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 
Abstract—The main hindrance to total cure of cancer is a) the 

failure to control continued production of cancer cells, b) its 
sustenance and c) its metastasis. This review study has tried to 
address this issue of total cancer cure in a more innovative way. A 
10-pronged “CRAB METHOD”, a novel holistic scientific approach 
of Cancer treatment has been hypothesized in this paper. Apart from 
available Chemotherapy, Radiotherapy and Oncosurgery, (which 
shall not be discussed here), seven other points of interference and 
treatment has been suggested, i.e. 1. Efficient stress management. 2. 
Dampening of ATF3 expression. 3. Selective inhibition of Platelet 
Activity. 4. Modulation of serotonin production, metabolism and 
5HT receptor antagonism. 5. Auxin, its anti-proliferative potential 
and its modulation. 6. Melatonin supplementation because of its 
oncostatic properties. 7. HDAC Inhibitors especially valproic acid 
use due to its apoptotic role in many cancers. If all the above stated 
seven steps are thoroughly taken care of at the time of initial 
diagnosis of cancer along with the available treatment modalities of 
Chemotherapy, Radiotherapy and Oncosurgery, then perhaps, the 
morbidity and mortality rate of cancer may be greatly reduced.  
 

Keywords—ATF3 dampening, auxin modulation, cancer, platelet 
activation, serotonin, stress, valproic acid. 

I. INTRODUCTION 

HIS review study has hypothesized a holistic 10 pronged 
“Crab Method” of treatment of cancer. It has tried to take 

into consideration the three main factors for failure of Cancer 
treatment, namely a) continued production of malignant cells, 
b) the ability of malignant cells to sustain for prolonged 
periods and c) distant spread of cancer cells. 

With the intention of improving the mortality and morbidity 
of the dreaded disease, Cancer (Latin word for Crab having 10 
legs), seven different points of interference has been suggested 
(other than available Chemotherapy, Radiotherapy and 
Oncosurgery). They are namely: 1) Mental Stress, 2) ATF3 
gene, 3) Platelet Activation, 4) Serotonin, 5) Auxin, 6) 
Melatonin, and 7) HDAC Inhibitors. The causal relation with 
cancer of these above factors and the probable mode of 
interference is the main focus of this study. 

A. Stress and Cancer 

Recent studies have found a strong association of both 
‘obesity’ and ‘mental stress’ with the increasing incidence of 
cancers at various sites and their adverse effects on the 
morbidity and mortality [1], [2]. 

When mice were fed on high fat diet to induce obesity, 
there was a marked increase in the progression of melanoma 
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[3]. 
Another mouse model study has found that stress induced 

β-adrenergic activation increased macrophage infiltration into 
primary tumor cells, thereby inducing pro-metastatic gene 
expression in primary breast cancer. This has led to 30-fold 
increase in metastasis to distant tissues. Treatment with β-
antagonist drugs has been effective in inhibiting metastasis. 
Moreover, inhibition of macrophage infiltration by Colony 
stimulating factor receptor (CSF-1R) inhibitor, GW2580, has 
also been found to be effective in retarding secondary spread 
[4]. 

B. ATF3 and Cancer 

Amongst the mammalian ATF/CREB family of 
transcription factors in the macrophages, Activating 
Transcription Factor 3 (ATF3) is a transcriptional repressor 
involved in cellular responses to extracellular signals [5], [6]. 

The mRNA level of ATF3 gene is greatly increased when 
the cells are exposed to stress signals, both in animal 
experiments, and in cultured cells [7], including many of those 
encountered by cancer cells (tumor microenvironment) e.g. 
Prostate carcinoma, Breast carcinoma, Hodgkin lymphoma 
[8]. 

ATF3 then regulates the expression of a variety of genes, in 
inflammation (mediated by immunoglobulin & immune 
complexes) which has got a significant role to play in cancer 
development and progression [9]-[12].  

A recent study has found that ATF3 gene expressed in non-
cancer host stromal mononuclear cells, but not cancer 
epithelial cells, leads to worst outcome and may act as an 
independent predictor for breast cancer death thereby 
signifying the importance of host stress response. Supporting 
data from mouse models has shown less efficient breast cancer 
metastasis in Atf3-deficient mice than in WT (Atf3+/+) mice. 
So, dampening ATF3 expression in the host may be a potential 
therapeutic approach [13]. 

Chemotherapeutic drugs presently in use have strangely 
both anti-cancer properties and a pro cancer effect by 
increasing chemo-resistance and cancer metastasis [17]. The 
chemotherapeutic agents which also acts as stressors, 
including Paclitaxel [PTX] [14], cisplatin [15], and 
doxorubicin [16] induces ATF3 gene in the tumor 
microenvironment (non-cancer host cells) which in turn plays 
an important role in producing this paradoxical effect. 
Actually, the cellular stress response which evolved to 
promote tissue repair, has preferred to help cancer cell 
survival and progression [18], [19]. 

As the ability of PTX to exacerbate metastasis was 
completely abolished in ATF3 deficiency in host, rationally 

Devasis Ghosh 

Hypothesis of a Holistic Treatment of Cancer: Crab 
Method 

T



International Journal of Medical, Medicine and Health Sciences

ISSN: 2517-9969

Vol:12, No:7, 2018

297

 

 

ATF3 dampening may improve the efficacy of chemotherapy. 

C. Platelet Activation 

Platelet activity is initiated and increased by physical, and 
more so by emotional stress, as well as stress-related 
psychiatric or somatic disorders. This is mediated by the 
activating properties of epinephrine and nor-epinephrine on 
the platelet. 

There are increased levels of platelet 5 HT in paranoid 
schizophrenia and increased platelet 5-HT-2A receptor density 
in depression [20]-[29]. 

The activation of platelets is followed by platelet bridging 
and platelet aggregation with the binding of fibrinogen to its 
major receptor, active form of glycoprotein receptor 
GPIIb/IIIa [25]. The activated platelets also adhere to 
Lymphocytes mainly via platelet P-selectin and lymphocyte P-
selectin glycoprotein ligand-1 (PSGL-1) and sialyl 
saccharides, thus forming platelet-leukocyte aggregates, 
PLAs. Therefore, PLAs are suggested to be a very sensitive 
marker of platelet activation in vivo [30]-[32]. A study on the 
correlation of PLA and acute mental stress showed peak level 
at 30 min, returning to base level at 75 min [33], [34]. 

Activated platelets have quite a significant role in both  
a) Tumor angiogenesis  
b) Tumor metastasis. 

1. Tumor Angiogenesis Role 

Activated platelets can secrete pro-angiogenic growth 
factors like platelet-derived growth factor (PDGF) and 
vascular endothelial growth factor (VEGF), protease like 
MMP9; phospholipids and other microparticles to promote 
angiogenesis. Activated platelets can also directly bind to 
Endothelial cells (EC) to support angiogenesis [35], [36]. The 
platelet activation and coagulation product fibrin, commonly 
exist in tumors, along which ECs can survive and migrate to 
form new blood vessels. 

Activated platelets can recruit bone marrow-derived cells to 
the site of neovascularization by secretion from α-granules, 
which suggests a role of platelets as communicators between 
hypoxic tissue and the bone marrow [37]. Platelet derived 
factors support tumor angiogenesis by protecting the integrity 
of the angiogenic and inflamed tumor vessels. [36], [38], [39]. 

Tumor cells secrete a Vascular permeability factor (VPF), 
which shows a significant homology with PDGF and 
VEGF.VPF has been found contribute to tumor angiogenesis. 
Moreover VPF also induces an increase of von Willebrand 
factor (vWF) which initiates platelet aggregation [40]. 

2. Tumor Metastasis Role 

Tumor cells with platelet activation capacity can form more 
metastasis in mice with xenografted tumors [41]. Metastasis 
was reduced grossly in cases of thrombocytopenia in several 
mouse models [42], [43].  

Below three mechanisms for the metastasis supporting role 
of platelets are described. 
1. Tumor cells are protected from shear stress and immune 

cell attack in the blood circulation by the platelets after 
intravasation by acting as a physical guard to help them 

escape immune elimination [44]. Platelets may also 
inhibit Natural Killer (NK) cell cytotoxicity via platelet-
derived Transforming growth factor beta TGF-β [45] or 
other secreted factors released upon activation [46].  

2. Activated platelets encourage tumor cells to roll and 
tether on the vessel wall, which are necessary for the 
extravasation. Selectins on the platelet surface could 
promote tumor cell (expressing selectin ligands) 
adherence to the endothelium transiently [47]. Moreover, 
the beta3 integrin-mediated binding to activated platelets 
is an efficient mechanism for melanoma cell arrest under 
flow, and this may contribute to the role of platelets in 
metastasis [48].  

3. Platelet secretes prometastatic factors and matrix 
degrading enzymes to facilitate metastasis. From the α-
granules of the platelets, VEGF-A, Epidermal growth 
factor (EGF), PDGF and TGF-β and serotonin and 
histamine from dense granules of the platelets are released 
which affect the vascular permeability and enhance 
metastasis [49].  

Direct contact of the tumor cells with platelets together with 
Platelet-derived TGF-β; activate the TGF-β/Smad and nuclear 
factor-κB (NF-κB) pathways in cancer cells, resulting in their 
transition to an invasive mesenchymal-like phenotype and 
increased metastasis in vivo. Ablation of TGFβ1 expression 
solely in platelets and inhibition of NF-κB signaling in cancer 
cells protects against lung metastasis in vivo [50]. 

In tumor cells, NF-κB is active either due to mutations in 
genes encoding the NF-κB transcription factors themselves or 
in genes that control NF-κB activity (such as IκB genes); in 
addition, some tumor cells secrete factors that cause NF-κB to 
become active. 

Blocking NF-κB can cause tumor cells to stop proliferating, 
to die, or to become more sensitive to the action of anti-tumor 
agents. Thus, NF-κB is a target for anti-cancer therapy [51]. 
Disulfiram, olmesartan and dithiocarbamates can NF-κB 
signaling cascade [52].  

LPA & MMP 

Recently, the importance of platelets in the progression of 
malignant tumors has been studied [53], [54]. LPA 
(lysophosphatidic acid), which is a simple lipid with mitogenic 
properties is rapidly released by activated platelets [55], [56]. 
Moreover, LPA has been found to be useful as a diagnostic 
and prognostic biomarker of ovarian cancer [57]. In the 
initiation and progression of several cancers, such as colon, 
ovarian, prostate, breast, melanoma and thyroid, LPA is 
involved [58], [59]. The effects of LPA are mediated by at 
least six different G protein-coupled receptors [LPA1-6] [60]. 
Selective blockage of LPA1 inhibits cancer cell proliferation 
and invasion. [61]-[63]. The activity of matrix 
metalloproteinases, MMP2, MMP7 and MMP9 in cancer cells 
are up regulated by LPA [64]-[67]. 

The MMPs are enzymes that have role in cancer 
progression. MMPs especially MMP-9, have a critical role in 
certain aspects of tumor metastasis such as tumor-induced 
angiogenesis, tumor invasion, and establishment of metastatic 
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foci at the secondary site [68], [69]. A study in a mouse model 
has shown that induced thrombocytopenia leads to 
destabilization of tumor vessels with intratumoral hemorrhage, 
thereby reducing tumor cell proliferation and increased 
necrosis [70].  

Recent studies have shown that in cancer patients, selective 
inhibition of platelet activity by low molecular weight 
heparins (LMWHs) not only reduces risk of embolism, but 
also effectively inhibits metastasis by suppression of 
angiogenesis and thus improving their survival rates [71]-[74]. 
So, the process of platelet activation may be tried as a 
therapeutic intervention. Lung metastasis and inhibition of 
TCIPA (tumor cell-induced platelet aggregation) can be 
greatly reduced by the oral GPIIb/IIIa antagonist, XV454, in a 
mouse model [75]. 

D. Serotonin and Cancer 

Psychological stress in conscious rats had been found to 
markedly increase the levels of extracellular 5-HT levels in 
basolateral amygdaloid nucleus and the prefrontal cortex due 
to activation of serotonergic neurons in these brain regions 
[76]. This study also suggests that there is a relationship 
between anxiety and 5-HT release in the prefrontal cortex 
[77]. 

An overview of 30 years of research on stress and 5-HT, 
indeed favors the hypothesis that numerous components of 
central serotonergic systems are sensitive to stressors [78]. 
Numerous stressors increase 5-HT synthesis/ turnover [79]. 

A recent study demonstrates that FOXO3a functions as a 
growth factor in serum-deprived HCC (Hepatocellular 
carcinoma) cells and serotonin promotes the proliferation of 
serum-deprived HCC cells via up-regulation of FOXO3a, in 
the presence of sufficient levels of the serotonin receptor 5-
HT2BR. Therefore, drugs targeting the serotonin-5-HT2BR-
FOXO3a pathway may provide a novel target for anticancer 
therapy [80]. 

Another study provides evidence that serotonin is involved 
in tumor growth of hepatocellular cancer by activating 
downstream targets of mTOR, and therefore, serotonin-related 
pathways might represent a new treatment strategy [81]. 

In hormone refractory PC3 prostate cancer cells, 5-HT1A 
and to a greater extent 5-HT1B antagonists significantly 
inhibit growth and induce apoptosis. This effect is most likely 
mediated via 5-HT1A and 1B receptors. Therefore, the results 
imply that 5-HT1A and 5-HT1B receptor antagonists may act 
as potential antineoplastic agents [82]. 

A study addresses the role of 5-HT in Erk1/2 and Akt 
activation in prostate cancer cells, which proves towards 
neuroendocrine factors facilitating progression and migration 
of prostatic cancer cells in an androgen-deficient environment. 
The action of 5-HT was inhibited to varying degrees by 
inhibitors of MAPK and PI3K, as well as by a 5-HT receptor 
subtype 1A antagonist. The data presented in that study also 
identifies 5-HT receptors as a novel target in castration-
resistant PC [83]. 

The proliferative effect of serotonin on cholangiocarcinoma 
growth and the inhibition of serotonin production effectively 

inhibits tumor growth has been shown in a recent study. 
Furthermore, it has also been found that inhibition of the 
serotonin receptors 5HTR 1A, 5HTR 2A, 5HTR 2B, 5HTR 4 
and 5HTR 6 effectively blocked the growth promoting effects 
of serotonin.  

The major findings of one study relate to the dysregulation 
of serotonin metabolism in cholangiocarcinoma. A few 
significant findings in that study are as follows: 
a) Expression of the enzyme responsible for serotonin 

synthesis in the gastrointestinal tract, TPH1, is up 
regulated in cholangiocarcinoma;  

b) The enzyme responsible for serotonin degradation, MAO 
A, is markedly decreased in cholangiocarcinoma samples;  

c) That this results in an overall increase in serotonin 
secretion from cholangiocarcinoma cells and in the bile 
from cholangiocarcinoma patients. 

Therefore, agents that suppress serotonin production may be 
very much useful in the treatment of cholangiocarcinoma [84]. 

Serotonin has an important role in tumor growth, especially 
colon cancer, by regulating angiogenesis by reducing the 
expression of matrix metalloproteinase 12 (MMP-12) in 
tumor-infiltrating macrophages. This leads to lower levels of 
‘angiostatin’ which is an endogenous inhibitor of 
angiogenesis. Hence, serotonin might represent a novel target 
for the prevention and treatment of colon cancer [85]. 

MMP-12 cleaves plasminogen into angiostatin, which 
suppresses angiogenesis in solid tumors. Enhanced 
transcription and activation of MMP-12 observed in tumors of 
serotonin-deficient mice entailed higher levels of circulating 
angiostatin, causing a reduction of tumor vascularity, 
enhanced hypoxia, and consequently, tumor necrosis [86], 
[87]. Serotonin-dependent effects were reproducible in Lewis 
lung cancer, in accordance with previous studies showing 
supra-normal serotonin levels to enhance lung cancer 
proliferation [88], [89] and macrophage-derived MMP-12 to 
regulate Lewis lung cancer growth [86], [87]. 

E. Auxin and Cancer 

Auxins (Indole-3-acetic acid), a plant hormone essential for 
plant body growth and development interacts with its receptor 
TIR1 (Transport inhibition response 1), which is similar to 
human ubiquitin ligase enzymes (SKP2). Auxin helps TIR1 to 
bind to its peptide substrate tightly thus may have an 
important role to play in human cancer because many types of 
cancer are caused by dysregulation of ubiquitination (the first 
breast cancer susceptibility gene Brca1 is a ubiquitin ligase) 
[91], [92]. Also serotonin in plants which regulates root 
development acts as a natural auxin inhibitor [90]  

Either blocked degradation of oncogenic proteins/ growth-
enhancing factors or accelerated degradation of growth-
suppressing proteins may disrupt the pathways controlling cell 
cycle progression, cell death, or survival, leading to cancer 
development [93], [94] 

Ubiquitination and the ubiquitin-mediated proteolysis play 
an important role in tumorigenesis and cell growth. A 
powerful approach for cancer treatment would be to target the 
components involved in these processes. The first proteasome 
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inhibitor for clinical use in human cancers is Bortezomib [95]. 

The F-box protein SKP2 (S-phase kinase-associated protein 
2) forms a complex with CUL1, SKP1, and a RING finger 
protein RBX1, together termed SCFSKP2 [96]. Several 
important cell cycle regulators, including p27KIP1 and p21CIP1 
undergo ubiquitination by SKP2 [97]-[99]. SKP2 also plays a 
critical role in EGFR-mediated AKT ubiquitination and 
membrane recruitment [100]. 

The oncogenic potential of SKP2 was suggested by its over 
expression in a variety of human cancers [101], [102]; 
importantly, this over expression of SKP2 showed an inverse 
relationship with p27KIP1 [103], [104]. The protein levels of 
SKP2 could indicate the prognosis, inversely proportional to 
survival rate of patients [100], [103], [105]. 

Given the importance of SKP2 in regulating degradation of 
tumour suppressors and its clear oncogenic potential, 
inhibiting SKP2 may represent a unique opportunity for the 
treatment of different types of tumours. 

A study focused on Auxin alone and its antiproliferative 
potential, with emphasis on modulation of the cell cycle, of 
natural (IAA) and synthetic (2,4-D) Auxin, showed cytostatic 
effects on selected human tumor cell lines, induce strong G1 
arrest, along with a drastic decrease in the percentage of S-
phase cells in MCF-7 cell line. This phenomenon 
demonstrates that Auxins may have novel, unexploited 
antitumor potential [106]. 

F. Melatonin and Cancer 

Melatonin, (N-acetyl-5-methoxytryptamine) is an indole 
amine secreted by the pineal gland, is an oncostatic agent. It 
has got antioxidative [107]-[112], anti-inflammatory and anti-
tumor activities [113]-[120]. It also has the capability of 
modulating several signal transduction pathways associated 
with cell survival, proliferation, apoptosis and invasion [121]-
[125]. 

Additionally, melatonin inhibits the growth of a variety of 
cancers: lung [126]-[128], breast [129]-[133] prostate [134]-
[137], liver [138], [139], colon [140], [141]. 

Anti-cancer property of melatonin is related to its different 
qualities e.g. anti-proliferation [126], induction of apoptosis 
[126]-[128] inhibition of invasion and metastasis [142], [143], 
anti-angiogenesis [129], [144], and enhancement of immune 
modulation [145], regulation of the estrogen receptor 
expression and trans-activation, modulation of the enzymes 
involved in the local synthesis of estrogens [166]. Melatonin 
increases the efficacy and reduces the side effects of both 
radio-therapy and chemotherapy [146], [147]. 

Melatonin, through increasing adhesion by elevating E-
cadherin and β1-integrin expression or modulating 
microfilament, can inhibit tumor invasion [148]-[150], and 
decreasing matrix metalloproteinases (MMPs) production 
[151].  

The effect of melatonin on the migration of human lung 
adenocarcinoma A549 cells was observed and it was found 
that there is an association between JNK/MAPK [c-jun-N-
terminal kinases (JNK)/ mitogen activated protein kinase 
(MAPK)], pathway and the expression of tight junction (TJ) 

related proteins occluding, myosin light-chain kinase 
(MLCK), osteopontin (OPN). The melatonin may inhibit 
A549 cell proliferation and play an important role in the 
inhibition of tumor progression [152]. 

Melatonin has been found to have a synergistic effect along 
with Cisplatin in human cervical cancer cells [153], in high 
concentrations has a pro-apoptotic effect on pancreatic 
carcinoma cells [154], [161], renal cancer cells [155], [160] 
and in the treatment of neuroblastoma [156]. It has also anti 
cancer effects on gastro intestinal cancer [157], in breast 
cancer [163]. Melatonin, though inhibits apoptotic processes 
in normal cells, modulates autophagy and activates the 
intrinsic and/ or the extrinsic apoptotic pathway in cancer cells 
[164] and is helpful even in tumor models unresponsive to 
melatonin alone, by amplifying significantly the cytostatic and 
the cytotoxic effects of other conventional anti cancer drugs 
[158], [159], [162], [165], [167]. 

A recent study demonstrated that melatonin 
supplementation down-regulated, Proliferating-cell nuclear 
antigen (PCNA) which is a molecular marker for proliferation 
and reduced the viability in both lung cancer A549 and PC9 
cells [127]. Melatonin as a co-treatment with conventional 
cancer therapies would improve the wellbeing of the patients 
[168]. 

Besides these oncostatic properties, melatonin deserves to 
be considered in the treatment of cancer (doses in the 100 – 
500 mg/day range) for two other reasons. First, because its 
hypnotic-chronobiotic properties, melatonin can effectively be 
used for sleep disturbances, a major co-morbidity in cancer. 
Second, because melatonin’s anxiolytic and antidepressant 
effects, it has a possible application in two other major co-
morbidities seen in cancer patients, i.e. depression and anxiety 
[169]. 

Melatonin acts as a proteasome inhibitor [160], which has 
an anti-proliferative action on human breast cancer cells. 
Melatonin specifically inhibits estrogen induced transcription 
mediated by ERα (estrogen receptor alpha) at the ERE 
(estrogen responsive element) and AP1 (Activator protein 1) 
gene promoters [92]. 

G. HDAC Inhibitors Specially Valproic Acid and Cancer 

Acetylation of Histones plays a key role in epigenetic 
regulation of gene expression in carcinogenesis. Histone 
deacetylases (HDAC) inhibitors induce cancer cell cycle 
arrest, differentiation and cell death, reduce angiogenesis and 
modulate immune response, and so may be used as an anti-
cancer drug in combination with other anti-cancer drugs and/ 
or radiotherapy. 

HDAC inhibitors have been approved; Vorinostat for 
cutaneous T-cell lymphoma (CTCL), Belinostat for peripheral 
T cell lymphoma (PTCL)), and Panobinostat for therapy of 
multiple myeloma [170]. 

The anticancer effects of HDAC inhibitors are different and 
depend on a type of cancer and dose used e.g. Valproic acid 
(VPA) inhibit the invasiveness in bladder cancer [171]. 
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Mechanisms: 

a) HDAC inhibitors induces cell cycle arrest by the 
increased expression of cell cycle genes such as 
CDKN1A (Cyclin dependent kinase inhibitor p21) [172]-
[174]. 

b) Apoptosis in tumor cells is induced by the HDAC 
inhibitors by regulation of pro-apoptotic and anti-
apoptotic genes [175]-[177]. The mechanisms include 
activation of both extrinsic and intrinsic apoptotic 
pathways. 

c) Autophagy induction in apoptosis-resistant cancer cells is 
an important feature of HDACI. It works through several 
signaling pathways e.g. downregulation of AKT-mTOR 
signaling [178], VPA in prostate cancer cells [179]. 

d) Anti-cancer effect of HDACI, is also due to its capability 
to alter long non-coding RNA (IncRNA) expression e.g. 
abexinostat in breast cancer cells [180]. 

e) Activation of some of protein kinases i.e. ERK (which 
modulate biological processes like cell growth, 
differentiation and apoptosis) is done by the HDACI 
[181]. 

f) Anti angiogenic effect of VPA is done by enhancing 
production of the anti-angiogenic proteins 
thrombospondin-1 and activin A via downregulation of 
pro-angiogenic factors such as the basic fibroblast growth 
factor (bFGF) [182]. 

g) HDACI induces modulation of immune response and 
enhances the functions of NK cells and CD8 T cells 
[183].  

VPA inhibits the growth of pancreatic and colon, and oral 
squamous cell cancer cell growth by down-regulation of β-
amyloid precursor protein (APP) [184]. 

VPA when administered even in lower doses to prostate 
cancer reduces the net proliferation rate both in androgen 
receptor-positive and androgen receptor-negative prostate 
cancer cells. This is due to the increased caspase-2 and 
caspase-3 activation [185]. Moreover, chronic VPA treatment 
results in statistically significant reduction of tumor growth 
and volume in vivo. This enhanced activity results from 
capturing the resistant quiescent cells. 

It is therefore concluded that acute treatment has nominal 
effects on prostate cancer cell survival and proliferation, but 
chronic VPA results in profound decreases in proliferation, 
independently of androgen regulation [185]  

Monoamine oxidases (MAOs) A and B are mitochondrial 
isoenzymes which catalyze the oxidative deamination of 
dietary amines and monoamine neurotransmitters, such as 
serotonin, norepinephrine, dopamine. Dysfunction of MAO A 
leads to abnormal levels of these neurotransmitters resulting in 
many psychiatric disorders including severe aggression/anti-
social behavior [186], [187]. VPA often used as a mood 
stabilizer/in epilepsy, exerts its effect is through regulating the 
brain levels of serotonin. VPA activates monoamine oxidase 
(MAO) A catalytic activity via Akt/FoxO1 signaling pathway 
that degrades a number of monoamine neurotransmitters, 
including serotonin [188]. Therefore, VPA also acts as an anti-
cancer agent through the serotonin pathway. 

II. CONCLUSION 

Apart from the available chemotherapy, radiotherapy and 
surgery, the following seven steps have been suggested in this 
review study, if taken care of, may perhaps help to reduce the 
morbidity and mortality of a dreaded disease, cancer.  
1. Estimation of Platelet 5HT level which is a Stress marker. 

Treatment of Mental Stress with medicine [189]. 
2. ATF3 dampening in the host may be tried as a potential 

therapeutic approach. 
3. a) PLA to be measured routinely in cancer patients.  
b) NF-κB inhibitors may be used selectively as anti-cancer 

therapy e.g. Disulfiram, olmesartan etc. 
c) Selective blockage of LPA1 and LPA2 may be tried. 
4. i) Drugs targeting the serotonin-5-HT2BR-FOXO3a 

pathway and normalising 5HT level to be used. 
ii) Agents that modulate the metabolism of serotonin may be 

useful for cancer treatment. 
iii) 5-HT1A, 5-HT1B, 5HTR 2A 5HTR 2B, 5HTR 4 and 

5HTR 6 effectively blocked the growth promoting effects 
of serotonin and selective blocking of these receptors may 
act as potential antineoplastic agents. 

5. Inhibiting SKP2 may be tried for the treatment of 
different types of tumors. 

6. Melatonin level to be measured routinely in cancer 
patients. Melatonin supplementation, due to its oncostatic 
properties, will immensely add on to the improvements 
with conventional cancer treatment. 

7.  Chronic VPA administration may result in profound 
decreases in proliferation in cancer. Different HDACI 
have been approved as anti-cancer agents. 
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