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Abstract—Pull-in instability is a nonlinear and crucial effect that 
is important for the design of microelectromechanical system 
devices. In this paper, the appropriate electrostatic voltage range is 
determined by measuring fluid flow pressure via micro pressure 
sensor based microbeam. The microbeam deflection contains two 
parts, the static and perturbation deflection of static. The second order 
equation regarding the equivalent stiffness, mass and damping 
matrices based on Galerkin method is introduced to predict pull-in 
instability due to the external voltage. Also the reduced order method 
is used for solving the second order nonlinear equation of motion. 
Furthermore, in the present study, the micro capacitive pressure 
sensor is designed for measuring special fluid flow pressure range. 
The results show that the measurable pressure range can be 
optimized, regarding damping field and external voltage. 

 
Keywords—MEMS, pull-in instability, electrostatically actuated 

microbeam, reduced order method. 

I. INTRODUCTION 

ICROELECTROMECHANICAL system (MEMS) 
devices have been widely used in extensive aerospace 

applications, information technology, and biomaterials. The 
small size, light weight, and low cost production have been the 
reason which makes commercialization attractive. These de- 
vices are an integration of actuators, mechanical elements, 
sensors, and electronics [1], [2]. Microbeams have been 
extensively used in MEMS applications over past decades. 
Indeed, simple configuration, low energy consumption and 
appropriate compatibility of electrically actuated microbeam 
devices have attracted researchers’attentions. The actuated 
microbeam model consists of an elastic beam suspended over a 
ground plate, and dielecteric fills the gap between them [3]. 
While the voltage exceeds a critical point, the elastic beam 
deflects and collapses. This phenomenon is a crucial point in 
MEMS designing and known as pull-in instability [4], [5], [7]. 
The static displacement and stress of clamped – clamped beam 
under various loadings based on shooting model was 
investigated by Choi and Lovel [6]. They promoted size 
dependent microbeam model for predicting the pull-in. Zhang 
and Zhao [5] have introduced a numerical and analytical 
method for studying pull-in instability of microstructures 
under electrostatic force. They developed a one-mode 
approach based on Galerkin reduced order method gathering 
with Cardan’s solution of cubic equation. Recently, the 

 
Yashar Haghighatfar is with the Mechanical Engineering, AmirKabir 

University of Technology, Tehran, Iran (corresponding author, e-mail: 
y.haghighatfar@aut.ac.ir). 

Shahrzad Mirhosseini is with the Mechanical Engineering, AmirKabir 
University of Technology, Tehran, Iran. 

utilization of microbeams coupled with fluid flow in MEMS 
devices has been reported for measuring pressure. In this case, 
the investigators show their interest in micro-fluid devices 
such as micropump, biomedical, and biological MEMS 
applications [8]-[10]. Puers and Baert [11] performed voltage 
analysis of electrostatically actuated beam structures with 
fixed–fixed and fixed–free end conditions. They presented 
closed form solution for the pull-in voltage based on lumped 
spring–mass system. Sadeghian [12] examined the application 
of the generalized differential quadrature method to the study of 
pull-in. Ho and Tai [13] opened up a new territory for flow 
control with MEMS. Although, there are many researches 
working on dynamics of microbeams containing internal flow 
without electrostatic field, the dynamic and pull-in instability of 
microbeam conveying fluid flow is limited. In this article, a 
theoretical model is applied to predict dynamic and pull-in 
instability for measuring fluid pressure. In the proposed 
model, the influence of nonlinear electrostatic force [14], 
microstructure and damping field is considered in MEMS 
devices to optimize the design for measuring special ranges of 
harmonic pressure. 

II. MATERIALS AND METHODS 

The governing equations using Euler-Bernoulli beam theory 
with damping effects, are written as follows  
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Based on Galerkin method, beam equation is discretized in 

order to compute equivalent stiffness, mass and damping 
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in which the shape function satisfies boundary conditions and 
determines the time participation coefficient of each mode 
shape. Substituting (2) in (1) leads to 

 

4 2

1 1
4 2

1

( ). ( ) ( ). ( )

( ). ( )
R e

n n

i i i i
i i

n

i i
i

x t x t
EI s

x t

x t
c

t

   


 

 



 
 

 






 



      (3) 

 

Pull-In Instability Determination of Microcapacitive 
Sensor for Measuring Special Range of Pressure 

Yashar Haghighatfar, Shahrzad Mirhosseini 

M



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:12, No:6, 2018

667

 

In (3), Re indicates the residual of equation, and , s  are 

density and transverse cross section, respectively. According 
to Galerkin method, the obtained residual must be orthogonal 
with shape functions resulting in 
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Substituting (3) in (1) leads to 
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Introducing the equivalent stiffness, mass and damping 

matrices as follows 
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Governing equation of motion is discretized as below  
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In order to speculate the most accurate shape function, 

damping coefficient is eliminated in (9) and the remained 
equation is solved as 
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Substituting (10) into (9) and inserting the boundary 

condition for cantilevered micro-beam, the shape function’s 
coefficients are 
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By solving the characteristic equation, the modes shape is 
derived as the following relations 
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By inserting the first mode shape and the coefficients into 

(10), the shape function for the cantilevered beam is 
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The equivalent stiffness, damping, and mass matrix is 

attained by inserting (12) in (6) and (7) and solved with Maple 
software. As a result, the natural frequency of the system can 

be introduced as below, where 3.5iik  , 52.39 10iiw   . 
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A. Static and Dynamic Analysis of Pull-In Phenomenon 

According to static (14) and considering the spring force, the 
equilibrium equation between spring and elecrostatic force can 
be introduced as  
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On the other hand, the electrostatic force is derived 

according to (14). The electrostatic force, based on voltage, is 
introduced as  
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Inserting (15) into (14), the voltage is achieved based on 

other parameters and variables. 
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The static pull-in can happen while the external voltage 

reaches the maximum value. The appropriate static voltage is 
determined as before by some assumptions. In reality, the 
micropressure sensor has the acceleration and works in a 
viscous area. In this case, the governing equation is defined 
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B. Reduced order Model 

Nonlinear (17) can be solved numerically. In this case, the 
Runge-Kutta method is used to reach precise results. The 
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introduced second order differential equation is changed to two 
separate first order differential equations in state space as: 
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TABLE I 

THE GEOMETRICAL AND MATERIAL PROPERTIES OF THE STUDIED MODEL 

Symbol L b h d ρ 

Property Length Width Height Initial gap Density 

Value 250 50 3 1 2332 

Unit µm µm µm µm kg/m3 

III. RESULT AND DISCUSSION 

In this article, the static and dynamic pull-in analysis of 
Euler-Bernoulli micro cantilevered beam is investigated. The 
physical, geometrical, and mechanical parameters of Euler-
Bernoulli microbeam are considered in Table I. 
a. Pull-in instability analysis of Euler-Bernoulli microbeam 

In this part, the effect of voltage ranges, distinct damping 
coefficient and frequency of the sensor’s pressure ranges are 
discussed. Firstly, the static voltage range is determined by 
solving (16) numerically. Although, the dynamic pull-in in 
pressure sensor occurs in a real case, the static pull-in voltage 
range is the key point of design at the beginning. 

Fig. 1 depicts the static pull-in voltage range due to the gap 
(x=1 µm), where the static pull-in value is equal to v=14.2663. 
The result shows that the sensor fails for the voltage values over 
v=14.2663 and the appropriate voltage range should be 
considered lower than this value. 

The effect of different damping coefficients for 
cantilevered microbeam in electrostatic field is shown in Fig. 
2, and comparison between three damping coefficients, 0c  , 

0.2 crc c , crc , is depicted in this figure. Although the 

dynamic pull-in voltage is increased in all three types, the 

maximum range happens where crc c . So, it is revealed 

that increasing damping coefficient postpones dynamic pull-
in, and the voltage ranges are increased. It is noted that, with 
decreasing the external voltage, the initial deflection of Euler 
Bernoulli microbeam decreases, that this point leads to 
enhanced measurable pressure sensor range. 

According to Fig. 3, the sensor pressure range is increased 
in damping field. Compared with Figs. 3 (a) and (b), the 
measurable pressure range is extended where damping 
coefficient is high. It is clear that the pressure range is 

enhanced significantly due to crc c , 1v  . In this case, the 

measurable pressure sensor range is up to 5065 Pa. 
 

 

Fig. 1 Stability region with external voltage for a microbeam 
 

 

Fig. 2 (a) Pull-in voltage stability region in non-damping field(c=0) 
 

 

Fig. 2 (b) Pull-in voltage Stability region in damping field (c=0.2 ccr) 
 

 

Fig. 2 (c) Pull-in voltage Stability region in damping field (c= ccr) 
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Fig. 3 (a) Pull-in pressure Stability region in non damping field(c=0) 
 

 

Fig. 3 (b) Pull-in pressure Stability region in damping field 
(c=0.2ccr) 

 

 

Fig. 3 (c) Pull-in voltage Stability region in damping field (c=ccr) 
 

 

Fig. 4 (a) Measurable Frequency range in non-damping field (c=0) 
 

 

Fig. 4 (b) Measurable frequency range in damping field (c=0.2ccr) 
 

 

Fig. 4 (c) Measurable frequency range in damping field(c=ccr) 
 
Fig. 4 illustrates the positive influence of damping field on 

the sensor pressure range. It is noted that, in the reality, 
pressure which is applied to sensor is not constant. In this 
case, the pressure is determined by the equation 

5000sin( t)p  . Fig. 4 (a) shows that, for the pressure value, 

5000( )p pa , 0c  , 1v  , the frequency range is restricted 

and the sensor fails in the frequency value of 8000  . 
According to Figs. 4 (b) and (c) the frequency range is increased 
in damping field. Regarding to Fig. 4 (c), it should be 

mentioned that when crc c , the extent range of frequency 

can be measured. So, the dynamic pull-in is not probable. 
Fig. 5 shows that the capacity of designed micro pressure 

sensor increases significantly in damping field. Comparing 
Fig. 5 (c) with Figs. 5 (a) and (b), the dynamic pull-in time is 
the lowest. The sensor capacity is also higher than the two 
other ones. It is stated that the dynamic pull-in occurs exactly 
at the pressure that was mentioned in Fig. 3. 
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Fig. 5 (a) Capacity of designed micro pressure  sensor in  non-
damping- field (c=0) 

 

 

Fig. 5 (b) Capacity of designed micro pressure sensor in damping- 
field (c=0.2ccr) 

 

 

Fig. 5 (c) Capacity of designed micro pressure  sensor in damping -
field (c=ccr) 

IV. CONCLUSION 

In this paper, the static and dynamic pull-in of Euler-
Bernoulli micro cantilevered beam based on Galerkin method 
under elec- trostatic field, using Runge-Kutta second order 
approach is studied. In this study, the dimensions of pressure 
sensor are in microscale. The effect of distinct damping fields 
on measurable pressure ranges is also illustrated. Furthermore, 
the sensor is de- signed for measuring a wide range of 
frequency with the highest measurable pressure range. The 
result of this paper can be listed as below. 
1) The static pull-in voltage occurs in value of 14.24v  . The 

external voltage should be applied at the values lower 

than 14.24v   to prevent static pull-in phenomenon 
2) The dynamic pull-in voltage range can be extended in 

damping field. So, with considering the lower external 
voltage in that field, the measurable pressure range is 
developed. 

3) At the specified value of damping, the highest measurable 
pressure value is achieved. 

4) The extent range of frequency of harmonic pressure can 
be measured in damping field. Also the pressure sensor 
can work in a variety of different frequency values with 

damping coefficient of crc c . In addition, the highest 
pressure value can be measured in this case. 
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