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Abstract—In this paper, a mixed integer linear programming 
(MILP) model is presented to solve the flexible job shop scheduling 
problem (FJSP). This problem is one of the hardest combinatorial 
problems. The objective considered is the minimization of the 
makespan. The computational results of the proposed MILP model 
were compared with those of the best known mathematical model in 
the literature in terms of the computational time. The results show 
that our model has better performance with respect to all the 
considered performance measures including relative percentage 
deviation (RPD) value, number of constraints, and total number of 
variables. By this improved mathematical model, larger FJS problems 
can be optimally solved in reasonable time, and therefore, the model 
would be a better tool for the performance evaluation of the 
approximation algorithms developed for the problem. 
 

Keywords—Scheduling, flexible job shop, makespan, mixed 
integer linear programming. 

I. INTRODUCTION 

HE job shop scheduling problem (JSP) is an important 
scheduling problem in the literature [1] and has attracted 

many scheduling researchers due to its applicability and 
difficulty [2], [3]. The n×m classical JSP is defined as follows: 
set of n jobs must be performed on m machines, and each job i 
consists of Ji operations processed on the machines. Each job 
has a specified processing order on the machines that is fixed 
and known in advance, i.e. each operation has to be performed 
on a given machine without interruption. The machines are 
continuously available throughout the planning horizon and 
cannot process more than one operation at a time. The 
processing times for all the operations are fixed and known 
[4], [5]. A common objective function for this problem is the 
minimization of the makespan that is the time needed to 
complete all the jobs. 

In the FJSP that is an extension of the classical JSP, each 
operation can be executed by any machine among a set of 
candidate machines; therefore, this problem has two 
subproblems: the assignment of the operations to machines 
and the determination of the sequence of operations on each 
machine. The FJSP is strongly NP-hard even if there are only 
two machines, and each job has at most three operations [6]. 

In the literature, many methods have been developed to 
solve more complex problems in the field of scheduling such 
as FJSP and JSP [7]-[11], but most of them are metaheuristic 
algorithms. Development of mathematical models for these 
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problems has become increasingly important in recent years, 
since these models can be easily solved by using existing 
powerful solvers and used for benchmarking the proposed 
approximation approaches and understanding the structure of 
the problems [12]. A review of MILP formulations for the 
flow shop and the JSP presented in the literature is provided 
by Pan [13]. For the FJSP, a review of the mathematical 
models developed for this problem can be found in Özgüven 
et al. [14]. They also presented a MILP model for the FJSP 
and compared it with a model of Fattahi et al. [15] concluding 
that their model is superior to that of [15] in terms of model 
size, CPU time and objective function value. A more recent 
literature survey and comparative evaluation of the proposed 
mathematical models for the FJSP is presented by Demir and 
Isleyen [16]. They investigated all the mathematical models 
for the FJSP existing in the literature in terms of binary 
variables used for sequencing the operations on the machines, 
and computationally compared them with the assumption that 
the objective function of the problem is makespan. They 
conclude that the mathematical model proposed by Özgüven 
et al. [14] is the best model in the literature in terms of the 
computational time. 

In this study, a MILP model is presented to solve the FJSP 
with the objective of minimizing makespan (Section II). The 
performance of the proposed MILP model is evaluated by 
using several benchmark problems, and the results of 
computational studies are presented (Section III). Concluding 
remarks are given in Section IV. 

Other assumptions considered in the problem studied in this 
paper are as follows: 
1: Jobs are independent of each other, all of them have equal 

priorities and are available at time zero. 
2: Machines are independent of each other. 
3: Setup times and transportation times are assumed to be 

negligible and zero. 
4: An operation cannot be processed by more than one 

processor (machine) at the same time. 

II. MILP FORMULATION 

The problem notations are as follows: n: number of jobs, m: 
number of machines, i,i': index of jobs; i,i'=1,…,n, Ji: number 
of operations of job i, j,j': index of operations; j=1,…, Ji, 
j'=1,…, Ji', k,k': index of machines; k,k'=1,…,m, tijk: the 
processing time required on machine k for operation j of job i, 
cijk: completion time of operation j of job i (denoted by (i, j)) 
on machine k, Aij: set of machines that are capable to process 
operation j of job i, and the operation must be performed on 
only one of the alternative machines in this set, yiji'j': binary 
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variable which defines the processing order of the operations 
(i, j) and (i', j') belonging to two different jobs (i<i') on the 
same machine; it takes the value 1 if operation (i', j') precedes 
operation (i, j), and 0 otherwise, xijk: binary variable that takes 
the value 1 if operation (i, j) is executed on machine k, and 0 
otherwise, Cmax: makespan, M: a large number. 

Here, a MILP formulation is presented for the problem. 
 

Minimize Cmax                                                                     (1) 
 

subject to: 
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The objective in (1) is the minimization of the makespan. 

Constraint set (2) ensures precedence restrictions between 
consecutive operations of each job, it means that the 
completion time of operation j of job i should be less than or 
equal to the start time of its (j+1)th operation. Constraint sets 
(3) and (4) define the order of any two operations executed on 
the same machine and ensure that they will not clash. For each 
two operations (i, j) and (i', j'), (i≠i'), constraint (3) is active 
only if the two operations can be executed on the same 
machine (k) (i.e. xijk=xi'j'k'=1) and operation (i, j) is performed 
after operation (i', j') (i.e. yiji'j'=1); otherwise, i.e. if xijk=0 or 
xi'j'k'=0 or yiji'j'=0, this constraint is inactive. Note that, 
operation (i, j) is not necessarily positioned immediately after 
operation (i', j') when yiji'j'=1. Clearly, for any two operations 
processed on the same machine, either constraint (3) or 
constraint (4) is active. Constraint set (5) means that each 
operation is assigned to exactly one machine. If operation (i, j) 
is not assigned to machine k, constraint (7) sets the completion 
time of it on machine k equal to zero. Constraint set (6) 
ensures that the start time of each job (i.e. its first operation) 
should be greater than or equal to the time zero. Constraint set 

(8) determines the makespan, i.e. the completion time of last 
operation of each job should not be greater than the makespan. 
Constraint set (9) is a non-negativity constraint for variables 
cijk. Constraint sets (10) and (11) define the binary variables 
xijk and yiji'j', respectively. 

III. COMPUTATIONAL EXPERIMENTS 

In this section, the results of computational studies are 
presented. As mentioned in Section I, the MILP model 
presented by Özgüven et al. [14] is the best model for the 
FJSP in the literature [16]. Therefore, we compared the 
computational results of proposed MILP model (henceforth 
MILP-Zia) with those of [14] (henceforth MILP-Literature). 
The benchmark instances used were the set of 20 problems 
taken from Fattahi et al. [15]. They are divided into two 
categories: small size FJSPs (denoted by SFJS1-SFJS10) and 
medium-large size FJSPs (denoted by MFJS1-MFJS10). Both 
MILP-Zia and MILP-Literature were solved for each of the 
benchmark instances using the software LINGO Release 8.0 
[17] which uses the Branch and Bound algorithm to optimally 
solve the problem. We adjusted the default settings of the 
solver. The problems were run on a Pentium IV, 2.2 GHz and 
2.0 GB RAM PC. The running time for each benchmark 
problem was limited to 3600 CPU seconds. The computational 
results are presented in Table I. The first column (name) 
indicates the name of each test problem. The second column 
(size) refers to the size of each test problem denoted by i, j, k 
indices, that means number of jobs, operations and machines, 
respectively. It must be noted that, in any of these benchmark 
instances, all the jobs have the same number of operations. 
The first set of columns includes the results of MILP-
Literature, and the second set contains those from MILP-Zia. 
Integers, Non-integers, Constraints, CPU time (s), and Cmax 
represent the number of integer variables, the number of non-
integer variables, the number of constraints, the running time 
in seconds, and the makespan value, for each instance, 
respectively. RPD is the relative percentage deviation and is 
computed by the following relation: 
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where Cmax1 is the makespan value obtained by the 
corresponding MILP model and Cmax* is the best value of 
makespan achieved by the two MILP models (i.e. MILP-
Literature and MILP-Zia). As shown in the table, average 
RPD value for MILP-Zia is the best possible value, i.e. 0, 
compared to 6.73 for MILP-Literature. The results also show 
that the difference between the solutions obtained increases as 
the instances size increases; the instance MFJS10 has RPD 
value of 45.8, for example. Figs. 1-3 graphically represent the 
difference between RPD values, Cmax values, and total 

number of variables of the two MILP models, respectively. 
Differences between the number of constraints of the two 
models are shown in Fig. 4. Herein, MILP-Zia is statistically 
compared with MILP-Literature. A one-way analysis of 
variance (ANOVA) [18] is done to test the null hypothesis that 
the means of RPD values of the two MILP models are equal. 
The results for this ANOVA are given in Table II. As it can be 
seen in the table, the difference between the means of two 
models is meaningful at a significance level of 5%. We also 
compare the models via Tukey's pair-wise comparisons test 
[18]. The results reported in Fig. 5 show that there is a 
significant difference between the two models.  

 
TABLE I 

THE COMPUTATIONAL RESULTS OF MILP-LITERATURE AND MILP-ZIA 

Name 
Size 

(i.j.k) 
MILP-Literature MILP-Zia 

Integers Non-integers Constraints CPU time (s) Cmax RPD Integers Non-integers Constraints CPU time (s) Cmax RPD
SFJS1 2.2.2 16 19 42 0 66 0 12 9 38 0 66 0 
SFJS2 2.2.2 10 15 30 0 107 0 9 7 26 0 107 0 
SFJS3 3.2.2 26 24 67 0 221 0 21 11 61 0 221 0 
SFJS4 3.2.2 26 24 67 0 355 0 22 11 61 0 355 0 
SFJS5 3.2.2 36 28 87 1 119 0 24 13 81 1 119 0 
SFJS6 3.3.2 39 34 99 0 320 0 34 16 90 0 320 0 
SFJS7 3.3.5 36 40 93 0 397 0 34 19 84 0 397 0 
SFJS8 3.3.4 45 40 111 7 253 0 40 19 102 1 253 0 
SFJS9 3.3.3 55 40 131 1 210 0 45 19 122 1 210 0 
SFJS10 4.3.5 48 45 124 0 516 0 46 21 112 1 516 0 
MFJS1 5.3.6 103 72 241 3600 468 0 84 34 226 60 468 0 
MFJS2 5.3.7 128 84 291 3600 461 2.90 100 40 276 3600 448 0 
MFJS3 6.3.7 190 103 422 3600 505 7.91 143 49 404 3600 468 0 
MFJS4 7.3.7 250 120 549 3600 611 2.00 184 57 528 3600 599 0 
MFJS5 7.3.7 243 118 535 3600 680 21.86 188 56 514 3600 558 0 
MFJS6 8.3.7 307 133 670 3600 715 3.32 234 63 646 3600 692 0 
MFJS7 8.4.7 475 165 1022 3600 1406 16.78 364 79 990 3600 1204 0 
MFJS8 9.4.8 519 182 1119 3600 1303 16.97 415 87 1083 3600 1114 0 
MFJS9 11.4.8 751 218 1601 3600 1891 17.02 574 104 1557 3600 1616 0 
MFJS10 12.4.8 899 237 1906 3600 2580 45.85 651 113 1858 3600 1769 0 

Average 6.73 0 

 
TABLE II 

RESULTS OF ONE-WAY ANOVA FOR THE TWO MODELS (MILP-LITERATURE 

AND MILP-ZIA) 

Source DF SS MS F P 

Factor 1 453 453 6.5 0.014 

Error 38 2618.8 68.9   

Total 39 3071.7    

 

 

Fig. 1 Comparison of the RPD values of the benchmark instances 
 
The approach presented in this paper is based on the method 

of Manne [19] to handle binary variables for formulating 
FJSP, that uses precedence variables, instead of sequence-
position variables (introduced by [20]) or time indexed 

variables (proposed by [21]) (see [16]). In comparison with 

MILP-Literature, new precedence variable, jiijy  , replaces 

kjiijy   in MILP-Literature, where jiijy   is equal to 1 if 

operation (i, j) precedes operation (i', j'), and 0 otherwise. The 

definition of jiijy  is without reference to the operation’s 

machine. This substituting leads to constraint sets (3) and (4) 
and significantly reduces the number of binary variables and 
the number of lines of code, and thus, it greatly enhances the 
efficiency of the model because the running time increases and 
computational feasibility decreases as the number of variables 
or the number of constraints increases [22]-[24]. The number 
of variables is however more important, since a formulation 
with a fewer number of constraints more often requires a 
longer computational time for finding proven optimal solution 
[25]. The difference between the number of variables of the 
two models is much more than that of constraints of them as 
seen in the computational results, implying that the new model 
is more efficient than the previous one. Moreover, the new 
model does not use the variables Sijk and Ci in MILP-
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Literature. More improvement in the model performance can 
be obtained by using dominance relationships [26] to force 

certain of the jiijy  values to 0 or 1. For instance, if Ji is 

sufficiently large for all the jobs, then it can be shown that 

jiijy   must be set to 0 if j≤α and j'≥β for some values of α and 

β (for example, α=0.1Ji and β=0.9Ji'), that leads to decreasing 
the number of binary variables.  

 
 

 

Fig. 2 Comparison of the Cmax values of the benchmark instances 
 

 

Fig. 3 Comparison of the total number of variables of the benchmark instances 
 

 

Fig. 4 Differences between the number of constraints of the two models 
 

Tukey 95% Simultaneous Confidence Intervals 
All Pairwise Comparisons 
 
Individual confidence level = 95.00% 
 
 
C1 subtracted from: 
 
      Lower  Center   Upper  ----+---------+---------+---------+----- 
C2  -12.045  -6.730  -1.416  (----------*---------) 
                             ----+---------+---------+---------+----- 
                             -10.0      -5.0       0.0       5.0 

Fig. 5 Results of Tukey's pair-wise comparisons test for the two models 
 

IV. CONCLUSION 

This paper studies the FJSP which is one of the hardest 
combinatorial problems. The objective is the minimization of 
the makespan. A MILP model was presented for solving the 
problem. The computational results of the proposed MILP 
model were compared with those of the MILP model of [14] 
(called here MILP-Literature) that is the best model in the 
literature in terms of the computational time [16]. The results 

showed that our model is superior to MILP-Literature with 
respect to all the considered performance measures including 
RPD value, number of constraints, and total number of 
variables. This improvement in the quality of the results of 
MILP-Literature, can be useful for optimally solving larger 
FJS problems in reasonable time, and thus, the proposed MILP 
model is more beneficial for the performance evaluation of the 
heuristics developed for the problem. In future work, we will 
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try to adjust the formulation to solve some more complex 
scheduling problems. 
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