>,k’]" is the vector of fuzzy output

singletons, and w; = [W,W’,W’]" is the vector of firing
strengths.

It is well-known that a fuzzy inference system of the form
(14) is a universal approximator [8], [25], i.e. it can estimate
any real continuous function to any degree of accuracy [8].

Now, define block matrixes K and W as

K =[k{ ,k},...k5.]’ and W =diag[w,,w,,...,w, ],
respectively. The fuzzy output singletons and the membership
functions parameters are adjusted by adaptive laws which are

designed in the Lyapunov sense. Therefore, the output of the
adaptive fuzzy algorithm is written as

749



International Journal of Mechanical, Industrial and Aerospace Sciences
ISSN: 2517-9950
Vol:12, No:7, 2018

" =W'K, (15)

where K is the estimated value of K and W is constructed
a=[4,...a,]". ¢=[¢,....¢,I

> Cpy and

based on

6=[6,,...,6,,]' which are the estimated values of

T
a=[a,...,a,] .¢=[C,....c,]' and o=[c,,....0,],
respectively. For the nominal case, i.e., when the model of the
plant is exact, the output of the fuzzy controller is denoted as

" =W'K", (16)

* *’ * . . . .
where K =[k 1T yeres ka 1" is a matrix containing the vectors

of optimal parameters

Kk;A = argmin {kiTWi -u }, (17)

k;

and W" = diag[w;,...,w, ] is a matrix calculated based on
the optimal Gaussian membership functions parameters, i.e.,
a' =[a,...,a,]", ¢ =[c,....c,]"ando" =[07,...,0,]"
where

(a;,¢,0, )A = argmin ﬂkiTwi —u }, (18)

(35.6.07)

Therefore, the estimation error of the adaptive fuzzy system

K
Sliding S
Surface

Rebust
Controller
9
e i

X [ arsum

I

SR S

Bound
Estimation

Observer

Adaptation
Law
"I;-uzzy ™+~ u
™ Controller 2 W e
+A L

¢

is considered as

~ fuz

=0 +y, (19)

where W =[w,,...,w,]" is the vector of the fuzzy

estimation error and is assumed to be bounded, i.e.,

| <, (20)
where W =[¥,,..., W, ]" is the vector of the estimation error
bounds. To compensate the fuzzy estimation error, robust
controller, u™ =[u1rb,...,urrnb]T, is designed based on the

sliding mode theory. The details of the robust controller
design are explained in Section IV. Therefore, the total control
signal is formulated in the form of
u=a""+u". @21)
By use of (1), (6), (7) and (21) the error dynamic is obtained
as
A _(r) (r) _ eq n fuz rb
s=z; -z +HX)=GX)[u"-u " —-u"]. (22

The functional diagram of the proposed algorithm is
depicted in Fig. 1.

Unknown
Nenlinear
System

-\
u’

Fig. 1 The block diagram of the proposed algorithm. C is any known m by n matrix as long as observability is preserved

IV. ADAPTIVE ALGORITHMS AND ROBUST CONTROLLER
DESIGN

Theorem 1. Consider the unknown nonlinear system
described by (1). With the controller input assembled as in
(21), where

A fuz . N S .
1) a0 isan estimation of U* which is obtained by use of

the adaptive fuzzy system (15) in which K is tuned
adaptively using

K=K =a,WGs, (23)
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A

8 & 1T .
where, $=[S;,....5:]" , ¢ =diag[e, ., ,,....a, ] and

Q, ; is positive adaptation rate and

K=K-K. 24)

2) membership function parameters vectors, i.e., 0, € and
a are tuned adaptively by

T
6=-6=pGsT a“i K, 25)
06
A ~ AxT aWT g
c=—-c=4,GsJ —K, (26)
oc
and
“val
a=-a=pBGsJ’ aVY K, 27
oa
respectively, where B =diag[p,,,.... Binl>

B, =diag[p,,..... B,,] and By =diag[f,,..., B;,] include
the adaptation rates, J =[1,...,1]" e R™" is a constant vector

and
o=0-0, (28)
c=c-—¢, 29)
a=a-—a. (30)

3) u™ is robust controller which is designed according to
u™ = Gsgn(s)¥, 31
where sgn(3) = diag[sgn($,),...,sgn(s,,)] and W=[¥ .. ¥ T is

the approximated value of the error bounds vector which is
adjusted adaptively by

¥ - ¥ = ¢,G?sgn(§ 5, (32)

where  «, =diagla,,,a,,,....a,,] and @,; is a user

defined positive constant and
P(t)=v (). (33)
then the stability of algorithm is guaranteed.

Proof. A positive definite candidate Lyapunov function is
defined as

By differentiating (34) with respect to time and using (22)-
(33), it is obtained that

I Qs R PRl Ly SE R R
=§"[GWK)+G(WK)+Gy -Gu®]+K o (-, WGS)
+ W, W45 B+ B E+AT B
=K'GW'§-K'GW'$§+58"G(y —u"®)+ ¥"a;'"¥
T 3T 3T

3 —6“1 +eJ7 LVY +al7’ —a“j

o6 o oa
=y G§-§"G[Gsgn(3)¥]+ ¥ o, [-a,G*sgn(8)s]

T T
W RasTGer 0%12 —GuT
c

v

+§'G(&T K+& 45+ B'¢+a" g'a

AT
6 N g _sgar v
loleg

G ¢
X T 3T
wsear Yok srear Yok
oa oa
=y "GS- P Gsgn(8)s <y sgn()G’sgn(8)s — P G*sgn(8)s
=(y"sgn(y) - ¥7 )G sgn(§)$ < 0,
(35)

where sgn(y) = diag[sgn(y,),...,sgn(w,,)]. Therefore, V,

is negative semidefinite, which shows the algorithm stability.
In order to prove the asymptotic stability, bring in

E(t)= (v sgn(y) - ¥ )G?sgn(§)s < -V,,  (36)
and integrate E(’[) with respect to time, then it can be shown
that

J2(0)dr <V, (0)-V,(t) 37)

Since v (0) is bounded and V.(t) is nonincreasing and
bounded, it implies that [17]:

lim/E(r)dz <. (38)

t—w 0

Furthermore, = is bounded, so by Barbalat’s Lemma [26],
it can be shown that |;Z(t)=0. That is 1im§(t)—>0 .

tow t—oo
Therefore, the closed-loop control method is asymptotically
stable.

V.NEW ADAPTIVE FuzzYy OBSERVER DESIGN

In this section, a new adaptive fuzzy observer is proposed to
estimate the state tracking error vector for the MIMO
nonlinear system (1). The state tracking error dynamic is
explained in the form of

X =AX+Bv(X,u), (39)

where v(X,u) =[v,(X,u),...,V, (X,u)]" includes all of the

observer nonlinear terms and
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X=X, X (40)

If the model (1) was known exactly, the observer could be
defined as

X =AX+Bv(X,u)+Q(e—8),
e =CX, 41)
¢ =CX,

where Q is the observer gain and X is the estimated value of

the state tracking error vector. The observation error dynamic
is obtained by subtracting (41) from (39), i.e.,

R =(A-QO)F+BV(X. %), 42)
where
I=%-% (43)
and
VX, %,u) = vZ,u) - v(X,u). (44)

The gain Q is determined such that the characteristic
polynomial of A —QC is strictly Hurwitz.

Now consider the case, when the system (1) is not known
exactly. In order to mimic the behavior of the nonlinear part of

the observer, v(iu) , a model-free adaptive fuzzy algorithm is
used to approximate the V,(X,u), i=1,2,...,m in the real-

time. Consider M parallel fuzzy systems, with separate

inputs, & =¢,—€, i=1,2,...,m, and using N, IF-THEN
rules; i.e.,
Rule I: TF & is Al THEN Vi,; =k!;, 1=1,....n,

where, k;’i is a fuzzy singleton output and Al)’i is a fuzzy set

defined through constant Gaussian membership functions. The
inference system is the same as one used in the controller
fuzzy system. The output of the fuzzy algorithm yields as

f T
w“=kmwm, (45)

47‘1 State Estimator fe——

T

-

nAT
where, Kk, ; = [k;,i,...,ko"i 1" is the vector of output fuzzy

. nAT . .
singletons, and W ; = [Wé . Wofi 1" is the vector of firing

s
strengths of fuzzy rules.

block matrixes K and W0 as

Ko = [kl,l’kZ,Z""’kZ,m]T and Wo = diag[wo.lawo,zv“’wo,m]’

respectively. Then, the vectors of fuzzy output singletons are
tuned by an adaptive law as

Now, define o

A

K,=-K, = o,CBWE, (46)

where, a, =diag[a;,,a;,,....a;,] and @;; is positive

adaptation rate, K _ is the estimated value of K 0>

(47)

and
e=e—¢. (48)

Therefore, the adaptive fuzzy system output can be written
as

Ve =WK,. (49)

Now, the proposed model-free adaptive fuzzy observer is
formulated in the form of

[SIeE

= AX+BV " (X,u) + Q(e— &),

. (50)
=CX.

o>

By use of (50) and (2) the AFSM observer error dynamic is
resulted as

C(A-QC)X-X)+CB(v—v")=%. (51

Fig. 2 shows the observer functional diagram.

Adaptation Law |-¢——

3

Fuzzy System |-———

Fig. 2 The structure of the observer
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VI. STABILITY ANALYSIS

Theorem 2. Consider the unknown nonlinear system
described by (1). With the controller input described in
Theorem 1 and the observer designed according to (50), where

fffuz(i u) is approximated by adaptive fuzzy system (49) and
K, is adjusted by (46), then the stability of algorithm is

guaranteed.
Proof. A positive definite candidate Lyapunov function is
defined as

V=V, +V,, (52)

where, VC was defined by (34) and V(J is considered as
AR R
e e+§ 0 K. (53)

By differentiating (52) with respect to time we have

V=V +V,, (54)

where, \/C was described by (35) and by use of (46) and (51)
\/0 is obtained as
= FTé+ﬁZaglﬁo
=& [C(A-QC)(X-%)+CB(W/K,)] (55)

+K! ;' (~a,CBW, ®)
=¢'C(A-QC)(X-%X)+KICBW/¢ - K!CBW/&.

\%

o

Because (A —QC) is strictly Herwitz, therefore,
T C(A-QC)(Z-%)=(X-X)'C'C(A-QC)(X-X)<0. (56)

Therefore, by (35), (55) and (56) it is obtained that Vois
negative definite, i.e, based on the Lyapunov theory the
algorithm error goes to zero asymptotically.

VII. NUMERICAL SIMULATION

In this section, numerical investigations on the effectiveness
of the proposed control scheme are carried out. For this
purpose, application of the method on a modular and
reconfigurable robot (MRR) system, shown in Fig. 3, is
considered [27].Also, an adaptive PID controller with a
Luenberger observer is applied on the MRR to compare its
performance with the proposed algorithm.

Fig. 3 MRR coordinates

A.MRR Manipulator

Although the proposed control method does not rely on the
detailed plant information, it is necessary to make sure that the
general model structure is compatible with the class of MIMO
nonlinear systems described in (1). Furthermore, it is needed
to simulate the plant for the numerical analysis. The general
form of the dynamic equation of MRR is [28]

M(®)0 +V(0,0)0+T(O)+Z@O)+7, =7 (57

where M(@®) e R*® is the inertia matrix, V(@,0)e R>® is the

Coriolis matrix, T(O)e R® contains the friction terms,
Z(©)eR® is the gravity vector, 7, € R’ represents

disturbances, 7 € R’ is the torque control input vector, and
0=[6,,6,,6,]" e R’ is the vector of joint angles (see Fig.3)

The MRR dynamic equation (57) can be equivalently
written in the form of

® =F(x)+Gr, (58)
y =Cx

where, X =[x, %, X]" = [61391’62:92a03’93]T eR° s
the state vector,
F(x)=[f,(x), f,(x), ;)] ==M'V-M'T-M'Z-M"7, R’ 18 2
smooth and unknown function vector of X and G(x)=M"".
As mentioned before, in the proposed observer, the
measured outputs do not need to be considered as the first
entries of canonical-form state vector. To show this
contribution, the output of each joint is considered as the
summation of its position and velocity, i.e., the matrix C is

selected as 1 1.0 0 0 0) The desired output trajectory
C={0 01100

000011
for each joint is in the form of
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ydi ZASin %I__ﬁ* % B i:172,3, (59)

where, A =A =90deg and A, =45deg are the trajectory
amplitudes, T = 40s is the trajectory period, f =50Hz is the
control frequency, j=1,2,... is the control signal index and i
refers to the ith joint.

B. Control and Observer Parameters

The sliding surface constants, fuzzy output adaptation rates
and bound estimation adaptation rates, which are needed for
designing the controller, are selected as shown in Table 1.

TABLE I
CONTROLLER PARAMETERS
) Sliding surfaces Fuzzy output Error estimation

Joint constants Ai adaptation rates a; adaptation rates a,,

11 15 1.7 0.05

22 15 0.6 0.01

33 9 0.5 0.01
Also, the adaptation rates for adjusting the fuzzy

membership functions are shown in Table II.

TABLE II
MEMBERSHIP FUNCTION ADAPTATION RATES

Adaptation Rate  Adaptation Rate ~ Adaptation Rate

Joint

for oy () for ¢ (,) for & (8,)
1 35 45 1
2 20 30 1
3 20 40 10

The observer adaptation rates are shown in Table III.

TABLE III
OBSERVER PARAMETERS
Joint Fuzzy output adaptation rates ay;
1 3
2 3
3 3

Furthermore, the fuzzy membership functions for observer
design are shown in Fig. 4.

The experimental tracking performance of proposed
OAFSM controller is depicted in Figs. 5-7. Considering the
fact that the information of the plant is not used for controller
design except the gain matrix of input signal vector, the
proposed algorithm has an acceptable tracking performance.
Also, the observer shows the effective estimation of the states
tracking errors, while the robot information is not used to
design it. Moreover, to show the effect of membership
function adaptive algorithms, the output tracking error is
compared by the AFSM algorithm with constant membership
functions in Fig. 5.

=] =] =
=~ & @

=
o

Membership Degree
= (=] (=] =
b L = n

e

Positive

o
-3

-2 = | o
e-tilda

Fig. 4 Membership functions for observer fuzzy systems

e (deg+deg/s)

e (deg+deg/s)

50 T T
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- - - Output Feedback Algorithm with 3 Constant MFs
15} Output Feedback Algorithm with 3 Adaptive MFs
|
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Ky =17 e8 (62)

j and Kd’ j are proportional gain, integral

gain and derivative gain for jth joint, respectively. Also, 77, i

7, ; and 775 ; are adaptation rates.
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To design the Luenberger observer, the nonlinear dynamic
equation (57) should be converted to the linear equation
firstly. Here, the feedback linearization method is used to
linearize the robot equations. Then, the Luenberger observer is
simply designed based on the linearized model.

The output tracking error of the adaptive PID controller and
the error of the model-based Luengerger observer is compared
with the proposed observer-based AFSM algorithm in Figs. 8
and 9. Although all plant information is used to design the PID
controller and Luenberger observer, the performance of
proposed algorithm which designed based on the partially
unknown plant is more acceptable.
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VIII.CONCLUSION

An observer-based direct AFSM control methodology is
proposed for a class of MIMO nonlinear systems. In the
controller design, the input gain matrix is used to combine the
sliding surfaces. Then, the direct AFSM is designed based on
the combined sliding surfaces. Therefore, in the proposed
controller, there is no need to consider the matrix G as a
diagonal matrix. Also, a robust controller is designed to
compensate the fuzzy estimation error. Also, the membership
functions of the controller fuzzy system are adjusted
adaptively, which was defined by the try and error procedure
in the previous works.

The observer estimates the state tracking error. The
advantage is that the measured outputs do not need to be
considered as the first entries of a canonical-form state
vectors; a limitation which exists in many of conventional
output feedback AFSM methods. In the proposed observer, the
adaptive fuzzy algorithm is used for approximation of
nonlinear part and the observer error is used as the input of
fuzzy system.

The chattering phenomenon which occurred because of
discontinues terms in the control law, was eliminated by
defining the boundary layers in the neighborhood of the
sliding surfaces. Finally, the stability is guaranteed based on a
Lyapunov-based approach.
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