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 
Abstract—Building an appropriate motion model is crucial for 

trajectory planning of robots and determines the operational quality 
directly. An adaptive acceleration and deceleration motion planning 
based on trigonometric functions for the end-effector of 6-DOF robots 
in Cartesian coordinate system is proposed in this paper. This method 
not only achieves the smooth translation motion and rotation motion 
by constructing a continuous jerk model, but also automatically adjusts 
the parameters of trigonometric functions according to the variable 
inputs and the kinematic constraints. The results of computer 
simulation show that this method is correct and effective to achieve the 
adaptive motion planning for linear trajectories. 
 

Keywords—6-DOF robots, motion planning, trigonometric 
function, kinematic constraints 

I. INTRODUCTION 

HE methods of trajectory planning for 6-DOF robots 
include Joint-space schemes and Cartesian-space schemes. 

Using Joint-space schemes, the point-to-point trajectory 
planning is achieved by controlling each joint motor directly. 
However, Joint-space schemes are difficult to control the shape 
of the space path, such as straight line, arc, parabola, sinusoid 
and etc. [1]. Using Cartesian-space schemes, the trajectory 
functions with time are constructed by the motion model of the 
end-effector and the constraints of different trajectory types. 
The inverse kinematics operation can then be solved in real 
time to obtain the corresponding motor variation to achieve the 
certain trajectory planning [2]-[4]. Both schemes are applicable 
and indispensable for trajectory planning. In this paper, the 
main work is to adopt an appropriate end-effector motion 
model under the kinematic constraints to ensure the stability 
and smoothness of the robotic system with Cartesian-space 
schemes. 

In order to achieve the trajectory planning in the Cartesian 
coordinate system, the crucial issue is to build the acceleration 
and deceleration motion models for the end-effector for 
translation and rotation. The smoothness of the model curve 
mainly determines the stability and smoothness of the robotic 
system. 
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II. TRIGONOMETRIC FUNCTION MOTION MODEL 

According to the mathematical functions, the acceleration 
and deceleration motion models can be divided into polynomial 
models [5]-[7], exponential function models, trigonometric 
function models [8]-[10], etc. 

In this paper, the constant acceleration segment, constant 
velocity segment and constant deceleration segment which may 
exist in the motion model are ignored for model simplification. 

Selecting a linear polynomial or a quadratic polynomial to 
build the acceleration model is common in the polynomial 
model planning. 

When the linear polynomial is chosen as the basic 
mathematical function to build the acceleration model, the 
complete acceleration model 𝑎௟ሺ𝑡ሻ  is constructed with the 
following 3-segments function, as given in (1) 
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where 𝐽 is the acceleration curve slope, 𝑇 is the total motion 
time. 
 

 

Fig. 1 The acceleration model built according to the linear polynomial 
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When the quadratic polynomial is chosen as the basic 
mathematical function to build the acceleration model, the 
linear polynomial becomes the basic mathematical function of 
the jerk model and the complete jerk model 𝑗௤ሺ𝑡ሻ is constructed 
with the 6-segments functions, as given in (2) 
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where 𝑀 is the jerk curve slope, 𝑇 is the total motion time. 
 

 

Fig. 2 the acceleration model built according to the quadratic 
polynomial 

 
As seen from Fig. 1, discontinuity exists in the jerk curve 

when the linear polynomial model is used for motion planning, 
and the jerk curve is continuous when the quadratic polynomial 
model is applied for motion planning as shown in Fig. 2. The 
difference indicates that the motion model constructed with the 
quadratic polynomial is smoother and more stable than the one 
constructed with the linear polynomial. However, the 
increasing degree of the polynomial increases the segments of 
the piecewise functions and the complexity of computation. 

In order to keep the stability and smoothness of motion 
model and reduce the segments of piecewise functions, the 
trigonometric function is appropriate to build the acceleration 
and deceleration motion model. The complete acceleration 
model 𝑎௧ሺ𝑡ሻ and jerk model 𝑗௧ሺ𝑡ሻ can both be constructed with 
the following 2-segments functions, as shown in (3) and (4) 
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where 𝐴 is the maximum acceleration, 𝑇  is the total motion 
time. 
 

 

Fig. 3 the acceleration model built according to the trigonometric 
functions 

 
As shown in Fig. 3, the jerk curve is continuous and the 

segments of the model function are much less than those in the 
quadratic polynomial based acceleration model. Therefore, the 
trigonometric function is more appropriate to build the 
acceleration and deceleration motion model for trajectory 
planning. 
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III. TRANSLATION AND ROTATION PLANNING 

Achieving the trajectory planning with Cartesian-space 
schemes, the motion of the end-effector includes the translation 
motion and the rotation motion. Therefore, the acceleration and 
deceleration motion model for the position translation and the 
orientation rotation need to be built separately and achieve the 
synchronization of them to ensure the translation motion and 
the rotation motion accomplished simultaneously.  

For the position translation planning, the trajectory 
expression can be defined by the input information. Straight 
line expression is defined by the starting point and the ending 
point. 

With the starting position 𝑃௦ሺ𝑥௦, 𝑦௦, 𝑧௦ሻ  and the ending 
position 𝑃௘ሺ𝑥௘, 𝑦௘, 𝑧௘ሻ of a straight line, the total distance 𝐷 is  

 

𝐷 ൌ ඥሺ𝑥௘ െ 𝑥௦ሻଶ ൅ ሺ𝑦௘ െ 𝑦௦ሻଶ ൅ ሺ𝑧௘ െ 𝑧௦ሻଶ            (5) 
 

For every point 𝑃ሺ𝑥, 𝑦, 𝑧ሻ in the straight line, the straight line 
expression is 
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where 𝑘 is an unitary distance coefficient. 

For the orientation rotation planning, in order to express the 
rotation motion more intuitively and solve the problem of 
gimbal lock, the quaternion method is appropriate to describe 
the orientation rotation [11], [12]. The quaternion expression 𝑞 
is 

 
𝑞 ൌ ሾ𝑠, 𝑣ሿ ൌ ሾ𝑠, ሺ𝑎, 𝑏, 𝑐ሻሿ                           (7) 

 
where 𝑠 is the real number port, 𝑣 ൌ ሺ𝑎, 𝑏, 𝑐ሻ is the vector port. 

The rotation matrix 𝑅 in (8) can be transformed to the unit 
quaternion 𝑞 according to (9).  
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To simplify the space rotation planning, the motion 

constraints between two rotation axes that are expressed with 
quaternions are ignored in this paper. With the starting 
orientation quaternion 𝑞ଵ ൌ ሾ𝑠ଵ, ሺ𝑎ଵ, 𝑏ଵ, 𝑐ଵሻሿ  and the ending 
orientation quaternion 𝑞ଶ ൌ ሾ𝑠ଶ, ሺ𝑎ଶ, 𝑏ଶ, 𝑐ଶሻሿ , the orientation 
rotation angle 𝜃 is 

 
𝜃 ൌ 2 ∙ 𝑎𝑐𝑜𝑠 ሺ𝑠ଵ𝑠ଶ ൅ 𝑎ଵ𝑎ଶ ൅ 𝑏ଵ𝑏ଶ ൅ 𝑐ଵ𝑐ଶሻ           (10) 

 
When the quantity of the position translation and the quantity 

of the orientation rotation are known, the unified motion time 
that ensures the motion planning subject to the robotic 
kinematic constraints is obtained to achieve the 
synchronization of the position motion and the orientation 
motion. 

IV. ADAPTIVE TIME PLANNING UNDER CONSTRAINTS 

The displacement, velocity, and jerk of the translation and 
rotation for the acceleration and deceleration motion model 
constructed by the trigonometric function can be deduced by 
the acceleration function. 

Take the translation motion planning as an example. The 
translation acceleration amplitude 𝐴ௗ and the total translation 
time 𝑇ௗ of motion model are unknown. 

The translation displacement 𝐷 is calculated by using (5). 
And the translation displacement 𝐷, the maximum velocity 𝑉௠, 
and the maximum jerk 𝐽௠ can be expressed by the translation 
acceleration amplitude 𝐴஽ and the total translation time 𝑇஽, as 
in (11)-(13). 
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The velocity, acceleration, and jerk should satisfy the 

translational velocity constraint 𝑉௧ , the translational 
acceleration constraint 𝐴௧, and the translational jerk constraint 
𝐽௧ respectively, as in (14). 
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                                        (14) 

 
According to (14), the total translation time 𝑇஽ should satisfy 

the following constraint, as given in (15).  
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The translation acceleration amplitude 𝐴஽  can then be 

calculated by using (11) when the total translation time 𝑇஽ is 
known. 

For rotation planning, the rotation acceleration amplitude 𝐴ఏ 
and the total rotation time  𝑇ఏ  of model are unknown. The 
system rotation constraints include the rotational velocity 
constraint 𝑉௥, the rotational acceleration constraint 𝐴௥, and the 
rotational jerk constraint 𝐽௥. 

The rotation angle 𝜃 can be calculated according to (10). The 
total rotation time 𝑇ఏ should satisfy the following constraint, as 
shown in (16). 
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Therefore, by choosing an appropriate total motion time 𝑇, 

as in (17), the translation acceleration amplitude 𝐴஽ ൌ ଼஽

்మ and 

the rotation acceleration amplitude 𝐴ఏ ൌ
଼ఏ

்మ can be calculated. 
 

 𝑇 ൒ maxሺ𝑇஽, 𝑇ఏሻ                                  (17) 

V. SIMULATIONS FOR A LINEAR TRAJECTORY  

Assume the end-effector obey the kinematic constraints: the 
translation velocity constraint 𝑉௧ ൌ 2𝑚/𝑠 , the translation 
acceleration constraint 𝐴௧ ൌ 8𝑚/𝑠ଶ , the translation jerk 
constraint 𝐽௧ ൌ 60𝑚/𝑠ଷ , the rotation velocity constraint 
𝑉௥ ൌ 2𝑟𝑎𝑑/𝑠 , the rotation acceleration constraint 𝐴௥ ൌ
8𝑟𝑎𝑑/𝑠ଶ, rotation acceleration constraint 𝐽௥ ൌ 60𝑟𝑎𝑑/𝑠ଷ. The 
original position and orientation matrix 𝑇୭ of the end-effector 
in the robotic base coordinate system is 

 

𝑇୭ ൌ ൦

1 0 0 0
0 1 0 775
0 0 1 570
0 0 0 1

൪                              (18) 

Giving the starting position and orientation matrix 𝑇௦ and the 
ending position and orientation matrix 𝑇௘, as in (19) and (20). 

 

𝑇௦ ൌ ൦

0.500 െ0.866 0 671.170
0.866 0.500 0 387.500

0 0 1 570
0 0 0 1

൪                   (19) 

 

𝑇௘ ൌ ൦

െ0.085 െ0.912 െ0.401 െ623.717
0.753 െ0.322 0.573 312.221

െ0.652 െ0.253 0.715 504.095
0 0 0 1

൪         (20) 

 
The translation distance 𝐷 ൎ 1298.747mm , the rotation 

angle 𝜃 ൎ 2878.835mrad are calculated according to (5) and 
(10). Choose the minimum total motion time 𝑇 ൎ 2878.835𝑚𝑠 
obtained according to (15), (16), and (17), then the translation 
acceleration amplitude and the rotation acceleration amplitude 
can be obtained as follows: 𝐴஽ ൎ 1.254𝑚 𝑠ଶ⁄ , 𝐴ఏ ൎ
2.779𝑚/𝑠ଶ. With them, the translation motion model and the 
rotation motion model are constructed as in (21) and (22). 

 

 

(a)                                                                             (b) 

Fig. 4 Translation and rotation planning: (a) Translation model planning, (b) Rotation model planning 
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Fig. 4 shows the acceleration and deceleration motion 
models based on the trigonometric function of the translation 
and rotation. The maximum rotation velocity equaling to the 
rotation velocity constraint 𝑉௥ shows that the total motion time 
𝑇 ൎ 2878.835𝑚𝑠 is the minimum motion time satisfying all 
the kinematic constraints. 

Fig. 5 shows the translation and rotation motion of the 
end-effector from the starting position and orientation matrix 𝑇௦ 

to the ending position and orientation matrix 𝑇௘  with a 
fixed-time interpolation method in the Cartesian coordinate 
system. 

The starting position and orientation matrix 𝑇௦  and the 
ending position and orientation matrix 𝑇௘ can be transformed to 
the starting angular variation 𝑞௦  and the ending angular 
variation 𝑞௘  of six motors with the inverse kinematics 
operation, as in (23) and (24). 

 

 

Fig. 5 Translation and rotation motion of the end-effector 
 

 

(a) 

 

(b) 
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(c) 
 

 

(d) 

Fig. 6 Motion model of six motors: (a) Angular variation model, (b) 
Angular velocity model, (c) Angular acceleration model, (d) Angular 

jerk model 
 

𝑞௦ ൌ ሾെ60 0 0 0 0 0ሿ                     (23) 
 

𝑞௘ ൌ ሾ60 0 10 20 30 40ሿ                  (24) 
 
Solve the inverse kinematics operation for every position and 

orientation matrix that is chose with a fixed-time interpolation 
method along the linear trajectory in real time and obtain the 

corresponding motor variation, then calculate the velocity, 
acceleration, and jerk of six joint motors. Fig. 6 shows the 
angular variation, angular velocity, angular acceleration, and 
angular jerk of six motors for a 6-DOF robot. The jerk curves 
are continuous and the acceleration and velocity curves are 
smooth, ensuring the stability of the robotic system. 

VI. CONCLUSION 

The fundamental of high-quality robotic operation is smooth 
and stable motion that is mainly determined by the acceleration 
and deceleration motion model. The motion model based on the 
trigonometric function ensures the jerk model of the 
end-effector being continuous with less segments of the model 
function and satisfies the kinematic constraints to achieve the 
synchronization of position translation and orientation rotation 
smoothly and stably.  
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