
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:12, No:6, 2018

95

1

Abstract—In this paper, a mixed integer linear programming
(MILP) model is presented to solve the flexible job shop scheduling
problem (FJSP). This problem is one of the hardest combinatorial
problems. The objective considered is the minimization of the
makespan. The computational results of the proposed MILP model
were compared with those of the best known mathematical model in
the literature in terms of the computational time. The results show
that our model has better performance with respect to all the
considered performance measures including relative percentage
deviation (RPD) value, number of constraints, and total number of
variables. By this improved mathematical model, larger FJS problems
can be optimally solved in reasonable time, and therefore, the model
would be a better tool for the performance evaluation of the
approximation algorithms developed for the problem.

Keywords—Scheduling, flexible job shop, makespan, mixed
integer linear programming.

I. INTRODUCTION

HE job shop scheduling problem (JSP) is an important
scheduling problem in the literature [1] and has attracted

many scheduling researchers due to its applicability and
difficulty [2], [3]. The n×m classical JSP is defined as follows:
set of n jobs must be performed on m machines, and each job i
consists of Ji operations processed on the machines. Each job
has a specified processing order on the machines that is fixed
and known in advance, i.e. each operation has to be performed
on a given machine without interruption. The machines are
continuously available throughout the planning horizon and
cannot process more than one operation at a time. The
processing times for all the operations are fixed and known
[4], [5]. A common objective function for this problem is the
minimization of the makespan that is the time needed to
complete all the jobs.

In the FJSP that is an extension of the classical JSP, each
operation can be executed by any machine among a set of
candidate machines; therefore, this problem has two
subproblems: the assignment of the operations to machines
and the determination of the sequence of operations on each
machine. The FJSP is strongly NP-hard even if there are only
two machines, and each job has at most three operations [6].

In the literature, many methods have been developed to
solve more complex problems in the field of scheduling such
as FJSP and JSP [7]-[11], but most of them are metaheuristic
algorithms. Development of mathematical models for these

Mohsen Ziaee is with the Department of Industrial Engineering, University
of Bojnord, 94531-55111 Bojnord, Iran (phone: +98 584 2284611, fax: +98
584 2410700, e-mail: ziaee@iust.ac.ir, ziaee2@gmail.com).

problems has become increasingly important in recent years,
since these models can be easily solved by using existing
powerful solvers and used for benchmarking the proposed
approximation approaches and understanding the structure of
the problems [12]. A review of MILP formulations for the
flow shop and the JSP presented in the literature is provided
by Pan [13]. For the FJSP, a review of the mathematical
models developed for this problem can be found in Özgüven
et al. [14]. They also presented a MILP model for the FJSP
and compared it with a model of Fattahi et al. [15] concluding
that their model is superior to that of [15] in terms of model
size, CPU time and objective function value. A more recent
literature survey and comparative evaluation of the proposed
mathematical models for the FJSP is presented by Demir and
Isleyen [16]. They investigated all the mathematical models
for the FJSP existing in the literature in terms of binary
variables used for sequencing the operations on the machines,
and computationally compared them with the assumption that
the objective function of the problem is makespan. They
conclude that the mathematical model proposed by Özgüven
et al. [14] is the best model in the literature in terms of the
computational time.

In this study, a MILP model is presented to solve the FJSP
with the objective of minimizing makespan (Section II). The
performance of the proposed MILP model is evaluated by
using several benchmark problems, and the results of
computational studies are presented (Section III). Concluding
remarks are given in Section IV.

Other assumptions considered in the problem studied in this
paper are as follows:
1: Jobs are independent of each other, all of them have equal

priorities and are available at time zero.
2: Machines are independent of each other.
3: Setup times and transportation times are assumed to be

negligible and zero.
4: An operation cannot be processed by more than one

processor (machine) at the same time.

II. MILP FORMULATION

The problem notations are as follows: n: number of jobs, m:
number of machines, i,i': index of jobs; i,i'=1,…,n, Ji: number
of operations of job i, j,j': index of operations; j=1,…, Ji,
j'=1,…, Ji', k,k': index of machines; k,k'=1,…,m, tijk: the
processing time required on machine k for operation j of job i,
cijk: completion time of operation j of job i (denoted by (i, j))
on machine k, Aij: set of machines that are capable to process
operation j of job i, and the operation must be performed on
only one of the alternative machines in this set, yiji'j': binary

A Mixed Integer Linear Programming Model for
Flexible Job Shop Scheduling Problem

Mohsen Ziaee

T

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:12, No:6, 2018

96

variable which defines the processing order of the operations
(i, j) and (i', j') belonging to two different jobs (i<i') on the
same machine; it takes the value 1 if operation (i', j') precedes
operation (i, j), and 0 otherwise, xijk: binary variable that takes
the value 1 if operation (i, j) is executed on machine k, and 0
otherwise, Cmax: makespan, M: a large number.

Here, a MILP formulation is presented for the problem.

Minimize Cmax (1)

subject to:

(1) (1) (1) (1)() () .(1) , ,
ij

ijk i j k i j k i j k i i j
k A

c c t M x i j J k A    


        (2)

.(1) .(2) , , (), ,ijk ijk i j k iji j ijk i j k i ij i j ic t c M y M x x i j J k A A i i j J                         (3)

. .(2) , , (), ,i j k i j k ijk iji j ijk i j k i ij i jc t c M y M x x i j J k A A i i                         (4)

() 1 , ,
ij

ijk i
k A

x i j J


    (5)

1 1 1 1.(1) 0 , ,i k i k i k iM x c t i k A      (6)

. 0 , , ,ijk ijk i ijc M x i j J k A      (7)

Cmax ,
i

iJi

iJ k
k A

c i


  (8)

0 , , ,ijk i ijc i j J k A     (9)

 0,1 , , ,ijk i ijx i j J k A     (10)

 0,1 , , , ,iji j i iy i j J i i j J           (11)

The objective in (1) is the minimization of the makespan.

Constraint set (2) ensures precedence restrictions between
consecutive operations of each job, it means that the
completion time of operation j of job i should be less than or
equal to the start time of its (j+1)th operation. Constraint sets
(3) and (4) define the order of any two operations executed on
the same machine and ensure that they will not clash. For each
two operations (i, j) and (i', j'), (i≠i'), constraint (3) is active
only if the two operations can be executed on the same
machine (k) (i.e. xijk=xi'j'k'=1) and operation (i, j) is performed
after operation (i', j') (i.e. yiji'j'=1); otherwise, i.e. if xijk=0 or
xi'j'k'=0 or yiji'j'=0, this constraint is inactive. Note that,
operation (i, j) is not necessarily positioned immediately after
operation (i', j') when yiji'j'=1. Clearly, for any two operations
processed on the same machine, either constraint (3) or
constraint (4) is active. Constraint set (5) means that each
operation is assigned to exactly one machine. If operation (i, j)
is not assigned to machine k, constraint (7) sets the completion
time of it on machine k equal to zero. Constraint set (6)
ensures that the start time of each job (i.e. its first operation)
should be greater than or equal to the time zero. Constraint set

(8) determines the makespan, i.e. the completion time of last
operation of each job should not be greater than the makespan.
Constraint set (9) is a non-negativity constraint for variables
cijk. Constraint sets (10) and (11) define the binary variables
xijk and yiji'j', respectively.

III. COMPUTATIONAL EXPERIMENTS

In this section, the results of computational studies are
presented. As mentioned in Section I, the MILP model
presented by Özgüven et al. [14] is the best model for the
FJSP in the literature [16]. Therefore, we compared the
computational results of proposed MILP model (henceforth
MILP-Zia) with those of [14] (henceforth MILP-Literature).
The benchmark instances used were the set of 20 problems
taken from Fattahi et al. [15]. They are divided into two
categories: small size FJSPs (denoted by SFJS1-SFJS10) and
medium-large size FJSPs (denoted by MFJS1-MFJS10). Both
MILP-Zia and MILP-Literature were solved for each of the
benchmark instances using the software LINGO Release 8.0
[17] which uses the Branch and Bound algorithm to optimally
solve the problem. We adjusted the default settings of the
solver. The problems were run on a Pentium IV, 2.2 GHz and
2.0 GB RAM PC. The running time for each benchmark
problem was limited to 3600 CPU seconds. The computational
results are presented in Table I. The first column (name)
indicates the name of each test problem. The second column
(size) refers to the size of each test problem denoted by i, j, k
indices, that means number of jobs, operations and machines,
respectively. It must be noted that, in any of these benchmark
instances, all the jobs have the same number of operations.
The first set of columns includes the results of MILP-
Literature, and the second set contains those from MILP-Zia.
Integers, Non-integers, Constraints, CPU time (s), and Cmax
represent the number of integer variables, the number of non-
integer variables, the number of constraints, the running time
in seconds, and the makespan value, for each instance,
respectively. RPD is the relative percentage deviation and is
computed by the following relation:

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:12, No:6, 2018

97

100
maxC

maxCmaxC
RPD

*

*
1 


 ,

where Cmax1 is the makespan value obtained by the
corresponding MILP model and Cmax* is the best value of
makespan achieved by the two MILP models (i.e. MILP-
Literature and MILP-Zia). As shown in the table, average
RPD value for MILP-Zia is the best possible value, i.e. 0,
compared to 6.73 for MILP-Literature. The results also show
that the difference between the solutions obtained increases as
the instances size increases; the instance MFJS10 has RPD
value of 45.8, for example. Figs. 1-3 graphically represent the
difference between RPD values, Cmax values, and total

number of variables of the two MILP models, respectively.
Differences between the number of constraints of the two
models are shown in Fig. 4. Herein, MILP-Zia is statistically
compared with MILP-Literature. A one-way analysis of
variance (ANOVA) [18] is done to test the null hypothesis that
the means of RPD values of the two MILP models are equal.
The results for this ANOVA are given in Table II. As it can be
seen in the table, the difference between the means of two
models is meaningful at a significance level of 5%. We also
compare the models via Tukey's pair-wise comparisons test
[18]. The results reported in Fig. 5 show that there is a
significant difference between the two models.

TABLE I

THE COMPUTATIONAL RESULTS OF MILP-LITERATURE AND MILP-ZIA

Name
Size

(i.j.k)
MILP-Literature MILP-Zia

Integers Non-integers Constraints CPU time (s) Cmax RPD Integers Non-integers Constraints CPU time (s) Cmax RPD
SFJS1 2.2.2 16 19 42 0 66 0 12 9 38 0 66 0
SFJS2 2.2.2 10 15 30 0 107 0 9 7 26 0 107 0
SFJS3 3.2.2 26 24 67 0 221 0 21 11 61 0 221 0
SFJS4 3.2.2 26 24 67 0 355 0 22 11 61 0 355 0
SFJS5 3.2.2 36 28 87 1 119 0 24 13 81 1 119 0
SFJS6 3.3.2 39 34 99 0 320 0 34 16 90 0 320 0
SFJS7 3.3.5 36 40 93 0 397 0 34 19 84 0 397 0
SFJS8 3.3.4 45 40 111 7 253 0 40 19 102 1 253 0
SFJS9 3.3.3 55 40 131 1 210 0 45 19 122 1 210 0
SFJS10 4.3.5 48 45 124 0 516 0 46 21 112 1 516 0
MFJS1 5.3.6 103 72 241 3600 468 0 84 34 226 60 468 0
MFJS2 5.3.7 128 84 291 3600 461 2.90 100 40 276 3600 448 0
MFJS3 6.3.7 190 103 422 3600 505 7.91 143 49 404 3600 468 0
MFJS4 7.3.7 250 120 549 3600 611 2.00 184 57 528 3600 599 0
MFJS5 7.3.7 243 118 535 3600 680 21.86 188 56 514 3600 558 0
MFJS6 8.3.7 307 133 670 3600 715 3.32 234 63 646 3600 692 0
MFJS7 8.4.7 475 165 1022 3600 1406 16.78 364 79 990 3600 1204 0
MFJS8 9.4.8 519 182 1119 3600 1303 16.97 415 87 1083 3600 1114 0
MFJS9 11.4.8 751 218 1601 3600 1891 17.02 574 104 1557 3600 1616 0
MFJS10 12.4.8 899 237 1906 3600 2580 45.85 651 113 1858 3600 1769 0

Average 6.73 0

TABLE II

RESULTS OF ONE-WAY ANOVA FOR THE TWO MODELS (MILP-LITERATURE

AND MILP-ZIA)

Source DF SS MS F P

Factor 1 453 453 6.5 0.014

Error 38 2618.8 68.9

Total 39 3071.7

Fig. 1 Comparison of the RPD values of the benchmark instances

The approach presented in this paper is based on the method

of Manne [19] to handle binary variables for formulating
FJSP, that uses precedence variables, instead of sequence-
position variables (introduced by [20]) or time indexed

variables (proposed by [21]) (see [16]). In comparison with

MILP-Literature, new precedence variable, jiijy  , replaces

kjiijy  in MILP-Literature, where jiijy  is equal to 1 if

operation (i, j) precedes operation (i', j'), and 0 otherwise. The

definition of jiijy  is without reference to the operation’s

machine. This substituting leads to constraint sets (3) and (4)
and significantly reduces the number of binary variables and
the number of lines of code, and thus, it greatly enhances the
efficiency of the model because the running time increases and
computational feasibility decreases as the number of variables
or the number of constraints increases [22]-[24]. The number
of variables is however more important, since a formulation
with a fewer number of constraints more often requires a
longer computational time for finding proven optimal solution
[25]. The difference between the number of variables of the
two models is much more than that of constraints of them as
seen in the computational results, implying that the new model
is more efficient than the previous one. Moreover, the new
model does not use the variables Sijk and Ci in MILP-

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 1011121314151617181920

R
P

D

Test problems
MILP-Literature MILP-Zia

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:12, No:6, 2018

98

Literature. More improvement in the model performance can
be obtained by using dominance relationships [26] to force

certain of the jiijy  values to 0 or 1. For instance, if Ji is

sufficiently large for all the jobs, then it can be shown that

jiijy  must be set to 0 if j≤α and j'≥β for some values of α and

β (for example, α=0.1Ji and β=0.9Ji'), that leads to decreasing
the number of binary variables.

Fig. 2 Comparison of the Cmax values of the benchmark instances

Fig. 3 Comparison of the total number of variables of the benchmark instances

Fig. 4 Differences between the number of constraints of the two models

Tukey 95% Simultaneous Confidence Intervals
All Pairwise Comparisons

Individual confidence level = 95.00%

C1 subtracted from:

 Lower Center Upper ----+---------+---------+---------+-----
C2 -12.045 -6.730 -1.416 (----------*---------)
 ----+---------+---------+---------+-----
 -10.0 -5.0 0.0 5.0

Fig. 5 Results of Tukey's pair-wise comparisons test for the two models

IV. CONCLUSION

This paper studies the FJSP which is one of the hardest
combinatorial problems. The objective is the minimization of
the makespan. A MILP model was presented for solving the
problem. The computational results of the proposed MILP
model were compared with those of the MILP model of [14]
(called here MILP-Literature) that is the best model in the
literature in terms of the computational time [16]. The results

showed that our model is superior to MILP-Literature with
respect to all the considered performance measures including
RPD value, number of constraints, and total number of
variables. This improvement in the quality of the results of
MILP-Literature, can be useful for optimally solving larger
FJS problems in reasonable time, and thus, the proposed MILP
model is more beneficial for the performance evaluation of the
heuristics developed for the problem. In future work, we will

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Test problems

C
m

ax Literature
Zia

0
200
400
600
800

1000
1200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Test problems

T
o

ta
l

n
u

m
b

er
 o

f
va

ri
ab

le
s

MILP-Literature

MILP-Zia

0
5

10
15
20
25
30
35
40
45
50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Test problems

D
if

fe
re

n
ce

 b
et

w
ee

n
 t

h
e

n
u

m
b

er
 o

f
co

n
st

ra
in

ts

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:12, No:6, 2018

99

try to adjust the formulation to solve some more complex
scheduling problems.

REFERENCES
[1] A. S. Jain, S. Meeran, Deterministic job-shop scheduling: Past, present

and future, European Journal of Operational Research 113 (2) (1999)
390–434.

[2] A.S. Jain, S. Meeran, A state-of-the-art review of job-shop scheduling
techniques, Technical report, Department of Applied Physics, Electronic
and Mechanical Engineering, University of Dundee: Dundee, UK (1998)
1–48.

[3] J. Blazewicz, W. Domschke, E. Pesch, The job shop scheduling
problem: Conventional and new solution techniques, European Journal
of Operational Research 93 (1996) 1–33.

[4] K. Baker, Introduction to sequencing and scheduling, NewYork: Wiley
(1974).

[5] M. Pinedo, Scheduling: theory, algorithms and systems, Englewood
cliffs, NJ: Prentice-Hall (2002).

[6] M. R. Garey, D. S. Johnson, R. Sethi, The complexity of flow shop and
job-shop scheduling, Mathematics of Operations Research 1 (2) (1976)
117–129.

[7] T.-C. Chiang, H.-J. Lin, A simple and effective evolutionary algorithm
for multiobjective flexible job shop scheduling, International Journal of
Production Economics 141 (2013) 87–98.

[8] Y. Yuan, H. Xu, Flexible job shop scheduling using hybrid differential
evolution algorithms, Computers & Industrial Engineering 65 (2013)
246–260.

[9] J.-Q. Li, Q.-K. Pan, M. F. Tasgetiren, A discrete artificial bee colony
algorithm for the multi-objective flexible job-shop scheduling problem
with maintenance activities, Applied Mathematical Modelling 38 (2013)
1111–1132.

[10] J.-q. Li, Q.-k. Pan, Chemical-reaction optimization for flexible job-shop
scheduling problems with maintenance activity, Applied Soft
Computing 12 (2012) 2896–2912.

[11] Y. Yuan, H. Xu, J. Yang, A hybrid harmony search algorithm for the
flexible job shop scheduling problem, Applied Soft Computing 13
(2013) 3259–3272.

[12] Y. Unlu, S. J. Mason, Evaluation of mixed integer programming
formulations for non-preemptive parallel machine scheduling problems,
Computers and Industrical Engineering 58 (2010) 785–800.

[13] C. H. Pan, A study of integer programming formulations for scheduling
problems, International Journal of Systems Science 28 (1) (1997) 33–41.

[14] C. Özgüven, L. Ozbakır, Y. Yavuz, Mathematical models for job-shop
scheduling problems with routing and process plan flexibility, Applied
Mathematical Modelling 34 (2010) 1539–1548.

[15] P. Fattahi, M. S. Mehrabad, F. Jolai, Mathematical modeling and
heuristic approaches to flexible job shop scheduling problems, Journal
of Intelligent Manufacturing 18 (2007) 331–342.

[16] Y. Demir, K. Isleyen, Evaluation of mathematical models for flexible
job-shop scheduling problems, Applied mathematical modeling 37
(2013) 977–988.

[17] LINDO Systems Inc., LINGO User’s Guide, LINDO Systems Inc.:
Chicago (1999).

[18] D. C. Montgomery, Design and analysis of experiments, Fifth ed.,
NewYork: John Wiley & Sons (2000).

[19] A. S. Manne, On the job-shop scheduling problem, Operations Research
8 (1960) 219–223.

[20] H. M. Wagner, An integer linear programming model for machine
scheduling, Naval Research Logistics Quarterly 6 (1959) 131–140.

[21] E. H. Bowman, The scheduling sequence problem, Operations Research
7 (1959) 621–624.

[22] S. French, Sequencing and scheduling: an introduction to the
mathematics of the job-shop, Chichester, UK: Ellis Horwood (1982).

[23] J. M. Wilson, Alternative formulations of a flow-shop scheduling
problem, OR Journal (Journal of the Operational Research Society)
40(4) (1989) 395–9.

[24] C.-J. Liao, C.-T. You, Improved formulation for the job-shop scheduling
problem, Journal of the Operational Research Society 43(11) (1992)
1047–54.

[25] G. L. Nemhauser, L. A. Wolsey, Integer and Combinatorial
Optimization, John Wiley, New York (1988).

[26] Z. Zhu, R. B. Heady, Minimizing the sum of earliness/tardiness in multi-
machine scheduling: a mixed integer programming approach, Computers

& Industrial Engineering 38 (2000) 297–305.

