
International Journal of Architectural, Civil and Construction Sciences

ISSN: 2415-1734

Vol:12, No:6, 2018

604

Introduction of an Approach of Complex Virtual
Devices to Achieve Device Interoperability in Smart

Building Systems
Thomas Meier

Abstract—One of the major challenges for sustainable smart
building systems is to support device interoperability, i.e. connecting
sensor or actuator devices from different vendors, and present their
functionality to the external applications. Furthermore, smart building
systems are supposed to connect with devices that are not available
yet, i.e. devices that become available on the market sometime later.
It is of vital importance that a sustainable smart building platform
provides an appropriate external interface that can be leveraged
by external applications and smart services. An external platform
interface must be stable and independent of specific devices and
should support flexible and scalable usage scenarios. A typical
approach applied in smart home systems is based on a generic
device interface used within the smart building platform. Device
functions, even of rather complex devices, are mapped to that generic
base type interface by means of specific device drivers. Our new
approach, presented in this work, extends that approach by using the
smart building system’s rule engine to create complex virtual devices
that can represent the most diverse properties of real devices. We
examined and evaluated both approaches by means of a practical
case study using a smart building system that we have developed.
We show that the solution we present allows the highest degree
of flexibility without affecting external application interface stability
and scalability. In contrast to other systems our approach supports
complex virtual device configuration on application layer (e.g. by
administration users) instead of device configuration at platform layer
(e.g. platform operators). Based on our work, we can show that
our approach supports almost arbitrarily flexible use case scenarios
without affecting the external application interface stability. However,
the cost of this approach is additional appropriate configuration
overhead and additional resource consumption at the IoT platform
level that must be considered by platform operators. We conclude
that the concept of complex virtual devices presented in this work
can be applied to improve the usability and device interoperability of
sustainable intelligent building systems significantly.

Keywords—Complex virtual devices, device integration, device
interoperability, Internet of Things, smart building platform.

I. INTRODUCTION

DEVICE interoperability is one of the most important

enabling factors for the success of sustainable smart

building systems. We still find a confusing mess of

incompatible and disparate devices from different vendors

that a smart building system needs to deal with. Apart from

different communication protocols we find an unpredictable

set of functionality and data structures that these devices use

during communication with the smart building system. Even

worse, we cant give an answer for which standard wins out

T. Meier is with Hochschule fuer Telekommunikation Leipzig, University of
applied sciences, Leipzig, D-04277, Germany (corresponding author, e-mail:
meier@hft-leipzig.de).

since industry cycles take long to settle down. We believe

that even in the future we always find different standards

that a smart building system must be prepared deal with. The

Internet of Things (IoT) definition given by the International

Telecommunication Union (ITU) [1] leads to the conclusion

that demand for interoperability in IoT exists on different

layers such as business layer, application layer or technical

layer. During this paper we primarily focus on technical

and application interoperability. In the past, various smart

building systems have been developed that tackle the device

interoperability problem in different ways. A sustainable

smart building system is supposed to support a variety of

heterogeneous and vendor agnostic devices and to provide rich

scenarios or services based on the data of these devices.

In Section II, we introduce the terms and principles of

typical IoT architecture that will be used in the remainder

of this work and emphasize their contribution to device

interoperability in smart building systems. Section III gives

a brief presentation of a smart building system we have

developed in the past [2]. After that, we discuss approaches

that have been implemented in OpenSB to tackle device

interoperability problem (Section IV). Finally, in Section V,

we summarize our findings and present our plans for future

work in this area.

II. IOT ARCHITECTURE

Usually, IoT architectures are structured by layer or stages

as presented in [3]- [6]. The different variants differ slightly

in terms of naming and granularity. Fig. 1 depicts the layers

of a typical IoT architecture.

Sensor or actuator devices are located at the device level,

which is sometimes referred to as perception or sensing layer

[4]. The network layer provides the connectivity between

devices and the IoT platform layer by means of standardized

network technology and protocols. Due to the heterogeneity

of the devices used and their variety of physical interfaces and

protocols, an IoT gateway is usually necessary. The platform

layer, sometimes referred to as system layer, represents the

domain specific IoT system (e.g. smart building, industry

4.0, vehicle telemetric). Typically, the system business logic

performs rule processing (e.g. by means of a script or rule

engine), data persistence and data analytics. Additionally, the

platform layer provides appropriate public interfaces (e.g. a

REST compliant Web Application Programming Interface [7]).

The application layer leverages platform’s external interfaces

International Journal of Architectural, Civil and Construction Sciences

ISSN: 2415-1734

Vol:12, No:6, 2018

605

Common IoT architecture

Service Layer

 Plattform Layer

 Network Layer

 Device Layer
Heterogeneous Sensors

and Actuators

e.g.Ethernet/Wifi, TCP/
MQTT, UPnP, CoAP

Applications, Services

rule engine, data persistence,
data analytics, etc.

IoT
Gateway

IoT
Gateway

Fig. 1 Layers of an IoT Architecture

to interact with the connected devices. On this layer, we

find applications and services, e.g. web-based management

applications and intelligent services that leverage data from

multiple platforms to provide rich scenarios.

Device interoperability is necessary on platform and

application layer so that the applications, services and

the platform’s rule engine are able to change device

states depending on the state of other devices. Hence, a

smart building system needs to provide appropriate device

integration mechanisms to enable device interoperability. In

the following we give a brief description of each layers

contribution to device integration.

A. Integration at Device Layer

Due to their heterogeneous nature and different

communication techniques and protocols devices are not

able to communicate with each other locally. Hence, device

integration at the lowest layer is accomplished by means of

an IoT gateway function [3]. Depending on the specific IoT

system, many IoT gateways can be connected to the system.

In a few cases, the IoT gateway function can be part of the

IoT platform component.

An IoT gateway function is supposed to provide:

• Support of communication protocol interworking, i.e.

the gateway connects with devices (sensors, actuators)

that use various communication protocols (e.g. serial

communication, LTE, Ethernet, WiFi, Bluetooth, ZigBee

[8]) and provides a standardized protocol interface to the

IoT platform (e.g. MQTT [9], [10] or CoAp [10]).

• Transfer device data to the platform layer or receive data

from platform layer and forward that data to specific

devices.

Consequently, besides communication protocol

transformation, an IoT gateway needs to convert data

from device specific formats into a format that is understood

by the platform layer and visa verse [11]. Typically, device

vendors or developers provide appropriate IoT gateway

functionality for specific device, e.g. by means of device

specific gateways or gateway device driver plug-ins.

B. Integration at Platform Layer

In the course of this paper, the key tasks of an IoT-based

smart building platform can be summarized as follows. The

smart building platform:

• Gathers data from possibly many devices

• Runs business logic using device data

• Sends data to devices to cause device state changes

• Provides appropriate public interfaces for applications

(see Section II-C) to enable domain specific services and

rich scenarios to be built.

Device communication can be achieved by appropriate IoT

gateway functionality (see Section II-A).

Business logic typically involves a rule engine. Rule engines

need to have access to device functions by means of internal

platform interfaces (e.g. to query or change device state).

Implementation of internal platform depends on the specific

platform and on the data characteristic that the IoT gateway

provides. We will discuss details in Section III-A.

Smart Building platforms also need to provide appropriate

external interfaces that allow application developers to build

client applications and rich services at application layer. The

device representation of an external interface depends on the

platforms data model, i.e. on the internal device representation.

The consequences of internal device representation to device

interoperability at this level are discussed in Section III-C).

C. Integration at Application Layer

Application layer integration, in the context of this paper,

denotes the possibilities to allow applications (e.g. smart

building web applications, management clients, smart services)

to access device functionality by means of an external platform

interfaces (see Section II-B). In the following we point out

two conditions for external platform interfaces that allow

application level interoperability:

• Completeness of device information:

Ideally, the external interface of the platform should

contain all the information that is needed to run

applications or services e.g. display user friendly device

representations or provide means to change device state

without the application having to implement additional

device-specific knowledge.

• Interface stability:

Ideally, the platform external interface definition must

not be altered or extended when new devices are to be

connected to the system (i.e. no additional or altered data

attributes or functions)

Compliance with these two conditions enables sustainable

smart building systems that allow new devices to be connected

to the running system without the need to change or upgrade

applications or services. A discussion of different approaches

to fulfill these requirements is given in Section IV.

International Journal of Architectural, Civil and Construction Sciences

ISSN: 2415-1734

Vol:12, No:6, 2018

606

device

OpenSB
IoT Gateway

device

OpenSB Controller

device

OpenSB
IoT Gateway

device

generic base type interface

BMS
Service

external
Application

External application layer interface

Script Engine Data Model Storage

DB

OpenSB architecture

Fig. 2 OpenSB System Overview

D. The People in Smart Building Systems

Before we dive into the details of the smart building

system and its contribution to device interoperability we

will describe each of the different roles that people play in

the development, administration and use of smart building

system. Device vendor or device driver developers provide

device drivers that allow real devices to connect with the

IoT gateway. Hence, they provide the knowledge to translate

device specific functions and data into a generic format

understood by the IoT gateway. Platform developer can adjust

the platform depending on specific requirements. This task

should be avoided or minimized since it caused platform

downtime and requires appropriate platform regression testing.

Thus, when new devices are to be connected to the system,

no platform adaption should become necessary. Platform users

or operators are using the smart building platform according

to their specific use cases. These people are supposed to have

means to adjust the device representation and interoperability

according to their needs. Application or service developers

are implementing client applications that are used by platform

users and operators for their individual use cases. Ideally,

no changes to the platform code or application code should

become necessary upon introduction of new devices, i.e. no

development activities at these levels should become necessary

when connecting new equipment.

III. OPENSB SYSTEM OVERVIEW

Fig. 2 shows the overall architecture of the smart building

system we have developed in the past [2], which is referred

to as OpenSB in this paper.

A. OpenSB Gateway

The OpenSB gateway is an OSGi-based component that

allows device drivers to be installed or removed at runtime

by means of separate OSGi bundles. Basically, a device driver

is responsible for connection with a physical device and

translating between device specific functions and a generic

device interface (base type interface) that defines the device

data structures being passed between OpenSB gateway and

OpenSB controller. Currently, OpenSBs base type interface

defines numeric string based sensor and actuator types. More

detailed information on OpenSB generic base type is given in

[2]. Because of the ability to use many IoT gateway instances,

the system can be applied to large building environments.

B. OpenSB Controller

The OpenSB controller component represents the smart

building systems platform layer functionality (see Fig. 2).

It allows external applications and services to access device

management and data processing by means of a device

agnostic RESTful Web Service interface. The controller

maintains an internal data model that supports three main

entities: devices, groups and scripts. Devices represent the

internal devices. A group represents any logical or location

entity (e.g. buildings, rooms, floors, lights, heaters). They can

be created by operators as needed. Groups are organized in

a tree structure, i.e. a group has one or more subgroups.

Devices can be assigned to groups by operators as needed.

Applications can access the groups and device structure by

means of the external interface. Automatic processing of

device data is performed by a script-based rule engine. System

operators can register rule scripts without interrupting the

running controller. Rule scripts have access to device and

group functionality, e.g. to act upon state changes of devices.

Relevant details of the script engine will be described in

Section III-D. Besides the mentioned functions the controller

component supports device shadow, i.e. device information

will be stored to persistent memory. Thus, applications can

access device data even when the real device is currently

not connected or accessible. Additionally, the controller logs

device data into persistent memory to provide device data

history.

C. OpenSB Type Concept

To prevent misunderstanding and for easier understanding, a

few definitions will be given that are used in the course of this

paper. Fig. 3 illustrates the definitions based on an exemplary

heating thermostat.

• Real Device: A real device is a, typically, physical device

of any complexity (e.g. a heating thermostat, a SMS

modem device or a room light).

• Base Device Type: A base device type represents a

simple and generic type that presents just a single

device functionality (e.g. a temperature sensor or light

switch). Exemplary base device types are a number

sensor/actuator, a string sensor/actuator or number range

sensor/actuator. Besides its single functionality a base

device type has a predefined set of data attributes. Base

device types are generic, device agnostic and they can be

universally applied.

International Journal of Architectural, Civil and Construction Sciences

ISSN: 2415-1734

Vol:12, No:6, 2018

607

heater
thermostat

OpenSB Gateway

OpenSB Controller
application layer interface

Device Driver:
maps real device function to
a set of base device types

Platform Device List:
- current temp.(numeric sensor)
- target temp. (numeric actuator)
- operation mode (string actuator)
-...

Data
Model

Real Device

Fig. 3 Mapping between a real device and its resulting base type platform
devices

"data":{
"id": "76ad6daef7e",
"type": "parent device",
"attributes": {

...
"name": "Heater Thermostat",
"devices": [{

"id": "feaa528002"
"attributes": {

"base-type": "number sensor",
"name":"current temperature",
"current-value": 22.3,
"unit": "Celsius",
... }

}, {
"id": "fa45bfed678",
"attributes": {

"base-type": "string actuator",
"name": "operation mode",
"current-value": "AUTOMATIC",
"target-value": "AUTOMATIC",
"unit": "Mode" }

}
]

}

Fig. 4 Device representation of a heater thermostat

• Platform Device: Platform device denotes the device

representation as it is used internally by the OpenSB

controller. A platform device applies the base type

concept, i.e. each platform device is of the type of a

base type. Hence, the functionality of a real device is

composed of a set of base type platform devices. This

composition is achieved by means of a parent device

type which serves as a container for the respective base

type platform devices. Fig. 4 demonstrates a simplified

exemplary parent device data set representing of a heater

thermostat as it is passed by the IoT gateway to the

OpenSB controller.

Other smart building or IoT platforms follow similar

approaches to enable device-independent data processing at

the platform level or device-independent representation on

the external application interface. For example: Eclipse Smart

Home and the OpenHAB Open Source projects apply a

Thing-Item concept where Things represent real devices which

are composed by a set of some base type Items [12]- [14]. The

EdgeX Foundry Open Source Project composes real devices

by means of a set of base type DeviceResources [15]. The

IoTivity [16] Open Source project allows device manufacturers

to create device drivers that map real device functionality

to IoTivity platform format by means of ResourceContainer
which contains a set of base type Resources.

D. OpenSB Rule Script Engine

The OpenSB controller leverages a script engine that

performs arbitrary data processing. The external application

interface provides an appropriate script interface so that

platform users or operators can add new scripts, alter existing

scripts or remove scripts from the running controller. OpenSB

applies an embedded JavaScript based script engine that

allows users to implement rules in JavaScript language. The

embedded rule engine concepts of other smart building or IoT

systems are quite diverse and depend on platform architectural

principles and other decisions. Some of them follow the same

approach, i.e. using a script language engine to define rules

[14], [17]. Other systems use a declarative approach, e.g. rule

definition by means of JSON (JavaScript Object Notation) or

XML (eXtensible Markup Language) data structures [2], [12],

[18], or domain specific language (DSL) approaches [19]. In

the recent past, the OpenSB controller rule engine design has

been switched from a declarative XML rule engine approach

[2] to a JavaScript rule engine mainly because of its increased

flexibility. Besides the basic JavaScript language features, the

OpenSB controller scripting engine provides an easy-to-use

scripting API to perform the appropriate operations on the

platform data model.

IV. OPENSB DEVICE INTEROPERABILITY

In the following we discuss techniques and approaches that

enable device interoperability in the OpenSB smart building

system.

A. OpenSB Platform Layer Device Interoperability

The OpenSB controller provides mechanisms to support

device interoperability. Due to its data model and the device

base type concept, new or unknown devices can connect

to the system since the controller is able to handle the

appropriate base types the new device is composed of. Hence,

no development activities are necessary at platform layer to

support new devices. The internal rule script engine allows

devices to communicate with each other or more generally, the

script engine supports device data processing at platform layer.

No platform development or platform configuration becomes

necessary when new devices are supposed to participate on

data processing since rule scripts can be added, changed or

removed via the external application interface by users or

operators.

The script engine applies query techniques based on jQuery

[20] and Sizzle [21] which are well established technologies

in the web application domain for object selection and

International Journal of Architectural, Civil and Construction Sciences

ISSN: 2415-1734

Vol:12, No:6, 2018

608

ript.start = function() {
$("device").on("currentValue", "logCurrentValueInfo");

ript.stop = function() {
$("device").off("currentValue");

ript.logCurrentValueInfo = function(e,id,val) {
ript.logMsg("Dev."+id+" changed value to "+val);

Fig. 5 A simple rule script

manipulation. This approach provides two advantages: First,

the selection mechanisms are proven to be powerful and

flexible. Second, because of their simple syntax and wide

spread, these programming methods are easy to learn and

already familiar to many developers. An internal script API

library, referred to as SbScript, provides methods to:

• Query the controller data model, i.e. fetch platform device

objects or group objects

• Add/remove devices to/from groups

• Get current device state information

• Set device state (of actuator devices)

• Get or change device attributes or group attributes

• Register/unregister event handlers to react on device state

changes or other events

• Trigger new events

• Start timer events

Fig. 5 illustrates a very simple rule script that generates a

log message every time that the current value of any connected

device changes.

The start() callback method is invoked by the

script engine upon rule startup. The rule script registers

a currentValue state change listener callback method,

logCurrentValueInfo(), for every connected device.

The rule stop() callback method unregisters the state change

callback, i.e. it wont be executed after the rule script has been

stopped. Rule scripts can be started or stopped by users or

operators, i.e. the OpenSB external application interface offers

appropriate mechanisms.

Together, the device independent internal data model and

the power of the embedded script engine, allows configuring

almost any device interoperability scenario. Nevertheless, this

approach has some limitation if it comes to interoperability at

application layer as pointed out below.

B. OpenSB Application Layer Device Interoperability

External applications or services leveraging the external

interface can use just the platform devices and scripts. This

causes restrictions in terms of supporting user-friendly use

cases on application or service layer. Two examples scenarios

should help to clarify these limitations.

Device Aggregation Scenario:
Operation staff is supposed to change the target value of all

heater thermostat devices on a given floor to a given value.

Hence, operators need an easy way to change a value of,

possibly, hundreds devices at once.

Smart Building
Platform
Operator

Smart Building
User

Fig. 6 Virtual device: creation and resulting representation

/
root group

heaters
(id=234)

Building A
(id=4000)

Floor 1
(id=5001)

Floor 2
(id=5002)Floor2-

Heaters
(id=101)

TH
(id=...)

TH
(id=...)

script engine

Floor 2 Heater Rule
...
$("#5002 > device").
 setTargetValue(newVal);

Fig. 7 An aggregated device scenario using a virtual device

Mixed Device Representation Scenario:
Operators want to have a representation of different platform

base type devices that do not belong to the same physical

device (device composition). This scenario improves device

interoperability at application layer significantly.

Application scenarios based on aggregated or mixed device

representations would demand additional development efforts

on application or service layer. To avoid these costs and the

associated burden of custom application customizations, we

support virtual devices (see Section IV-B) and complex script
devices (see Section IV-B).

1. Virtual Devices: A virtual device is a platform device

that is not associated with a real device. Unlike real

platform devices, virtual devices can be added or removed

by users or operators via the external application interface. In

virtual device creation, the user defines the same attributes

and properties as real platform devices have (e.g., name,

description, base type, etc.). As real platform devices, virtual

devices can be assigned to groups etc. In fact, virtual devices

become part of the controllers data model the same way as real

platform devices and hence, they are immediately accessible

via the external application interface as illustrated in Fig. 6.

International Journal of Architectural, Civil and Construction Sciences

ISSN: 2415-1734

Vol:12, No:6, 2018

609

Floor 2 Heater Rule
ript.start = function() {
"#101").on("targetValue", "targetChanged");

ript.stop = function() {
"#101").off("targetValue");

ript.targetChanged = function(e,id,oldVal,newVal) {
"#5002 > device").setTargetValue(newVal);

Fig. 8 Sets all target values of all devices in a group

Because virtual devices are anchored in the data model, the

embedded script engine has full access to virtual devices. This

approach has been applied by other systems as well ([12],

[14]).

Aggregated device scenarios, as described above, can be

easily configured by means of virtual devices and appropriate

script engine rules. Hence, no further development or

adaptations become necessary on application layer in this case.

Fig. 7 illustrates an example of a device aggregation scenario

in which changing the state of a virtual device changes the

states of several other platform devices.

Fig. 8 shows the corresponding script rule that fires when

the target value of a virtual device Floor2-Heaters (Id=101)

has been changed, e.g. by an external application. Upon target

value change, the script sets the target value of all heater

thermostat platform devices that are assigned to a group

Floor 2 (Id=5002) to the target value of the virtual device.

Applying the virtual device approach for mixed device

representation scenarios would, technically, be possible but

have a smell of being complicated. Multiple scattered virtual

device configurations and additional rule configuration makes

this task somewhat complicated and error prone. Thus,

OpenSB introduced the concept of complex script devices.

2. Complex Script Devices: The term complex denotes the

possibility to configure a device, which contains multiple

sub-devices (complex device members) of different base types.

Thats why this approach ideally fulfills the requirement of

the mixed device scenario. The term script denotes the fact,

that a complex device is created by the script engine as

explained below. Nevertheless, complex script devices, and

their individual device members, have the same representation

on external application interface as platform devices, i.e. the

external interface definition will not change upon creation of

a new complex script device.

In summary: complex script devices have two major

goals. First, complex script devices allow the merging of

different devices (platform and virtual devices) so that the

composition remains on the external interface (i.e., mixed

device representation). Second, the definition of complex

script devices also includes the description of their rules and

behavior. This essentially differentiates the complex device

script approach from the solutions of other systems where

the representation and its behavior are defined in different

places (e.g. [12], [14]). Simple configuration at a single

location makes this approach simple and robust and avoids

r dev=new VirtualDevice("Dev1","string","abc");
mplexDev.addDevice(dev);
mplexDev.addDevice({deviceName: "Dev2",
deviceType: "numeric",
unit: "Watt",
decimalPower: 0,
minValue: 0,
maxValue:100,
currentValue: 0
});

Fig. 9 Definition of two new complex device members

mplexDev.addDevice({deviceName: "Dev3",
deviceType: "string",
currentValue: "xyz",
onTargetChange: function(newVal) {

this.targetValue = newVal;
complexDev.setCurrentValueOfDevice(this.newVal);

}
;

Fig. 10 Definition of a new string actuator device member

any redundancy. Complex script devices can be configured,

started and stopped via the external application interface by

users or administrators during operation of the controller.

The embedded OpenSB script engine has been extended

by aComplexDev API library that provides appropriate for

creating complex device members and add those to the

corresponding complex device. Complex device members can

be created from scratch, i.e. a new virtual device will be

created as illustrated in Fig. 9. It defines new sensor complex

device members: Dev1 represents a string sensor device with

default current value abc and Dev2 represents a numeric

sensor device with default value 0.

To define an actuator device member, an appropriate

onTargetChange() callback method must be defined as

shown in Fig. 10.

Additionally, complex device members can be created based

on existing platform devices or virtual devices as shown in

Fig. 11.

The corresponding rules for state retrieval and for state

changes of complex member devices are defined within

the complex device script code as well. This can be

achieved either by implementing the code into the appropriate

onTagetChange() callbacks or by means of appropriate

event callback listeners, that are to be registered during the

start() method initialization as explained already in the

virtual device section and Fig. 8.

A final example scenario should clarify the possibilities that

arise through the use of complex script devices.

Building operators would like to have a device representation

on the external application interface that includes several

r dev = $("#101"); // exist. virtual device
mplexDev.addDevice(dev);
v = dev = $("#774939"); // exist. platform device
mplexDev.addDevice(dev);

Fig. 11 Definition based on an existing platform devices

International Journal of Architectural, Civil and Construction Sciences

ISSN: 2415-1734

Vol:12, No:6, 2018

610

sub-devices.

1) An aggregated device that allows setting the target

temperature of all heater thermostat devices on second

floor in building A.

The corresponding virtual device exists already in the

data model (see Fig. 6).

2) A real sensor device, that shows to outside temperature

of building A.

We assume that a corresponding platform sensor device

exists already in the data model (device id=774939).

3) A device that shows the current minimum temperature

of all thermostat devices on the floor.

This virtual numeric sensor device needs to be created

by the complex device script.

4) A device, that allows operators to specify a phone

number which receives a short message if the minimum

temperature is below a given threshold.

This virtual string actuator device needs to be created

by the complex device script as well.

The resulting device representation at the external interface

allows client applications to render the new complex device as

it was intended by the operator. Fig. 13 shows an exemplary

device view based on the complex device script from Fig. 12.

Fig. 12 presents the script code that defines a new complex

device according to the requirements given above. From the

script code it becomes obvious that users or operators can

define complex scenarios by means of complex device scripts

they need to write. We are aware of the fact, that defining

complex device scenarios requires appropriate programming

skills from users or operators. This skill requirement can be

minimized by applying appropriate graphical user interface

techniques that offer graphical input elements for device setup.

The input data needs to be converted into the corresponding

complex device script by these tools. The development of such

tools is beyond the scope of this paper. Similar techniques have

been applied by other systems that aim to offer graphical front

ends for creation of DSL-based rule scripts, e.g. [22].

V. CONCLUSION

In the course of this paper we described mechanisms

for device interoperability as applied in the OpenSB smart

building system. We focused on device interoperability at

platform layer and application layer.

At platform layer, device interoperability has been achieved

is by means of a device model based on so called base types

that allows any real device to be connected to the platform

as the appropriate device driver on the OpenSB gateway

translates real device functionality into a set of base-type

platform devices. Furthermore, these platform devices can

interact with each other by means of rule scripts that can be

added, altered or removed at controller runtime by platform

users or operators.

At application layer, the OpenSB controller provides an

external REST-based interface that allows external applications

and services to access the OpenSB data model, i.e. device

representations and groups that devices might be assigned to.

To allow external applications to control devices, the virtual

complexDev.start = function () {
// register value change event handler for all
// thermostat temperature sensors in group 5003
$("#5003 > device").on("currentValue","cvChanged");
};
complexDev.stop = function () {
// unregister all change event handlers
$("#5003 > device").off("currentValue");
};
var minTemp = 100;
var minThreshold = 17;
complexDev.name = "Floor2 Thermostat Control",

// add virtual heater device
var floor2HeaterDev = $("#101);
complexDev.addDevice(floor2HeaterDev);

// add real temp sensor device
var outdoorTempSensor = $("#774939);
complexDev.addDevice(outdoorTempSensor);

// add virtual thermostat minimum temp. sensor
complexDev.addDevice({deviceName: "Min Temp",
deviceType: "numeric",
unit: "Celsius",
decimalPower: -1,
minValue: 0,
maxValue:1000,
currentValue: 0,
registerEventHandler: [
newMinValue: function(newVal) {
this.currentValue = newVal;
}
]
});

// add virtual short message phone number actuator
complexDev.addDevice(
{deviceName: "Short Message Alert Phone Number",
deviceType: "string",
currentValue: "",
onTargetChange: function(newVal) {
this.targetVlaue = newTarget;
this.currentValue = newTarget;
}
});
script.cvChanged = function(e,id,oldVal, newVal) {
if(newVal < minTemp) {
minTemp = newVal;
// inform other devices about a new min temp value
this.triggerEvent("newMinValue", newVal);
}
if(minTemp < minThreshold) {
// set alert phone number to real SMS modem dev.
$("#240001.setTargetValue(???);
// set alert text to real SMS modem device
$("#240002.setTargetValue("min temperature on
floor 2 is below " + minThreshold);
// send short message using real SMS modem dev.
$("#240003.setTargetValue(1);
}
};
}); // end of complex device definition

Fig. 12 Exemplary complex script device definitions

International Journal of Architectural, Civil and Construction Sciences

ISSN: 2415-1734

Vol:12, No:6, 2018

611

Fig. 13 Application view of complex device representation

device concept has been introduced. This allows users or

operators to create virtual devices whose behavior can be

defined by appropriate script rules. In this way, for external

applications, for example, aggregated devices can be created,

the use of which drives any number of real devices.

To further improve interoperability at the application level,

complex script devices have been introduced that allow a

combination of different platform device and virtual devices

on the external interface. Thus, device representations can

be created that meet the needs of users and operators at

application level. In contrast to other systems, these complex

devices scenarios can be created by users or operators by

means of appropriate script code that can be added, changed

or removed at controller runtime. Configuration at one place,

i.e. in script code only, prevents scattered configuration and

any kind of redundancy.

In the near future, further investigation in scalability

and distributed rule processing are planned. Due to the

distributed nature of the IoT gateways, we believe that there is

significant potential for performance speed up in larger scale

setups, e.g. in buildings with many IoT gateways. Currently,

OpenSB implementation changes from UPnP to MQTT as

application protocol between OpenSB controller and OpenSB

gateways. This leads to new possibilities for aggregated device

communication, i.e. summarizing the target value change

operation of many devices connected to an IoT gateway. It

is also planned to apply the concept of edge computing by

allowing IoT gateways to participate in rule processing.

REFERENCES

[1] I. T. Union, “Overview of the Internet of Things,” I. T. Union,
Recommendation ITU-T Y.2060, 2012.

[2] A. Gnther and T. Meier, “A modular system for building automation,” in
Proceedings 55. International Scientific Colloquium, TU Ilmenau, 2010.

[3] Q. Zhu, R. Wang, Q. Chen, Y. Liu, and W. Qin, “IOT Gateway: Bridging
Wireless Sensor Networks into Internet of Things,” in 2010 IEEE/IFIP
International Conference on Embedded and Ubiquitous Computing, Dec
2010, pp. 347–352.

[4] A. Mynzhasova, C. Radojicic, C. Heinz, J. Klsch, C. Grimm, J. Rico,
K. Dickerson, R. Garca-Castro, and V. Oravec, “Drivers, standards and
platforms for the iot: Towards a digital vicinity,” in 2017 Intelligent
Systems Conference (IntelliSys), Sept 2017, pp. 170–176.

[5] S. K. Lee, M. Bae, and H. Kim, “Future of iot networks: A
survey,” Applied Sciences, vol. 7, no. 10, 2017. (Online). Available:
http://www.mdpi.com/2076-3417/7/10/1072.

[6] P. Masek, J. Hosek, K. Zeman, M. Stusek, D. Kovac, P. Cika, J. Masek,
S. Andreev, and F. Kröpfl, “Implementation of true iot vision,”
Int. J. Distrib. Sen. Netw., vol. 2016, Apr. 2016. (Online). Available:
http://dx.doi.org/10.1155/2016/8160282.

[7] R. T. Fielding, “REST: architectural styles and the design
of network-based software architectures,” Doctoral dissertation,
University of California, Irvine, 2000. (Online). Available:
http://www.ics.uci.edu/ fielding/pubs/dissertation/top.htm.

[8] “Zigbee alliance,” http://www.zigbee.org/, accessed: 2018-04-18.
[9] “Mq telemetry transport,” http://mqtt.org/, accessed: 2018-04-18.

[10] D. Thangavel, X. Ma, A. Valera, H. X. Tan, and C. K. Y. Tan,
“Performance evaluation of mqtt and coap via a common middleware,”
in 2014 IEEE Ninth International Conference on Intelligent Sensors,
Sensor Networks and Information Processing (ISSNIP), April 2014, pp.
1–6.

[11] L. Reinfurt, U. Breitenbücher, M. Falkenthal, F. Leymann, and
A. Riegg, “Internet of things patterns,” in Proceedings of the 21st
European Conference on Pattern Languages of Programs, ser. EuroPlop
’16. New York, NY, USA: ACM, 2016, pp. 5:1–5:21. (Online).
Available: http://doi.acm.org/10.1145/3011784.3011789.

[12] “Eclipse smarthome - a flexible framework for the smart home,”
https://www.eclipse.org/smarthome/, accessed: 2018-03-21.

[13] F. Heimgaertner, S. Hettich, O. Kohlbacher, and M. Menth, “Scaling
home automation to public buildings: A distributed multiuser setup for
openhab 2,” in 2017 Global Internet of Things Summit (GIoTS), June
2017, pp. 1–6.

[14] “openhab - empowering the smart home,” https://www.openhab.org/,
accessed: 2018-03-24.

[15] “Edgex foundry a linux foundation project,”
https://www.edgexfoundry.org/, accessed: 2018-04-4.

[16] “Iotivity a linux foundation project,” https://www.iotivity.org/, accessed:
2018-02-24.

[17] “relayr iot middleware platfrom,”
https://relayr.io/en/iot-middleware-platform/, accessed: 2018-04-17.

[18] Y. Sun, T. Y. Wu, G. Zhao, and M. Guizani, “Efficient rule engine
for smart building systems,” IEEE Transactions on Computers, vol. 64,
no. 6, pp. 1658–1669, June 2015.

[19] A. Salihbegovic, T. Eterovic, E. Kaljic, and S. Ribic, “Design of a
domain specific language and ide for internet of things applications,” in
2015 38th International Convention on Information and Communication
Technology, Electronics and Microelectronics (MIPRO), May 2015, pp.
996–1001.

[20] “jquery write less, do more,” http://jquery.com/, accessed: 2018-04-21.
[21] “Sizzle a javascript selector engine,” https://sizzlejs.com/, accessed:

2018-04-21.
[22] A. Salihbegovic, T. Eterovic, E. Kaljic, and S. Ribic, “Design of a

domain specific language and ide for internet of things applications,” in
2015 38th International Convention on Information and Communication
Technology, Electronics and Microelectronics (MIPRO), May 2015, pp.
996–1001.

