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Abstract—Power distribution circuits undergo frequent network
topology changes that are often left undocumented. As a result, the
documentation of a circuit’s connectivity becomes inaccurate with
time. The lack of reliable circuit connectivity information is one of the
biggest obstacles to model, monitor, and control modern distribution
systems. To enhance the reliability and efficiency of electric power
distribution systems, the circuit’s connectivity information must be
updated periodically. This paper focuses on one critical component of
a distribution circuit’s topology - the secondary transformer to phase
association. This topology component describes the set of phase lines
that feed power to a given secondary transformer (and therefore a
given group of power consumers). Finding the documentation of this
component is call Phase Identification, and is typically performed
with physical measurements. These measurements can take time
lengths on the order of several months, but with supervised learning,
the time length can be reduced significantly. This paper compares
several such methods applied to Phase Identification for a large
range of real distribution circuits, describes a method of training
data selection, describes preprocessing steps unique to the Phase
Identification problem, and ultimately describes a method which
obtains high accuracy (> 96% in most cases, > 92% in the worst
case) using only 5% of the measurements typically used for Phase
Identification.

Keywords—Distribution network, machine learning, network
topology, phase identification, smart grid.

NOMENCLATURE

a Neural nonlinearity input.
c Class.
C Class set.
D Dataset.
D∗ Dual dataset.
d Dimensionality.
f∗ Perfect predictor function.
H Hypothesis space.
J Objective function.
K Set of K-nearest neighbors.
L Likelihood function.
m Feature.
L Index set of labeled data.
p Probability density / mass function.
q Variational distribution.
S Representative set of power consumers.
S∗ Representative set of features.
t Target.
U Index set of unlabeled data.
W Neural Network transformation matrix.
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w Evidence vector.
X Design matrix.
X Input space.
x Voltage time series.
x̃ Voltage time series with pre-appended 1.
y Output class.
z Neural nonlinearity output.
δ Discrete Kronecker delta function.
θ Parameter set.
λ Bandwidth of Radial Basis Function Kernel.
μ Mean.
Σ Covariance matrix.
σ Nonlinear activation function.
# Cardinality.

I. INTRODUCTION

AS time passes, all documentation of a circuit’s topology

becomes unreliable. But this topology documentation is

critical to the operation and planning of power distribution

circuits. For example, power flow analysis, state estimation,

and Volt-VAR control all depend on accurate topology

information. For this reason, the documentation is typically

updated by periodic field testing projects scheduled by the

circuit’s utility company. However, these tests can take time

lengths on the order of months. As a result, there are significant

periods of time in which the documentation of a distribution

circuit is incorrect. A faster and less expensive method of

estimating distribution circuit topology is necessary.

The topology of a distribution circuit is organized into

three hierarchical levels. At the primary level, primary feeders

partition the distribution circuit into relatively large sets. At

the lateral level, each primary feeder connects to a set of

step down transformers which are connected through some

combination of the feeder’s three phases. Finally, at the

secondary level, each step down transformer connects to a

set of energy consumers.

Each hierarchical level has a unique topology identification

problem associated to it. Identification at the primary level

corresponds to obtaining the set of secondary transformers

connected to each primary feeder, identification at the

lateral level corresponds to obtaining the set of phase

connections with which each secondary transformer is fed, and

identification at the secondary level corresponds to obtaining

the set of power consumers that each secondary transformer

feeds. This paper focuses on the lateral level of topology

identification: the transformer to phase connection association

- also called the Phase Identification problem. This topology

level is illustrated by the shaded region in in Fig. 1.
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Fig. 1 Hierarchical levels of a power distribution circuit

In this paper, we will present a survey of several shallow

supervised machine learning (ML) techniques applied to the

Phase Identification problem. To the knowledge of the authors,

such an analysis has not been performed in past literature.

The authors will attempt to be as comprehensive as possible,

and provide insights into why some methods work better than

others.

The purpose of this paper is to act as guidance to

practitioners and as a first step to researchers wishing to

study the Phase Identification problem. For the practitioner,

this paper will reveal which ML methods are most accurate,

and include full descriptions of those methods. It will reveal

what preprocessing steps are useful and/or necessary, and it

will describe how to obtain an initial set of training data for

high accuracy. For the researcher, it will reveal the directions

of machine learning models and analysis that are most worth

investigating further.

The rest of the paper is structured as follows. Section

II describes and discusses past approaches to the Phase

Identification problem. Section III first discusses supervised

machine learning in general and then discusses, in detail,

each of the machine learning methods that were tested for the

Phase Identification problem. Section IV describes a method

of selecting a good batch of training data to use as input

for each of the algorithms. Section V discusses preprocessing

transformations to the voltage data which are unique to the

Phase Identification problem and describes a method for

reducing the size of the dataset under consideration. Section

VI presents comparisons of each technique applied to a wide

range of real distribution circuits. The paper concludes with

Section VII.

II. RELATED WORK

Most phase identification research focuses on physical

measurements which improve the accuracy of the periodic

field testing projects themselves. Reference [1] develops a

Phase Identification system based on high resolution timing

measurements communicated between the base station and

the feeder transformer secondaries. Reference [2] patents a

method for Phase Identification through signal injection. This

is the most common field testing method used. A signal

generator is placed at the base substation and a unique signal

is created for each phase. These signals are then detected

by a signal discriminator at each secondary transformer. To

save costs, only one signal discriminator is typically used,

and it is relocated and reinstalled on a new secondary after

each measurement. While fairly inexpensive, this method

takes time scales on the order of several months for a

whole distribution circuit. Reference [3] describes a Phase

Identification technique using micro-synchrophasors. While

these solutions are important, they rely on the field tests which

are currently the standard operation of utility companies. As

we’ve mentioned, these field tests are lengthy and expensive.

Some research has been done in a data driven approach to

phase identification. Reference [4] predicts phase connectivity

by comparing the results of a load flow analysis to measured

substation voltages. This method achieved only 50% accuracy,

but was improved to 78.5% by including nodal measurements

of the network. This improvement, however, is highly sensitive

to the locations of these added nodal measurements. Reference

[5] identifies phase connectivity by finding a partition of

power consumers such that the total power consumed on each

phase matches the power fed by each line of the substation.

There are several problems with this method. First, if there

is any missing consumption data, then there will be no

partition which satisfies the matching requirement. Secondly,

even if a partition is found, it may not be unique - several

incorrect configurations can satisfy the matching requirement.

Finally, it assumes that each customer is connected to a single

phase and thus does not perform well on circuits containing

line-to-line connections or three phase connections. Reference

[6] attempts to identify phase by computing the correlations

between the voltages at the customer and lateral levels

of the network. Good results were obtained, but obtaining

voltage measurements at the lateral level requires extra, costly

infrastructure. In [7] voltage magnitude data is compared to

the base substation rather than the voltage at the laterals. A

linear regression model is assumed to represent the measured

voltage levels as a linear function of substation power on an

assumed phase, substation voltage on that phase, and the power

consumed by the customer. The fit with the highest R2 value

is taken. The accuracy of this method was uncertain due to

model uncertainties and it is not fit for substations in delta

connection or for customers that have line-to-line connections.

A final track of Phase Identification research is in unsupervised

learning [8], [9]. In unsupervised learning, no measurements

are taken until potentially after the training phase of a given

method. These methods have the potential to be much faster

than supervised methods, but the use of such techniques for

Phase Identification is still in its infancy.

III. TECHNICAL METHODS

A. Supervised Machine Learning for Phase Identification

To perform supervised machine learning for the Phase

Identification problem, we first obtain a voltage magnitude

time series for each customer in the distribution circuit over
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some set period of time. Next, we select a small representative

set of customers from the circuit to act as training data and

obtain their phase connections through physical means; we

will discuss the construction of this training data set in Section

IV, and phase labeling of this representative set is usually done

via [2]. The goal of machine learning is to find a constrained
function of the voltage time series which correctly predicts

(or at least predicts as accurately as possible) the phase

connections of this representative set. Finding this function

is called training. The type of function returned, as well as

its ability to generalize to the unlabeled data points, depends

strongly on the machine learning technique used. Finally, the

function is applied to every test data point’s voltage time series

to obtain all of the phase connections in the distribution circuit.

The main challenge with Phase Identification is keeping the

size of the training data set small while still obtaining high

accuracy on the rest of the customers. Since the representative

set must be measured physically, the length of time needed

to complete the Phase Identification problem for a given

distribution circuit scales rapidly with its cardinality.

This paper focuses on discriminative models of machine

learning [10]. In Section III-B, we discuss discriminative

methods in general and introduce the notation that will be used

throughout the rest of the paper. The remaining subsections

each describe a particular discriminative model of interest.

B. Notation

In a discriminative model, the training data Dl is used to

learn a conditional probability distribution over the customer

classes p(t|x,Dl). This conditional distribution is then used

to predict the labels of any point x ∈ R
d through

y(x) = argmax
c∈C

p(t = c|x,Dl) (1)

Which minimizes the expected classification error

E[l(x, t)] =

∫ (∫
l(x, y(x))p(t|x,Dl)dt

)
p(x)dx

where l(x, t) =

{
0 y(x) = t

1 y(x) �= t

(2)

In most of the models we consider, learning occurs in the

estimation of p(t|x,Dl). Once this conditional distribution is

estimated, the decision y always follows (1). This conditional

probability is often parametric. When this is the case, we will

denote the set of parameters in the model as θ. Parametric

discriminative models are illustrated in Fig. 2.

In several cases, we will only be interested in a point

estimate of the full conditional p(t|x,Dl) conditioned on

a particular choice of parameters p(t|x, θ∗,Dl) (e.g. in

maximum likelihood (ML) and maximum a posteriori (MAP)

methods). However, there are some techniques which use the

fully marginalized conditional probability

p(t|x,Dl) =

∫
p(t|x, θ)p(θ|Dl)dθ (3)

For notational convenience, we will assume that all

probability distributions are conditioned on the labeled dataset

xl

θ

tl

x

t

N

Fig. 2 Probabilistic graphical model for (parametric) discriminative methods

Dl unless stated otherwise. We will omit this explicit

conditioning from now on.

We will denote the perfect predictor function f∗ : D → C
as the function which perfectly maps each data point (labeled

and unlabeled) to its phase connectivity. We will denote the

set of possible functions returned from training a model as

H, the Hypothesis Space of that model. We will label the set

of possible hypotheses returned from an algorithm trained on

a dataset A ⊂ D as HA. In general, we want H to contain

f∗, or at least contain a very close approximation to f∗. This

is true if and only if there exists a sequence of increasing

training datasets {Ai}i=1 ↗ D, and f∗ ∈ limsup HAi . We

test this condition by training each classifier on an increasing

chain of datasets and observing the accuracy on each subset.

If the accuracy of the method converges to 1, then this

condition is true. This last statement is sufficient but not

necessary as a different chain of datasets could exist which

does lead to such convergence. However, for i large enough,

the differences between chains becomes negligible (as all

chains must converge to D), so if the condition is not achieved

on a given chain, it is unlikely to be achieved on a different

chain. On the other hand we need HA ≈ HD for small A
because we want to use as little training data as possible, and

we want this to be true for any small A. If the sufficiency

condition above is satisfied, then this means that we also

want H to be relatively small. Finding the correct size of the

hypothesis space is an implementation of the bias-variance

problem [11].

C. K-Nearest Neighbors Classifier

Let K be a fixed natural number. Let x be a point that

we wish to classify. The K-Nearest Neighbors classifier first

finds the set K ⊆ Dl containing the K points with the shortest

distance to x. This is done exhaustively via K linear searches

through Dl. Since this search must be performed for each

unlabeled data point, the complexity of this algorithm is O(K ·
#(Du × Dl)) where Du is the set of unlabeled data points.

Approximations can be made to speed up the search [12], but

this is usually unnecessary for Phase Identification because

#Du 	 #Dl and the data set is not typically very large in

the first place. Once K is found, the conditional probability of

t given x is

p(t = c|x) = μc

K
where μc = #{(xl, tl) ∈ K | tl = c}

(4)
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D. Decision Trees, Random Forests, and Adaboost

A decision tree classifies a data point by ’asking’ a series of

yes or no questions about its features [13]. Each question is of

the form ’Is feature m greater than value v?’ The parameters

m and v at each step are decided on as follows. Suppose we

have already asked a series of questions and desire to ask

another in a way that would help classify our dataset. We

first select only training data points in which the answer to

every question thus far has been ’yes’. We call this subset of

training data points S. For each feature, the following score

is then calculated.

score(mi) = max
v

{H(S)−H(Syes(v))−H(Sno(v))} (5)

where H is the sample entropy across classes, Syes(v) is the

subset of S that is greater than v and Sno(v) is the subset of

S that is less than v. The feature mi with the highest score is

then selected (with corresponding v).

A random forest is nothing more than a series of decision

trees. Each tree is built in the same way as above, except the

feature is selected randomly instead of according to its score.

The chosen value of v is still the argmax of the optimization

problem in (5). Classification in a random forest is done by

having each tree in the forest vote on a given data point’s

class.

A different set of voting trees can be formed by boosting

[14]. The most popular version of boosting is called Adaboost.
When building a new tree in Adaboost, we keep track of all

training data points that the previous trees classified incorrectly

and ’focus’ on these points by giving them higher weights in

(5).

The weights of each training data point are initially equal to
1

#Dl
. Every time a tree is built, the misclassified data points

are collected. Call these points Xmiss. The data weights of

these misclassified data points are then updated by

wx 
→ wxe
α, (∀x ∈ Xmiss) (6)

where

α = log
1− ε

ε
(7)

ε =

∑
Xmiss

w∑
X w

(8)

After this update, all weights are renormalized such that they

sum to 1. In the final classification stage, each tree votes with

weight given by that tree’s corresponding α.

E. Softmax/Perceptron Classifier

In Softmax classification, the conditional distribution of

class given a data vector and the parameters θ is modeled

parametrically by

p(t = c|x, θ) = ew
T
c x̃∑

c′∈C
ew

T
c′ x̃

where x̃ =
[
1 x

]T (9)

The parameters of the model are θ = {wc}c∈C . These are

d + 1 dimensional vectors. The first element of each vector

represents a bias term which influences the inner product wT
c x̃

independently from x.

A point estimate of θ can be found through maximum

likelihood. The likelihood function is

p(Dl|θ) =
∏
l∈L

∏
c∈C

pc(xl, θ)
tlc

where tlc :=

{
1 c = tl

0 c �= tl

(10)

where we have denoted p(t = c|x, θ) as pc(x, θ) for notational

simplicity.

Taking the logarithm of this likelihood function and

maximizing with respect to θ yields the following optimization

problem

minimize
θ

J(θ) = −
∑
l∈L

∑
c∈C

tlclog pc(xl, θ) (11)

in which the objective function can be seen as a minimization

of the cross entropy between p(tl|xl, θ) and an observed

one-hot distribution tlc. The optimization can be solved

through gradient descent or Newton’s method where the

gradient and the block components of the Hessian are given

by

∇wcJ(θ) =
∑
l∈L

(pc(xl, θ)− tlc) x̃l

∇wc2
∇wc1

J(θ) =
∑
l∈L

pc1(xl, θ)(δc1,c2 − pc2(xl, θ))x̃lx̃
T
l

(12)

F. Shallow Feedforward Neural Networks

We consider a fully connected neural network with a single

hidden layer. To obtain the output class probabilities under

this model, An input point x is first fed through an affine

transformation W x̃. The result is then passed through an

element-wise nonlinear activation function σ, and that output

is fed into a Softmax classifier. In symbolic notation,

z(x) = σ(W x̃)

p(y = c|x, θ) = ew
T
c z̃∑

c′∈C
ew

T
c′ z̃

(13)

The parameters of this network are the matrix W , and the

vectors wc (∀c ∈ C). The activation function σ is considered a

hyperparameter and is not trained directly. Most recent results

in Neural Networks suggest the use of the rectified linear unit

as activation function [15] or one of its variants [16], [17].

Denoting the input to the nonlinearity as a = W x̃, the ith

component of the rectified linear unit output is given by

σ(a)i =

{
0 ai < 0

ai ai ≥ 0
(14)

The parameters of a neural network are estimated via

maximum likelihood (11) but with the additional matrix

parameter W . The optimization is estimated via gradient

descent, where the gradients are calculated through a technique

called backpropagation [18].
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G. Bayesian Neural Networks and MC Dropout

A Bayesian Neural network [19] has the same architecture

as a standard neural net, but we consider the entire posterior

distribution over the parameters instead of the mode of that

posterior.

p(t|x,Dl) =

∫
p(t|x, θ)p(θ|Dl)dθ (15)

Thus, if several configurations of weights predict the training

data with high accuracy, then all of those configurations are

taken into account when predictions are made on the remaining

data. Using the full posterior may increase accuracies when

low amounts of training data are used.

The trouble with this method is that the posterior p(θ|Dl)
is intractable for general neural networks. Thus we must

use some sort of approximation scheme to implement this

technique. One popular method, called variational inference
[10], adheres to the following logic.

Consider any probability distribution over θ, q(θ).
Regardless of what q is, the log posterior distribution can be

decomposed as.

log p(θ|Dl) =

∫
q(θ)log p(Dl, θ)dθ+H(q)+KL(q||p) (16)

where H(q) is the entropy of the distribution q and KL(q||p)
is the Kullback-Keibler Divergence between q(θ) and p(θ|Dl).
Since the KL term is always positive, the sum of the first

two terms represents a lower bound on the posterior. We

will denote this term, called the Evidence Lower Bound

(ELBO) [20], as L(q). To perform variational inference, we

first make some assumptions about q (chosen carefully to

make q tractable), and then maximize L(q) subject to these

assumptions. The optimization occurs with respect to q or the

parameters of q if we assume that q is parametric.

This maximization has two interpretations. The first is

made by noting that the sum L(q) + KL(q||p) is constant

with respect to q by (16). Thus maximizing the ELBO is

equivalent to minimizing the KL divergence between the

assumed distribution q and the true posterior distribution

(which is an intractable optimization problem due to the

presence of the posterior in the objective function). The second

interpretation is found by looking at the terms in the ELBO.

Optimizing the first term corresponds to putting high weight

on parameters that explain the training data, and the second

term limits this behavior by forcing q to have high entropy.

When the variational distribution is parametric, i.e. q(θ) =

q(θ|λ), optimization of the lower bound can be performed

stochastically via black-box variational inference [21]. The

gradient of the ELBO is given by

∇qL(q) = Eq[(∇qlog q(θ|λ)) {log p(Dl, θ)− log q(θ|λ)}]
(17)

In particular, if q(θ|λ) is a member of the exponential

family, then every term on the inside of the expectation is

tractable and can be sampled for a Monte Carlo estimate of

this gradient.

A second way to obtain a full posterior is called MC
Dropout. MC dropout still uses variational inference, but

does not perform optimization through (17). This method is

motivated by [22], which shows that a forward pass through

a neural network containing dropout layers (a layer which

randomly sets hidden units to zero) is equivalent to a sample

of a Gaussian process approximated through a variational

distribution qgp. That is, if pdr(x) is the result of a forward

pass trough a neural network with dropout layers, then

p(t|x, θ) ≈ pdr(x), θ ∼ qgp(θ) (18)

Then the full posterior can be Monte-Carlo estimated as

p(t|x) ≈ 1

S

S∑
s=1

pdr(x) (19)

Thus an approximate full posterior can be obtained by

performing S forward passes through a dropout network and

averaging the results.

IV. TRAINING DATA SELECTION

Before applying any of these techniques, we need to select

a set of customers S to measure as training data. Since these

measurements are labor intensive, we wish for this set to

be small but still satisfy fS ≈ f∗. We suggest a greedy

submodular selection approach as described in [23].

First, we construct a similarity matrix A from the dataset.

There are many ways to do this; the most common of which

are listed below [24].

• Radial Basis Function Kernel.

Aij = e
−λ‖xi−xj‖2

2 (20)

• Symmetrized k-Nearest-Neighbors Graph.

Ãij =

{
1 xi ∈ Neighk(xj)

0 else

A =
1

2
(Ã+ ÃT ) (21)

• Cosine Kernel.

Aij =
xT
i xj

‖xi‖‖xj‖ (22)

With the similarity matrix chosen, we use the facility
location function r : 2D → R to score subsets S ⊆ D of

training data.

r(S) =
∑
xi∈D

max
j∈S

Aij (23)

Intuitively, r is large when every data point in D is well

represented by a training data point is S. furthermore, r has

the following three properties.

• r is submodular. If S ⊆ T ⊆ D and {x} ∈ D − S − T ,

then r(S ∪ {x})− r(S) ≥ r(T ∪ {x})− r(T ).
• r is nondecreasing in #S.

• r(∅) = 0.

Such submodular functions have been studied extensively

in terms of approximate optimization. In particular, it can be

shown that greedy optimization of r achieves the following

bound [25].

r(Sgreedy) ≥ (1− 1

e
) max

S∈2D
r(S) s.t. #S = K (24)
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(a) Untransformed

(b) Transformed

Fig. 3 Projection of data points for circuit III before and after the 120V
stability transformation (25)

Thus, a good training data set can be found through a greedy

search over unlabeled data points.

V. PREPROCESSING

A. Voltage Transform

Voltage magnitude data comes in two discrete chunks; one

with values near 120V and the other with values near 240V .

This is due to center tapped transformers on the customer side

of a secondary transformer which are capable of providing

either value. Most data points will have values near 240V ;

only a small subset will have values near 120V . These 120V
points have an outlier-like effect on most supervised machine

learning methods; that is, they cause significant instability in

the training phases. Unfortunately, we cannot remove them

as they consist of a sizable portion of customers in the

distribution circuit.

We can, however, take care of these instability problems by

removing the projection of each data point along the direction

of the d-dimensional vector 1 =
[
1 1 ... 1

]T
. That is,

each data point is transformed through

x 
→ x− 11Tx

d
(25)

The usefulness of this transformation is illustrated in Fig. 3,

which shows that a dataset mapped through this transformation

is much more well conditioned than its untransformed

counterpart.

B. Feature Reduction

It is often the case in machine learning that removing

redundant features in a dataset can lead to increased

performance. In the case of Phase Identification, this means

that we should remove a set of hours from each customer’s

voltage time series in which no novel information is contained.

For this task, we consider the dual dataset D∗. This dataset

is constructed as follows. Let X be the design matrix of

the original dataset D. That is, X is the matrix formed by

stacking the row vectors xT ∀(x, y) ∈ D. Then D∗ =
{m | m is a column of X}. Each point in D∗ corresponds

to one timestamp of observation.

Next, we create a similarity matrix over D∗ with the cosine

kernel (22) and again perform greedy optimization of the

facility location function (23) to obtain an approximate optimal

subset of S∗ ⊆ D∗ such that every feature in the original

dataset is well represented in the subset. From these selected

points, we create the matrix X̃ whose columns are the vectors

in S∗. Finally, we take the reduced feature dataset D̃ obtained

from the rows of X̃ .

VI. RESULTS

A. Description of Data Sets

This analysis will be performed over 7 circuits of varying

complexity from Southern California Edison, Pacific Gas and

Electric Company, and FortisBC. The details of these circuits

are contained in the Table I.

TABLE I
DISTRIBUTION CIRCUITS CHARACTERISTICS

Name Nconsumers Phase Connections Degree of Balance
I 1892 All Low
II 3166 All Low
III 4629 All High
IV 3638 All High
V 1310 line-line Low
VI 358 line-neutral Low
VII 1773 line-neutral Low

Each circuit contains 31 days of voltage magnitude data,

sampled hourly for a feature vector of dimension 744.

Empirically, circuits with more potential phase connections

(e.g. A, B, C, AB, BC, CA vs. just A, B and C) typically

have lower Phase Identification accuracy. This is firstly due

to the fact that the difficulty of a classification task is related

to the number of classes, but also due to the fact that there

are nontrivial dependencies between some of these classes; for

example, transformers of the AB class take current from the A
line and send it back along the B line, which complicates the

dynamics of transformers attached to just A or B. Balanced

circuits also have lower Phase Identification accuracy than

unbalanced ones, but the effect is less significant. The more

phase connections available and the more balanced the circuit

is, the more ’difficult’ that circuit is to identify.

In phase identification, we want to use as little training data

as possible, so creating a validation set is impractical. On the

other hand, we typically want to perform phase identification

on several circuits in a given region - all of which have

similar sizes and dynamics. Thus, hyperparameters that work

well for one circuit in this region are likely to work for the

rest. Thus, for phase identification, we replace the notion of

a validation set with that of a validation circuit; i.e. we take

the labels of one entire circuit and train our hyperparameters

by testing (full) accuracies on that circuit. In this paper, all
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hyperparameters were tuned on the circuit III with a random

5% training sample. The same set of hyperparameters were

used for every circuit. Thus results relating to circuit III

should be considered as validation results (i.e. they carry less

significance), while results relating to the rest of the circuits

should be considered as out of sample results.

500 hidden units were used for the hidden layers of all

neural networks and a dropout rate of 0.7 was used for MC

Dropout. 100 samples were used for monte-carlo estimation

of the posterior distribution. Euclidean distance was used for

nearest neighbors. The random forests contained 25 trees each

and 25 trees were used for adaboost as well.

Every test (except those using strategically selected training

data) uses 10 random samples of the specified training portion,

and the accuracy results are averaged across each trial.

B. Hyperparameters

In the tests conducted in this paper, Nearest Neighbors was

tested with 1 and 5 neighbors. Our binary decision trees used

a maximum depth of 100, and our random forests used 10
trees with the same depth limit. We found that increasing

the number of trees held the accuracy relatively constant.

We tested several values of number of hidden units for and

number of layers for the shallow neural network and found 500
hidden units with two layers to be sufficient; these obtained

the condition for f∗ ∈ limsup HAi
, so more complicated

models would just add variance to a problem with little bias.

We found that standard L1 and L2 regularization did not

increase accuracies on either the linear or the neural network

models. However, MC dropout can be viewed as a form of

regularization, so in this sense some regularization is reported.

Several dropout rates were tested for MC dropout and the best

performing rate of 0.1 was reported.

C. Baseline Accuracies

Fig. 4 shows the accuracy of each method vs. the portion

of (randomly) selected training data for the four circuits with

all seven types of phase connections available. Fig. 5 shows

the same for circuits in which the number of possible phase

connections is limited. We see that, as expected, the circuits

with more phase connections typically achieve lower accuracy

than those with limited phase connections. One interesting

exception to this rule is the circuit VII, which performs fairly

poorly compared to the other circuits. We suspect this accuracy

drop to be due to the low amount of customers in that circuit;

the low number of total customers leads to a very low total

number of training data points.

In general, softmax regression and shallow neural networks

have far greater accuracy than other methods, with shallow

neural networks winning by a small margin in most cases. MC

Dropout provides a sizable advantage over the standard neural

network at low training data, and this advantage diminishes as

the amount of training data increases.

Importantly, in every circuit except I, only the shallow

neural network approaches 100% accuracy as the training

portion approaches 1.0. Thus, for all of these networks, we can

only guarantee that f∗ lives in the hypothesis space defined

(a) I

(b) II

(c) III

(d) IV

Fig. 4 Accuracy vs. selected training portion for circuits with all possible
connections
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(a) V

(b) VI

(c) VII

Fig. 5 Accuracy vs. selected training portion for circuits with only phase to
neutral or only phase to phase connections

by the two layer neural network. Since the softmax classifier

is equivalent to a single layer neural network, the increase in

complexity from the softmax classifier to the two layer neural

network is small, and so the latter’s hypothesis space has the

desired properties detailed in Section III-B.

D. Training Data and Feature Selection Accuracies

Table II shows the accuracies of the shallow neural network

with MC dropout for each circuit for each of the 3 following

cases: 5% random, 5% selected, and 1% random. The 5%
random condition is identical to the results of the previous

subsection at 5% training data. Condition 5% selected uses

the methodology of Section IV to obtain a 5% training set of

selected data. Condition 1% random is the average accuracy

over ten trials of MC dropout when the training data portion

is reduced to a stratified 1% sample.

Fig. 6 Accuracy vs. selected feature portion for the three largest circuits.
Dashed lines correspond to constant accuracies at each curves respective

maximum minus 0.005

For training data selection, we found that all of the listed

similarity matrices worked well for circuit III, but the RBF

kernel outperformed the others slightly. Thus the reported

accuracies use the RBF kernel for training data selection with

λ = 1
#D .

TABLE II
ACCURACY RESULTS FOR GIVEN TRAINING CONDITIONS

circuit 5% random 5% selected 1% random
I .934 .979 .733
II 0.910 .953 .858
III 0.952 .967 .876
IV 0.933 .972 .828
V .988 .996 .935
VI .880 .919 .641
VII .972 .986 .903

Fig. 6 shows the effect of feature reduction on the three

largest circuits. The dotted lines labeled threshold are each

0.005 below each curves respective maximum. Interestingly,

the effect of feature selection appears small. While feature

selection does not improve Phase Identification accuracy, it

also does not reduce it significantly until less than about 30%
of the features are used. Thus the feature set used in this

analysis is highly redundant, but removing this redundancy

does not yield higher accuracy.

Table II shows the results of training data selection. In all

such cases, every class was represented before the 5% cutoff.

Strategically selecting training data according to Section IV

yields an increase in Phase Identification accuracy for every

circuit; the average increase being 3% (a 48.75% average

reduction is classification errors).

Using a 1% training data sample yields an expected drop in

identification accuracy. Accuracies this low are probably not

useful to a utility company wishing to use machine learning for

Phase Identification. Furthermore, the training data selection

process is unlikely to find a representative data point of each

phase connection type at such a low subset of training data.

Effectively reducing the necessary training data percent to such

a low value is the primary goal of future research.

VII. CONCLUSION

We have provided an analysis of shallow learning for the

Phase Identification problem over a diverse set of distribution

circuits. For all circuits, a 2 layer neural network with
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500 hidden units and relu activation out-performs all other

methods, and MC dropout provides a slight boost to accuracy

over this method at low training data portions.

When the number of customers in a circuit is low (e.g. on

the order of 100 instead of 1000), machine learning techniques

may see lower accuracy than in circuits with more customers.

Feature selection is found to have little effect on Phase

Identification accuracy. However, selection of training data

according to a greedily optimized facility location function

yields significantly improved and consistent results.
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