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Abstract—Urbanization remains one of the unique predominant 

factors which is linked to the destruction of urban environment and 
its associated cases of soil contamination by heavy metals through the 
natural and anthropogenic activities. These activities are important 
sources of toxic heavy metals such as arsenic (As), cadmium (Cd), 
chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), and lead 
(Pb), nickel (Ni) and zinc (Zn). Often, these heavy metals lead to 
increased levels in some areas due to the impact of atmospheric 
deposition caused by their proximity to industrial plants or the 
indiscriminately burning of substances. Information gathered on 
potentially hazardous levels of these heavy metals in soils leads to 
establish serious health and urban agriculture implications. However, 
characterization of spatial variations of soil contamination by heavy 
metals in Ghana is limited. Kumasi is a Metropolitan city in Ghana, 
West Africa and is challenged with the recent spate of deteriorating 
soil quality due to rapid economic development and other human 
activities such as “Galamsey”, illegal mining operations within the 
metropolis. The paper seeks to use both univariate and multivariate 
geostatistical techniques to assess the spatial distribution of heavy 
metals in soils and the potential risk associated with ingestion of 
sources of soil contamination in the Metropolis. Geostatistical tools 
have the ability to detect changes in correlation structure and how a 
good knowledge of the study area can help to explain the different 
scales of variation detected. To achieve this task, point referenced 
data on heavy metals measured from topsoil samples in a previous 
study, were collected at various locations. Linear models of 
regionalisation and coregionalisation were fitted to all experimental 
semivariograms to describe the spatial dependence between the 
topsoil heavy metals at different spatial scales, which led to ordinary 
kriging and cokriging at unsampled locations and production of risk 
maps of soil contamination by these heavy metals. Results obtained 
from both the univariate and multivariate semivariogram models 
showed strong spatial dependence with range of autocorrelations 
ranging from 100 to 300 meters. The risk maps produced show strong 
spatial heterogeneity for almost all the soil heavy metals with 
extremely risk of contamination found close to areas with 
commercial and industrial activities. Hence, ongoing pollution 
interventions should be geared towards these highly risk areas for 
efficient management of soil contamination to avert further pollution 
in the metropolis. 
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I. INTRODUCTION 

HERE are growing public concerns world-wide in recent 
times over the spate of environmental degradation due to 

rapid urbanization. Although urbanization leads to economic 
growth and development [42], its negative impact on 
biodiversity poses serious health implications. Soil is a 
fundamental and important natural resource and also vital to 
human survival; however, there are numerous industrial and 
other anthropogenic activities sited in urban areas which are 
the key sources of toxic heavy metals such as As, Cd, Cr, Cu, 
Fe, Mn, Pb, Ni and Zn which contaminate the soil and its 
environment [1]-[4]. Human activities including agricultural 
practices, indiscriminate burning of substances, disposal of 
electronic/ electrical appliances and domestic/industrial waste 
as well as atmospheric deposition, combine with the naturally 
occurring heavy metals, derived from the geological parent 
mineral to increase the contamination of soil to endanger the 
environment [5]-[9]. High concentration levels of heavy 
metals reduce soil quality and also increase human exposure to 
the metals, which can threaten food safety and also pose 
potential health risks [10]-[13]. These environmental 
challenges are not different in Ghana. Its natural environment 
is being degraded, threatening water bodies and ecosystems 
coupled with poor sanitation across the country. This has led 
to a national crusade against the small scale illegal mining 
activities, popularly known as “Galamsey”, and indiscriminate 
disposal of domestic and industrial rubbish to protect the 
environment and also improve the sanitation issue in the 
country. Environmental risk assessment involves provision of 
valuable information on spatial and temporal variations of the 
pollutants and their possible sources of risk to aid effective 
management control [3], [14]-[16].  

Geostatistical analysis is a powerful spatial statistical 
technique which contributes immensely to prediction of 
random processes distributed over space and time [16], [17]. It 
is widely applied in environmental monitoring to analyze 
spatial and temporal distributions of pollutant concentrations 
from soil and groundwater resources [3]-[4], [7]-[9], [18]-[24]. 
References [3] and [4] used various geostatistical techniques 
including indicator kriging (IK) and ordinary kriging (OK) to 
explore spatial distribution and hazard assessment of four 
heavy metals (Cr, Cd, Ni and Pb) in soils at a coal mining and 
paper mill industrial areas in north-eastern India. The two 
separate studies produced variogram models and risk maps to 
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describe the range of auto-correlations of the observed soil 
contaminations and probability of exceeding the maximum 
permissible limit value for each heavy metal. Other studies 
combine the classical multivariate modelling approach with 
geostatistical analysis to characterise urban soils and 
groundwater quality. Reference [9] performs factor analysis 
coupled with OK to quantify and establish potential sources of 
various heavy metals in an agricultural basin in Spain, while 
the principal component analysis is applied with OK in [19]-
[21] to investigate heavy metal contamination in various 
farmland and industrial areas in China to facilitate 
management strategies to control soil pollution. Geostatistical 
multivariate techniques via linear model of coregionalisation 
(LMC) have been used to establish joint spatial variations in 
soil physiochemical properties and other natural resources 
[14]-[16]. References [25] and [26] use various cokring 
techniques to estimate Cu grade and cobalt by accounting for 
correlated covariates to delineate areas of high risk of excess 
of these heavy metals, while prediction performances of 
simple cokriging and ordinary cokring estimators using 
environmental dataset on concentrations of five heavy metals 

(Cd, Cu, Pb, Ni and Zn) have been compared in [27]. 
Reference [28] applies factorial kriging to study spatial 
relationships among some soil phyiochemical properties in 
central Italy, while similar kriging methodology via cokring is 
used in [29] to characterize the spatial variability of 
microbiological and soil attributes.  

Multivariate assessments of soil metals and water quality 
have extensively been explored in various parts of Ghana [5]-
[6], [10], [30]. However, none of these studies have or 
adequately explored the use of geostatistical analysis. Previous 
analysis of topsoil quantifying the risk levels of heavy metals 
in [5], [6] lacks detailed statistical analysis to properly 
characterize the risk levels and their sources of pollution. The 
second study in [6] showed risk maps of soil contamination 
but did not produce the structural analysis report to ascertain 
the prediction accuracy and uncertainty of risk levels at 
various local areas. This study applies multivariate 
geostatistical analysis to further characterize the 
contamination levels of four soil heavy metals (As, Cr, Cu and 
Zn) and to identify their potential health hazards for local 
residents in an urban area in Ghana.  

 

 

Fig. 1 Map of Kumasi showing topsoil sample locations [5] 
 

II. MATERIALS AND METHODS 

A. Study Area and Data 

Point referenced data on some main toxic heavy metals in 
topsoil samples in previous studies conducted in Kumasi [5], 
[6] were collected. Kumasi is the second largest metropolitan 
city and also serves as the regional capital of Ashanti Region 
of Ghana in West Africa. It lies between longitudes 1o35W 

and 1o40W and latitudes 6o40N and 6o44N with a total land 
area of about 229 km2. It is relatively warm in the metropolis 
with annual temperatures varying within 20-30 oC, while the 
annual rainfall is about 1,400 mm. Kumasi is densely 
populated with an estimated inhabitants of over 2 million [31] 
and also characterised with various commercial and industrial 
activities. It has the Kejetia Market with over 45,000 shops, 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:12, No:6, 2018

141

 

 

the largest market in the country, and Suame Magazine, a 
large industrial area designated for auto-mechanic workshops 
for metal engineering, fabrication and vehicle repairs [32]. 
New built up areas, mostly with unauthorised structures, are 
sprinkling up, while the city is also interspersed with streams 
and rivers, where local residents often engage in unorthodox 
crop farming and illegal mining activities. These human 
activities have resulted to indiscriminate disposal and burning 
of substances to pollute the soil and other natural resources in 
the environment with heavy metals being among the major 
pollutants of these sources [33]. The data for analysis in this 
study were the contamination levels (in mg/kg) of four heavy 
metals, Ar, Cr, Cu and Zn in topsoil samples in the city. The 
topsoil samples were collected within a 0.50.5 km2 regular 
grid of 94 locations across the city and its immediate environs 
as described in the surveys in [5] and [6]. Part of the data 
collected has been obtained for further assessment of soil 
pollution of these heavy metals. Fig. 1 shows the study area, 
indicating the sampling locations and other land features.  

B. Multivariate Geostatistical Analysis 

1. Preliminary Concepts 

Geostatistical analysis is based on the theory of a 
regionalised variable ( )Z u  that varies continuously over the 

domain dD   and assumes spatial auto-correlation such that 
samples closer in space are more alike than those further apart 
[34], [35]. The collection of such random variables in space 

{ ( ) : }dZ  u u D   is called random function, with a well-

defined joint distribution function (1), which models the joint 
uncertainty of the unsampled values of ( )Z u  at locations u

and a variogram (2), the main structural tool for describing the 
spatial dependence of ( )Z u  by assuming the much weaker 

intrinsic stationarity assumption: 
 

1 1 1 1( ,..., ; ,..., ) [ ( ) ,..., ( ) ]n n n nF z z P Z z Z z  u u u u ,    (1) 
 

for every collection 1,..., .n u u u D   
 

2

2 ( ) ( ( ) ( ))

[{ ( ) ( )} ],

Var Z Z

E Z Z

   

  

h u h u

u h u
     (2) 

 
dand   u D h   where h  is the distance vector 

separating the paired observations ( )Z u h  and ( ).Z u  

Geostatistical kriging techniques are used to model the 
spatial patterns, predict values at unmeasured locations, and 
assess the uncertainty associated with a predicted value at 
these locations. Kriging is a generalized least-squares 
interpolation method, which predicts random attribute(s) 
values at unmeasured locations by using ( )n h  neighboring 

sampled observations );{ ( 1,2,..., ( )}Z n h  u  and spatial 

correlation information obtained by a variogram model [15]. 
Geostatistical kriging techniques include the ordinary kriging 
(OK) and ordinary cokriging (OCK), which are used for 

predicting a single and multiple random attributes, 
respectively.  

In this study, the observed contamination levels of the 
heavy metals in topsoil samples at the n  locations were 
transformed via the unit normal-score probability distribution. 
The transformed dataset at locations 1 2, ,..., nu u u  is denoted 

by { ( ) : 1,2,..., },iZ i k u where 1 2( ), ( ),..., ( )kZ Z Zu u u  are 

the concentration levels of the four heavy metals (Ar, Cr, Cu, 
and Zn). The contamination levels of the heavy metals were 
then modelled as realisation of 4k   random functions 
{ ( ) : 1, 2,..., ; }iZ i k u u D occurring in space. To predict 

values for each ( )iZ u at ( )in u  unsampled locations, the 

semivariogram ( ),i h  which charactrises the spatial 

dependence via the average variability between paired 
sampled observations separated by a lag distance h, is defined 
following (2). The semivariograms for all the soil heavy 
metals were computed from the observed sample data using 
the experimental semivariogram following the Matheron’s 
estimator (3) proposed by [35].  

 

 
( ) 2

1

1
ˆ ( ) ( ) ( )

2 ( ) i

n h

i iZ Z
n h  





  h u h u     (3) 

 
where ( )iZ u  and ( )iZ  u h  are values for the soil heavy 

metal observed at locations u  and  u h , respectively, 

while ( )n h  is the number of paired observed values separated 

by distance vector h. The experimental semivariograms were 
then modelled as isotropic process, depending only on the 
magnitude of the separation vector, and fitted using a 
theoretical spherical model nested with nugget effect (4): 
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


    


 

 (4) 

 

where T
0 1θ ( , , )a a r  contains the nugget 0( ),a  the sill 1( )a  

and the range ( )r  being the main parameters used to 

characterise the spatial autocorrelation structure of the soil 
heavy metals under investigation.  

The estimation of each soil heavy metal ( )iZ u was 

performed using the ordinary kriging optimal estimator (5), 
which assumes a locally constant mean but unknown to 
predict an unknown location 0u  using a linear combination of 

( )n u  data values within the local neighborhood. 
 

 
( )

1
;ˆ ( ) ( )

n u

iokZ Z 





 u u such that 
( )

1
1

n u







    (5) 

 
where the weights   were optimally assigned to the observed 

values ( )iZ u  by minimising the prediction error variance 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:12, No:6, 2018

142

 

 

2 2ˆ ˆ( ( ) ( )) [( ( ) ( )) ]e ok i ok iVar Z Z E Z Z    u u u u  such that 

weights sum to 1 to ensure its best linear unbiased estimator 
(BLUE) property. This leads to solving the following OK 
system of equations (6) via the method of Lagrange 
multipliers for the weights   to be determined:      
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
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  (6) 

 
where ok  is the Lagrange multiplier for optimal weights (7) 

to be obtained [15], [36]:   
 

T 1
ok

λ Γ γ          (7) 
 

where Γ  is a ( ) ( )n nu u  matrix whose components are 

( )  u u  for 1,2,..., ( );n u   γ  is a vector with 

components 0 1 0 2 0 ( )
T[ ( ), ( ),..., ( )]n u     γ u u u u u u   and 

I  is a vector with entries 1. The optimal weights in (7) result 
in the OK estimator in (5) with minimum prediction variance 
estimated by (8): 
 

( )
2 T

1
( )

n u
ok

oke ok 


   


    u u λ γ       (8) 

 

where T T
1 2 ( )( , ,..., , ) .ok ok ok

ok n u ok   λ  

2. Linear Model of Coregionalisation and Cokriging 

The geostatistical OK estimator in (5), as presented in the 
previous section, implements the quantification and mapping 
of a single attribute (soil heavy metal) ( )iZ u  through a linear 

model of regionalisation of the experimental semivariogram in 
(3) using (4). However, each soil heavy metal can also be 
predicted through its jointly interactions with the other soil 
heavy metals observed at same locations for better insight of 
spatial variations of the various soil heavy metals at same or 
different scales. This then extends the ordinary kriging to the 
multiple random variables 1 2( ), ( ),..., ( )kZ Z Zu u u  for the 

multiple spatial variations to be studied simultaneously 
through a linear model of coregionalisation (LMC) to pave 
way for the ordinary co-kriging (OCK) estimation of each soil 

heavy metal ,iZ  accounting for the spatial correlations with 

the other heavy metals.           
As with the univariate case, the multivariate random 

function { ( ); },Z u u D  defined over the domain ,D  has the 

components 1 1Z ( ), Z ( ),..., Z ( )ku u u  as vectors of the random 

functions which are characterised by the semivariogram 
matrix in (9) whose components are the semivariograms 

( )ij h  for all pairs ( , ) 1,...,i j k : 

 

      T1
( ) [ ( ) ( ) ( ) ( ) ]

2
E    Γ h Z u h Z u Z u h Z u        (9) 

 
where the diagonals are called direct-semivariograms for 
i j  as in (3), and the off diagonals are called cross-

semivariograms for ,i j which is estimated by the 

experimental semivariograms in (10):    
 

 
( ) T

1
( )

1ˆ ( ) ( ) ( ) ( )2 ( )

n

ij i i j jn    





 
 
 

    
h

h Z u h Z u Z u h Z uh (10) 

 

for 1,.., ,i k  where ( )n h  is the number of pairs of sample 

locations separated by the lag vector .h  To account for  the 

spatial dependence between the k attributes a permissible 

LMC (11) consisting of nugget effect and a spherical model 

(4) was used to fit to all the ( 1) 2k k  direct- and cross-

experimental semivariograms in (10) [15], [26], [37], [38]. 
 

0

( ) ( ) ( ), ,
k

l
ij l

l

g i j


   h h B h               (11) 

 

where ( )l
l ijbB  is a positive semi-definite matrix. 

The OCK estimator is the multivariate version of the OK 
estimator (5) where the random variables ( ); 1, 2,...iZ i ku  

are collocated with observations 
{ ( ); 1, 2,... ; 1, 2,..., }.iZ i k n  u  The OCK unbiased 

estimator for kriging the soil heavy metal ( ),iZ u  correlating 

spatially with the other covariates via LMC (10), (11) and 
using ( )in u  neighborhood observations is given by (12):  

 
( )

( )
11

ˆ ( ) ( );
n ui

ii ock i i
i i

k
Z Z 





  u u 1,2,...i k      (12) 

 

where the kriging weights 
i

  are computed by minimising 

the prediction error variance subject to the unbiased 
constraints (13), for ( , ) 1,2,...i j k : 
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n ui

i
i







  and 

( )

1
0

n uj

j
j







           (13) 

 

from which the OCK system is expressed in terms of the 
direct- and cross-semivariograms (14):  
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  (14) 

 

for the optimal cokring weights
i

 to be computed for each i  

as in (7).  

III. RESULTS AND DISCUSSION 

A. Descriptive Statistics of Heavy Metals 

The summary statistics of the four topsoil metals (As, Cr, Cu 
and Zn) considered in this study are summarised and shown as 
in Table I. The mean values exceed the medians, which shows 
that the distributions of soil contamination of the four heavy 
metals were all positively skewed. Higher mean amounts of 
Zn (96.64 mg/kg) and Cr (44.95 mg/kg) were observed in 
topsoil samples of the study area as compared with the lower 
mean values for Cu (27.79 mg/kg) and As (18.65 mg/kg). The 
variation in distribution relative to the mean was highest for 
Cu with a coefficient of variation (CV) of 2.12, while As has 
the least variation in distribution with CV of 1.43. Correlation 
analysis between paired heavy metals was also performed and 
the results as presented in Table II. There were relatively 

positively weak (but significant =0.05) correlations (0.280-
0.390) between As and the other three heavy metals as 
indicated by the Spearman correlation coefficients. On the 
other hand, the correlations among pairs of the remaining 
three heavy metals (Cr, Cu and Zn) suggest very strong 
positive correlations (0.810-0.871) and significant at =0.001. 

The observed values of heavy metals in topsoils were 
transformed using the unit normal-score distribution approach 
to achieve more symmetric distributions [15], [39] for further 
analysis. The shapes of the distributions for the normal-score 
transformed topsoil metals as shown in Fig. 2 are more 
symmetrical compared to that of the original values.  

 
TABLE I 

DESCRIPTIVE STATISTICS OF HEAVY METALS (AS, CR, CU AND ZN) 

CONTAMINATION IN SOIL (MG/KG) 

Statistic As Cr Cu Zn 

Minimum 1.0000 0.1000 0.5700 0.7000 

Maximum 190.98 478.00 377.00 912.00 

Mean 18.650 44.950 27.790 96.640 

Standard Deviation 26.630 83.410 58.930 179.89 

Lower Quartile 4.8000 1.3300 1.4300 2.3100 

Median 11.980 3.1000 2.2850 5.8900 

Upper Quartile 23.120 59.880 22.980 109.50 

Coefficient of Variation 1.4300 1.8700 2.1200 1.8600 

 

 

 

Fig. 2 Histogram of normal-score transformed of As, Cr, Cu and Zn 
 

TABLE II 
CORRELATION MATRIX SHOWING THE SPEARMANS’S CORRELATION 

COEFFICIENTS BETWEEN HEAVY METALS: AS, CR, CU AND ZN 

Symbol As Cr Cu Zn 

As 1.000    

Cr 0.280a 1.000   

Cu 0.340a 0.840b 1.000  

Zn 0.390b 0.810b 0.871b 1.000 
aSignificant at 0.05; bSignificant at 0.001 

B. Spatial Variability of Heavy Metals 

The spatial structure of the observed four soil heavy metals 
were modelled singly and jointly as an isotropic process as 
discussed in Section II B. The experimental semivariograms 
for the individual (3) and multiple (10) soil heavy metals were 
constructed using 10 lags at lag distance spacing of 60 meters. 
The univariate experimental semivariograms were modelled 
by an isotropic spherical variogram model nested with (or 
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without) a nugget effect (4) while a linear model of 
coregionalisation (11) was fitted to the direct-semivariogram 
of each soil heavy metal and its cross-semivariograms in (10) 
using the same nested model (4). The results obtained from the 
fitted univariate and multivariate semivarigrams models are as 
presented in Tables III and IV, respectively, while the 
corresponding semivarigram graphs are as displayed in Figs. 3 
and 4.   
 

TABLE III 
PARAMETERS’ VALUES OF THE FITTED LINEAR MODEL OF 

COREGIONALISATION OF HEAVY METALS: AS, CR, CU AND ZN 

Variable As Cr Cu Zn 

Nugget Effect: 

As 1.03    

Cr 0.01 0.48   

Cu 0.27 0.38 0.59  

Zn 0.40 0.53 0.64 0.87 

Spherical model (range = 300 m): 

As 0.12    

Cr 0.26 0.69   

Cu 0.12 0.49 0.55  

Zn 0.05 0.26 0.24 0.18 

 

 

Fig. 3 Experimental semivariograms (line with dots) with the fitted 
isotropic spherical model nested with nugget (solid line) for each 

normal-score transformed of As, Cr, Cu and Zn 
 
The linear models of regionalization and coregionalisation, 

each comprising a spherical variogram model nested with 
nugget effect (4), appeared well-fitted and acceptable (see 
Figs. 3 and 4), having satisfied the semi-positive definite 
condition [16], [39] in all cases. The autocorrelation structures 
indicate spatial variations of distributions of the four soil 
heavy metals. The experimental direct-semivariograms, 
particularly for Cr and Cu, showed relatively smaller nugget 
effect values of 0.48 and 0.59, respectively, compared with 
much smaller values of 0.00 and 0.07 from the univariate 
semivariogram models of same soil heavy metals. The nugget 
effect parameter, indicating the semivariance values at short 
distance varied between 0.01 and 1.03 for both direct- and 

cross-semivariograms, while the sill parameter, indicating the 
semivariance values at very large distance, varied between 
0.27 and 1.15 for the univariate and multivariate 
semivariograms. The correlation structure of the experimental 
cross-semivariograms shows positive spatial correlations 
among all the four soil heavy metals. The range parameter, 
representing the distance of influence of a heavy metal 
contamination, ranged 100–135 meters for the univariate 
models whereas the range of autocorrelations for multivariate 
semivariograms was found to be within 300 meters for all the 
soil heavy metals. The nugget-sill ratios, indicate the strength 
of spatial autocorrelations among the observations for the 
multiple autocorrelations model were quite high, ranging 
0.41–0.90, compared with the univariate semivariograms’ 
nugget-sill ratios of 0.297-0.699, except that for Cr with a 
ratio of 0. 

 

 

Fig. 4 Experimental direct- and cross-semivariograms (line with dots) 
with the fitted linear model of coregionalisation (solid curve) for 

normal-score transform of As, Cr, Cu and Zn 

C. Estimation and Risk Maps 

Based upon the spatial structure as described by the fitted 
univariate and multivariate semivariogram models, the 
estimates of the four soil heavy metals were obtained by 
performing both OK (5) and OCK (12) over a 10×10 meter 
grid spacing created to cover the study area. The kriged 
normal-score values at the unsampled locations of the study 
area for each heavy metal were back-transformed. The 
descriptive summary of the predicted values of the soil heavy 
metals are presented in Table V to be compared with the 
observed values. The prediction performance of the OK and 
OCK estimators are compared using the three error measures, 
mean error (ME), mean absolute error (MAE) and mean 
square error (MSE) in a cross-validation analysis as shown in 
Table VI. 

Averagely, the predicted values of soil heavy metal 
contamination were lower but more variable (except As) 
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compared with the observed data. The spatial risk maps of soil 
heavy metal contamination produced from the predicted 
values by the OK and OCK estimators are displayed in Figs. 5 
and 6, respectively. The predictions, as observed from the 
spatial risk maps, suggest highly contaminations of soil by Ar, 
Cr, Cu and Zn, which are mainly found in the northern, 
southern and eastern parts of the study area, while some 
patches of high contaminations, particularly by Cr and Cu, are 
seen in the central part of the study area. The risk maps show 
globally similar spatial distribution pattern of contamination 
but differ locally in levels of contamination. 

 
TABLE V 

DESCRIPTIVE STATISTICS OF PREDICTED AND OBSERVED VALUES OF SOIL 

HEAVY METALS 

Metal Count Min Max Mean StdDev Median CV 
OK Predicted (mg/kg): 

As 7568 1.00 191 11.97 2.93 12.00 0.25 

Cr 7568 0.10 478 23.13 44.63 2.84 1.93 

Cu 7568 0.57 377 9.59 22.93 2.28 2.39 

Zn 7568 0.70 912 21.47 51.16 5.99 2.38 

OCK Predicted (mg/kg): 
As 7568 1.00 191 11.76 3.48 11.99 0.96 

Cr 7568 0.10 478 13.01 25.91 2.86 1.96 

Cu 7568 0.57 377 5.82 13.06 2.27 2.24 

Zn 7568 0.70 912 7.61 16.82 5.83 2.21 

Observed (mg/kg): 
As 94 1.00 191 18.65 26.63 11.98 1.43 
Cr 94 0.10 478 44.59 83.41 3.10  1.87 
Cu 94 0.57 377 27.79 58.93 2.29 2.12 

Zn 94 0.70 912 96.64 179.89 5.89 1.86 

 
TABLE VI 

CROSS-VALIDATION OF OK AND OCK PREDICTION ACCURACY OF SOIL 

HEAVY METALS 
Statistic ME MAE MSE 

Ordinary kriging 

As 0.000 0.807 1.018 

Cr -0,005 0.823 1.019 

Cu -0.005 0.819 0.979 

Zn 0.000 0.801 1.004 

Ordinary Cokriging 

As 0.001 0.806 1.060 

Cr 0.001 0.829 1.066 

Cu 0.000 0.842 1.079 

Zn 0.000 0.822 1.021 

  
TABLE IV 

DESCRIPTIVE STATISTICS OF PREDICTED AND OBSERVED VALUES OF HEAVY 

METALS 

Metal Count Min Max Mean StdDev Median 
Predicted (mg/kg): 

As 7568 1.00 191 11.76 3.48 11.99 
Cr 7568 0.10 478 13.01 25.91 2.86 
Cu 7568 0.57 377 5.82 13.06 2.27 
Zn 7568 0.70 912 7.61 16.82 5.83 

Observed (mg/kg): 
As 94 1.00 191 18.65 26.63 11.98 
Cr 94 0.10 478 44.59 83.41 3.10 
Cu 94 0.57 377 27.79 58.93 2.29 
Zn 94 0.70 912 96.64 179.89 5.89 

 

 

Fig. 5Spatial distribution of ordinary kriging (OK) estimates of As, 
Cr, Cu and Zn risk of soil contamination in the study area 

 

 

Fig. 6 Spatial distribution maps of ordinary cokriging estimates of 
As, Cr, Cu and Zn showing risk of soil contamination in the study 
 
The prediction error values for the soil heavy metals 

indicate that the OCK estimator predicts slightly better than 
the OK estimator with relatively smaller ME values but 
approximately equal MAE and MSE values. The OCK 
produced risk maps show smoother kriged surface, covering a 
larger area to spread the heterogeneity compare with the OK 
risk maps which appear more spotted in levels of 
contamination. 

D. Discussion 

Mapping the distribution of heavy metals’ concentrations in 
soils in human settlement areas is essential for environmental 
protection agencies to monitor and delineate hazardous areas 
for remediation [40]. In this paper, the spatial distribution of 
heavy metals, namely As, Cr, Cu and Zn measured from 
topsoil samples collected from human settlements in Kumasi 
Metropolis and its environs in Ashanti Region of Ghana were 
studied. Previous studies [5], [6] found some of the soil 
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samples of these heavy metals to have exceeded the 
international environmental soil quality guidelines [41], which 
is a cause for concern. Thus, mapping the spatial distribution 
of these topsoil heavy metals will allow demarcation of highly 
contaminated areas for efficient management of soil pollution. 
The present study describes the spatial distribution of these 
topsoil heavy metals using multivariate geostatistical 
techniques which account for the spatial cross-correlations 
among the heavy metals. The cross-correlations allow us to 
account for different sources of spatial variations which is 
important for accurate prediction of spatial distribution of 
regionalized variable [15], [38]. 

The results of both univariate and multivariate 
semivariograms models showed that there exists spatial 
variation in the distribution of the soil heavy metals. The 
spatial variation was particularly high for Cr and Cu in the 
study area. In addition, there was positive spatial cross-
correlations among the heavy metals, which indicates that 
areas with high concentration of one heavy metal happens to 
be the areas with high concentration of the other metals. The 
cross-correlations among the metals indicate that these heavy 
metals may have originated from the same sources and have 
similar level of pollution [5], [20] while high values of the 
nugget-sill ratios can be to attributed human activities in that 
vicinity. The range of the heavy metals contamination of soil 
in this urban area was found to be short, ranging between 100 
and 300 meters, which is an indication of spatial heterogeneity 
of all the soil heavy metals.  

The OCK estimator predicted accurately better than the OK 
estimator with smaller prediction errors and also smoother 
predicted surfaces. As indicated by the predicted values of the 
topsoil heavy metals, the spatial patterns of soil contamination 
are highly concentrated at the northern, southern and eastern 
parts of the study area with some spotted areas in the central 
part. The distribution risk maps of these heavy metals show 
globally similar spatial pattern but the magnitude in term of 
levels of contamination vary locally. The patchiness at the 
central part of the study area was found to be highly 
contaminated with Cr. In general, the magnitude of Zn was 
found to be higher compared to the other metals. High 
concentration levels of these heavy metals, particularly, As, 
Cu and Zn, in the topsoil of the study area could be mainly 
attributed to anthropogenic sources due to high proportions of 
the nugget effects. The northern parts of the study area are 
surroundings of the largest mechanic and spare parts shops in 
Ghana as well as vehicle garages [5]. The soil pollution by Cr 
and Cu in the central part of the study area could be influenced 
by vehicular emissions from heavy traffic movements [20] 
coupled with indiscriminate disposal of waste substances and 
quack car-mechanic activities. Reference [20] observed 
considerable release of Cu and Zn from vehicle exhausts in 
Beijing.  

IV. CONCLUSION 

In conclusion, the case study presented here shows the 
importance of mapping heavy metals concentration in urban 
soils to support environmental monitoring process. The spatial 

risk maps of the predicted topsoil heavy metals suggest that all 
the four soil heavy metals studied showed signs of spatial 
heterogeneity and highly contaminated at the central and 
border areas of the study area. The predicted values far 
exceeded the maximum acceptable values based on the 
national and international risk soil quality guidelines [41]. The 
results could be incorporated into decision-making making 
process regarding environmental safety and monitoring as well 
as contaminated area delineation and remediation. 
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