
International Journal of Chemical, Materials and Biomolecular Sciences

ISSN: 2415-6620

Vol:12, No:8, 2018

363


Abstract—Using Fourier transform and based on the Mindlin's

2nd gradient model that involves two length scale parameters, the
Green's function, the Eshelby tensor, and the Eshelby-like tensor for
a spherical inclusion are derived. It is proved that the Eshelby tensor
consists of two parts; the classical Eshelby tensor and a gradient part
including the length scale parameters which enable the interpretation
of the size effect. When the strain gradient is not taken into account,
the obtained Green's function and Eshelby tensor reduce to its
analogue based on the classical elasticity. The Eshelby tensor in and
outside the inclusion, the volume average of the gradient part and the
Eshelby-like tensor are explicitly obtained. Unlike the classical
Eshelby tensor, the results show that the components of the new
Eshelby tensor vary with the position and the inclusion dimensions. It
is demonstrated that the contribution of the gradient part should not
be neglected.

Keywords—Eshelby tensor, Eshelby-like tensor, Green’s
function, Mindlin’s 2nd gradient model, Spherical inclusion.

I. INTRODUCTION

HE size-dependency and scaling, in micro- and nano-
structures such as thin films, quantum dots, plasticity,

nanowires, nanotubes in addition to nanocomposite materials
has acquired significant attention in recent times. Due to the
lack of characteristic length parameters, the classical Eshelby
tensor and local constitutive models are inadequate for
mechanical applications at the micro- and nano-scale, since
size-effects exhibited by particle-matrix composites and
evidenced by experiments cannot be estimated [1]. This has
motivated the studies on Eshelby-type inclusion problems
using higher-order elasticity theories which contain
microstructure dependent material length scale parameters and
are therefore capable of explaining the size effect. The higher-
order elasticity theories that have been used in examining the
Eshelby inclusion problems include a micropolar theory, a
microstretch theory and modified couple stress theory [2]-[6].

The work reported in [5] appears to be the only study that is
based on the strain gradient elasticity with couple stresses and
which involves two additional length scale parameters. In that
work, for the spherical inclusion case, only the Eshelby tensor
is derived in closed form.
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There is still a lack of studies on the Eshelby-type inclusion
problems based on strain gradient elasticity theories involving
two additional elastic constants. For the spherical inclusion,
the explicit form of Eshelby tensor in- and outside the
inclusion, the variation of Eshelby tensor and the volume
average of its gradient part as a function of the two length
parameters appear to be missing in the literature.

The objective of this paper is to tackle the aforementioned
problems and therefore to afford a systematic study of various
Eshelby type inclusion problems involving an inclusion
embedded in an infinite or a finite homogeneous isotropic
elastic body, applying a two-length scale-parameter strain
gradient theory.

II.GREEN’S FUNCTION

The linear constitutive equations for the stress and double
stress quantities are obtained as in [7]:
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The infinitesimal strain ij , and the strain gradient ijk are,
respectively, defined by:
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As shown in [7], the equilibrium equations have the form:

0,,  jkikijiij F (3)

Substituting (1) and (2) into (3) yields the Navier-like
displacement equations of equilibrium as
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where L1 and L2 are two length scale parameters and λ and µ
are the Lame’ coefficients.

When the strain gradient effect is not taken into account
considered (i.e. L1 = L2 = 0), (4) reduces to the Navier
equation in classical elasticity.
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The Green’s function is provided by the solution of (4)
subject to the boundary conditions of, ui, and their derivatives
vanishing at infinity. The Green’s function in the 2nd gradient
model is obtained by applying Fourier transforms.

ijijij xBxAxG ,)()()(   (5)
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Interpretation The Green’s function is first obtained in
terms of elementary functions by applying Fourier transforms,
Its expression can be shown to be the same as that obtained by
Zhang and Sharma using a different approach [5]. This
Green’s function can also be reduced to the Green’s function
in classical elasticity when the strain gradient effect is ignored.

III. ESHELBY TENSOR AND ESHELBY-LIKE TENSOR

The Eshelby-type inclusion problem is determined
analytically. The derived Eshelby tensor is the sum a classical
part identical to the Eshelby tensor based on the classical
elasticity theory and depending only on Poisson’s ratio, and a
gradient part involving the two length scale parameters and
depending on the size of the inclusion additionally, thereby
permitting the interpretation of the size effect. The gradient
part vanishes when the strain gradient effect is not considered.

The classical part of Eshelby tensor:

  qklmijqkjqkiiqkj
C
ijlm CS
















 12

1
8

1
,,

The gradient part of Eshelby tensor:
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The Eshelby like tensor:
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and  )(yF is the volume integral, of a sufficiently smooth
function )(yF over the inclusion occupying region Ω, defined
as:  dyyFyF )()( .

IV. ESHELBY TENSOR FOR A SPHERICAL INCLUSION

For the special case of spherical inclusion, the Eshelby
tensor based on Mindlin’s 2nd gradient model will be found by
directly applying the general formula which is obtained in
Section III.
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where xxx /0
  is the component of the unit vector xx / , δij

is the Kronecker delta and
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The relations D1, D2, D3 and D4 for a sufficiently smooth
function are given in [8].

The Eshelby like tensor is:
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where ai (i = 1,.., 5) are the five material constants defining the
nonlocal isotropic behavior [7], and

15103 ,, are

defined in [8] and P1, P2, and G are defined in [9].

V.NUMERICAL RESULTS

For the purpose of illustration and using the expressions
derived in the previous section, some numerical results are
obtained and presented here to quantitatively estimate how the
components of the newly obtained Eshelby tensor vary with
position and inclusion size. The components of the gradient
part of the Eshelby tensor at any x inside the spherical
inclusion (radius R) along the x1 axis (with x2 = 0 = x3) can be
obtained. Here, only the component GS1111 and its average are
presented.
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The following relation between L1 and L2 can be derived:
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The Poisson’s ratio ν and the length scale parameter L2 are
assumed to be respectively 0.3 and17.6 µm.

It is seen from Figs. 1 and 2 that S1111 varies with x (the
position) and depends on R (the inclusion size), unlike the
classical part CS1111 which is a constant (i.e., independent of
both x and R. Fig. 3 shows that <S1111>V is indeed varying
with R: the smaller R, the smaller <S1111>V. Similar trends are
observed for the other components of the Eshelby tensor.

VI. CONCLUSION

Using the Mindlin’s 2nd gradient model and based on the
Green’s function, the general form of the non-classical
Eshelby tensor is elicited. This later is written as the sum of
two terms; the classical Eshelby tensor and the gradient part
which depends on the two additional length parameters and
varies with the position in-and outside the inclusion. A so
called Eshelby-like tensor liking the eigen strain gradient to
the induced strain is deduced in this study. For the spherical
inclusion problem, the classical Eshelby tensor, the gradient
part and its volume average are explicitly obtained by
employing the developed general form of the non-classical
Eshelby tensor. Numerical results reveal that the components
of the new Eshelby tensor vary with both the position and the
inclusion size, thereby capturing the size effect at the micron
scale. The components of the averaged Eshelby tensor are
found to decrease as the inclusion radius decreases, and these
components are observed to approach from below the values
of the corresponding components of the Eshelby tensor based
on classical elasticity when the inclusion size is large enough.
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Fig. 1 S1111 along a radial direction of the spherical inclusion for R= 2 L

Fig. 2 S1111 along a radial direction of the spherical inclusion for f= 1
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Fig. 3 Variation of < S1111>V with the inclusion radius
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