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 
Abstract—The brain’s functional connectivity while temporally 

non-stationary does express consistency at a macro spatial level. The 
study of stable resting state connectivity patterns hence provides 
opportunities for identification of diseases if such stability is severely 
perturbed. A mathematical model replicating the brain’s spatial 
connections will be useful for understanding brain’s representative 
geometry and complements the empirical model where it falls short. 
Empirical computations tend to involve large matrices and become 
infeasible with fine parcellation. However, the proposed analytical 
model has no such computational problems. To improve replicability, 
92 subject data are obtained from two open sources. The proposed 
methodology, inspired by financial theory, uses multivariate 
regression to find relationships of every cortical region of interest 
(ROI) with some pre-identified hubs. These hubs acted as 
representatives for the entire cortical surface. A variance-covariance 
framework of all ROIs is then built based on these relationships to 
link up all the ROIs. The result is a high level of match between 
model and empirical correlations in the range of 0.59 to 0.66 after 
adjusting for sample size; an increase of almost forty percent. More 
significantly, the model framework provides an intuitive way to 
delineate between systemic drivers and idiosyncratic noise while 
reducing dimensions by more than 30 folds, hence, providing a way 
to conduct attribution analysis. Due to its analytical nature and simple 
structure, the model is useful as a standalone toolkit for network 
dependency analysis or as a module for other mathematical models.  
 

Keywords—Functional magnetic resonance imaging, multivariate 
regression, network hubs, resting state functional connectivity.  

I. INTRODUCTION 

HE resting human brain is highly significant for 
understanding how the brain works [1] as reflected by the 

energy-mass consumption distribution; the resting brain 
accounts for 20% of the human energy consumption [1] 
despite its disproportionately small mass. Although calculation 
of brain spatial correlation is simple, there are various 
challenges. First, large amount of calculations limits the 
granularity of the parcellation scheme. Second, the 
spontaneous resting state signals used for calculations are not 
temporally stationary, making topology mapping difficult [2].  

In [3], various mathematical approaches have been tested 
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and compared. Methods by Galán [4] and Honey et al. [5], 
achieve mean correlations of 0.33 and 0.36, respectively. Both 
methods use discrete time-simulation which tend to be slow 
and require many simulations before stabilizing. An analytical 
network diffusion model by Abdelnour et al. [3] achieved a 
correlation of 0.41 for eight subjects when tested within the 
same context. Although relatively superior in performance, the 
method assumes prior knowledge of a hyperparameter, ݐߚ, 
which is retrospectively optimized based on the value that 
produces the most favorable matching outcome. Since only 
eight subjects were used for optimization, likelihood of under-
estimation of inter-subject variability is high.  

II. THEORY 

The model proposed here is inspired by the financial asset 
return theory in the world of stocks [6]. In finance, it is not 
uncommon to model an individual stock’s return based on 
several systematic factors. Covariance of one stock with 
another is often prescribed by a set of key drivers such as 
global stock index, regional stock index and other systematic 
drivers such as oil price, exchange rates, etc. One will find that 
some stocks’ performances are particularly well-explained by 
systematic drivers while others such as small stocks are 
largely driven by its own idiosyncrasies. Similarly, one can 
hypothesize that the different regions of interests (ROI) of 
brain are dependent on some key hubs. Regardless of its 
functionality, it is unlikely any ROI to be totally independent 
of other hubs or limited in dependency to just 1 hub. Where 
there is a general dependency of each ROI to 2 or more hubs, 
the conditions may be favorable for the usage of this model. 
The model uses a simple multivariate regression of every ROI 
with a set of chosen network representatives [6]. The starting 
hypothesis is that every ROI is somehow driven to different 
extent by a few core representatives. If a relationship of every 
ROI with these representatives can be established, it may also 
be possible to establish indirect relationship of ROIs amongst 
themselves. For illustration purposes, Fig. 1 provides a schema 
for this framework. 

Mathematical derivation in later section demonstrates how 
one can leverage on a fixed choice of factors to account for 
covariation between stocks or in this case, different parts of 
the grey matter. 
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Fig. 1 Schematics of indirect connectivity through key hubs. A) Example of how different stock indices are correlated to different extent, 
allowing a target index to be expressed as a function of the other indices. B) A schema of how key hubs of the brain (represented by Xs) could 

be used to link up the different ROIs (Ys). C) A schema further showing how two ROIs (Y1 & Y5) are indirectly connected through their 
linkages to hubs, X1 to X4. Solid lines here represent significant connectivity whereas dotted lines represent weak connectivity with 

insignificant strength of connection 
 

A. Notations 

Let Y1,t, Y2,t, …,YN,t be the levels of spontaneous activity at 
time, t for N ROIs after standard image preprocessing and 
additional signal preprocessing associated with rs-fMRI 
analysis. Let X1,t, X2,t, X3,t, …,XK,t be a choice of K factors 
such that ܺ ∈ ௜ܻ , where i = 1 to N. To account for different 
subjects, the notations are adjusted accordingly: 

Xs and Ys become ܺ௞,௧
௝  and ௜ܻ,௧

௝  , where j refers to the index 

for a subject ݆ ∈ ሾ1,  .ሿ and J is the number of subjectsܬ
ݐ ∈ ሾ1, ܶሿ	, where t refers to time index when the spontaneous 
activity is recorded, and T refers to the index where the last 
spontaneous activity is recorded. A full multivariate setup is as 

shown below where ߝ௜,௧
௝  refers to zero-mean Gaussian and 

where variance is not necessarily unit. i, j, k follows the set 
notations described earlier. 
 

௜ܻ,௧
௝ ൌ ௜,଴ߚ ൅ ௜,ଵܺଵ,௧ߚ

௝ ൅	ߚ௜,ଶܺଶ,௧
௝ 	൅		…	൅	ߚ௜,௞ܺ௞,௧

௝ ൅ߝ௜,௧
௝ 	 (1) 

 
Alternatively, in simple matrix form: 
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Example: ௜ܻ,.
ଵ refers to a time series for subject 1, ROI i. Y is 

a JT x 1 vector, X is a JT x K matrix, B is a Kx1 vector, ߝ  is a 
JT x 1 vector. Perform a regression for every ROI i, a set of ߚ 
for each ROI will be produced. Stack them horizontally and 
re-arrange some of the results from regression:  
 

A	ൌ	covሺXሻ	ൌ	

ۏ
ێ
ێ
ۍ ଵଶߪ

ଶߪଵߪଵଶߩ
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ଵߪଶߪଶଵߩ	
ଶଶߪ
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ۑ
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	 (3)	

 

	ൌܤ
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ێ
ۍ
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	ൌܦ

ۏ
ێ
ێ
ێ
ۍ
ଵሻߝሺݎܽݒ

0
0
0
0

0
ଶሻߝሺݎܽݒ

0
0
0

…0
…0
…0
…0

ےேሻߝሺݎܽݒ…
ۑ
ۑ
ۑ
ې

	 (5)	

 
The subscripts of ߚ and subscripts and superscripts of ߝ 

have been simplified without loss of generic meaning to 
reflect the fact that only information at the level of ROI and 
key factors are relevant. 
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B. Derivation of Linkage 

A key benefit of the model is its reduction in dimensions, 
and the derivation of linkage framework which makes this 
possible is as follows: 

 

௜ܻ ൌ ௜,ଵߚ ଵܺ൅	ߚ௜,ଶܺଶ	൅	ߚ௜,ଷܺଷ	൅	…	൅	ߚ௜,௞ܺ௞൅ߝ௜	 (6) 
 

௝ܻ ൌ ௝,ଵߚ ଵܺ൅	ߚ௝,ଶܺଶ	൅	ߚ௝,ଷܺଷ	൅	…	൅	ߚ௝,௞ܺ௞൅ߝ௝	 (7)	
 
ሺܧ ௜ܻ ௝ܻ) = E(ߚ௜,ଵ	ߚ௝,ଵ ଵܺ

ଶ	+ ߚ௜,ଶ	ߚ௝,ଶܺଶ	ଶ ௝,௞ܺ௞ߚ	௜,௞ߚ + … + 
ଶ 	൅

	∑ ௝,௤ܺ௣ܺ௤௣ஷ௤ߚ	௜,௣ߚ ௝ߝ௜,௞ܺ୩ߚ + … +		௝ߝ௜,ଶܺଶߚ +		௝ߝ௜,ଵܺଵߚ +  	൅
௝,ଵߚ	 ଵܺߝ௜		+ ߚ௝,ଶܺଶߝ௜		+ ߚ௝,ଷܺଷߝ௜		+ … + ܺ୩ߝ௜+ߝ௜ߝ௝) 
௞ߪ௝,௞ߚ	௜,௞ߚ+…+ଶ	ଶߪ௝,ଶߚ௜,ଶߚ+ଵଶߪ௝,ଵߚ௜,ଵߚ	=

ଶ+  
∑ ሺܺ௣ܺ௤ሻ௣ஷ௤ܧ௝,௤ߚ	௜,௣ߚ 	൅ 	௝ሻߝ௜ߝሺܧ	 (8)	

 
Assuming that ௜ܻ, ௝ܻ, ܺ௣, ܺ௤ are zero-centered Gaussians for 

simplicity of derivations without loss of generality on the 
results. Also, notice that expectations of cross terms between ε 
and X are removed as they are assumed to be independent to 
each other. 
 
If i≠j, 
 

ሺܧ ௜ܻ ௝ܻሻ	ൌ	ߚ௜,ଵߚ௝,ଵߪଵଶ	൅ߚ௜,ଶߚ௝,ଶߪଶ	ଶ൅…൅ߚ௜,௞	ߚ௝,௞ߪ௞ଶ	൅	
∑ ሺܺ௣ܺ௤ሻ௣ஷ௤ݒ݋௝,௤ܿߚ	௜,௣ߚ 	 (9) 
 
If i=j, 
 

ሺܧ ௜ܻ ௝ܻሻ	ൌ	ߚ௜,ଵ
ଶ ௜,ଶߚ	൅	ଵଶߪ

ଶ ௜,௄ߚ	൅	…	൅	ଶ	ଶߪ
ଶ ௞ߪ

ଶ	൅	
∑ ൫ܺ௣ܺ௤൯௣ஷ௤ݒ݋௝,௤ܿߚ	௜,௣ߚ 	൅	ܸܽݎሺߝ௜ሻ	 (10)	
 

As one can see, this equation comprises of cross and 
coherent terms. Cross terms refer to terms where variables are 
different and coherent terms refer to those where variables are 
the same. Cross terms produce covariance of the type: 
݌ ௤, whereߪ௣ߪ௣,௤ߩ௝,௤ߚ	௜,௣ߚ ് ∋ p, q  ,ݍ ሾ1, ݇ሿ. Coherent terms 
produce variances of the type: ߚ௜,௣	ߚ௝,௣ߪ௣ଶ, where ݌ ∈ ሾ1, ݇ሿ. In 
fact, (9) & (10) can be equivalently expressed as equation 11. 

 
F	ൌ	covሺYሻ	ൌ	BABT൅D	 (11) 
 
where A, B and D are from (3)-(5) respectively. The user can 
verify that (9) and (10) are the same by comparing a diagonal 
and non-diagonal term via the two different forms of 
expression. B is a factor loading ܰܭݔ matrix, A is a factor 
covariance ܭݔܭ matrix and D is a residual ܰܰݔ matrix where 
non-diagonal values are zero. From examining the dimensions 
of B, all that is required when finding the correlations of F 
which by brute force is ሺܰ ൅ 1ሻݔ ܰ 2⁄ , is N regressions. B is 
called the factor loading matrix, and D is called the 
idiosyncratic risk matrix. 

III. MATERIALS AND METHODS 

A. Data Collection, Imaging Protocol and Preprocessing  

The primary data (DS1) came from the Consortium for 

Neuropsychiatric Phenomics [7]. There are 29 males and 23 
females, age ranging from 21 to 50 in the model building 
dataset, and the individuals were asked to think of nothing 
during the scans. 

T1-weighted structural MR data were collected on a 3T 
Siemens Trio scanner, using MPRAGE-BWM protocol and 
scan sequence, IR. The parameters of the scan are: TR= 2.53 s, 
TE =0.0031 s, matrix size = 256 x 256, slice thickness = 1 
mm, number of slices= 176, FOV=256 mm x 256 mm, total 
scan time=363 s, flip angle=7 deg. The fMRI scans were 
collected using the same scanner with echo planar sequence 
using the following the parameters: TR=2 s, TE=0.03 s, matrix 
size=64 x 64, slice thickness=4 mm, number of slices=34, 
slice sequence=interleaved, total scan time=312 s, flip 
angle=90 deg, number of time points=152 (before removal of 
first 10 points). Subjects are asked to think of nothing during 
the scans. 

The secondary dataset (DS2) was collected from ‘1000 
Functional Connectomes’ database. The data chosen were 
contributed by Wang et al. [8]. To create a test set that allows 
results stabilization, 40 out of 198 subjects are chosen, with 17 
males and 23 females, age ranging from 18 to 26. 

The parameters for the anatomical MRI scan are: TR=2.53 
s, TE =0.00339 s, matrix size=181 x 175, slice thickness=1.33 
mm, number of slices=128, FOV=181 mm x 175 mm, slice 
order=interleaved and subjects are asked to think of nothing. 
The parameters of the fMRI scan are: TR=2 s, TE =0.03 s, 
matrix size=64 x 64, slice thickness=3.6mm, number of 
slices=33, FOV=200mm x 200mm, slice order=interleaved, 
number of time points=225, eyes closed. 

The preprocessing steps are carried out using DPABI [9], an 
extended toolbox of SPM [10]. Steps are executed out in the 
following chronological order: time slice adjustment, 
realignment, co-registration, unified segmentation, 
normalization, smoothing, linear de-trending, band pass 
filtering (0.01~0.1 Hz) and nuisance covariates removal (white 
matter and CSF). In addition to standard preprocessing steps, 
the following processing steps are performed. All fMRI 
images (after covariate regression) are resliced to a resolution 
of [10mmx10mmx10mm] using REST toolkit [11]. Then, 
segmented grey matter images are averaged and resliced to 
[10mmx10mmx10mm] resolution and threshold at 0.3 to form 
a mask. The grey matter mask will form the main basis from 
which all comparisons between empirical and model 
correlations are made. 

B. Factor Selection Steps 

To obtain optimal hubs or representative ROIs, factors must 
maximize the connectivity while minimizing overlap. A 2-step 
heuristic is applied to achieve this:  
Step 1: Hierarchical clustering. First, the average spatial 
correlation matrix of the subjects is computed on the grey 
matter ROI space, followed by the performance of hierarchical 
clustering. Clusters are formed using 0.7 as cut-offs which 
means the ROIs inside the clusters have intra-correlations of 
no less than 0.3. Cut-off is preferred over cluster size when 
forming clusters since it permits direct control over the 



International Journal of Medical, Medicine and Health Sciences

ISSN: 2517-9969

Vol:12, No:5, 2018

232

 

 

distance between the ROIs (correlation used as a distance 
metric). The clusters acted as local networks within the brain 

as shown in Fig. 2. 

 

 

Fig. 2 Left: an illustration of using hierarchical clustering with the cut-off method to find distinct networks. Right: Illustration of correlation 
footprint method. If the rows represent cluster members, and cells highlighted with grey represent the extent of their influence (cell is grey if 

correlation is significantly different from zero). The member of the cluster with the greatest influence is the one with most number of grey cells 
per row 

 
Step 2: Hubs selection. After the networks have been 
determined, hub representatives are chosen from them. 
Intuitively, it makes sense to vary the number of 
representatives depending on the size of the network. Over 
here, the optimal arrangement is for the maximum number of 
representatives for a cluster to be 2, while the minimum 
number of representatives to be 1. Small networks containing 
very few voxels are discarded from consideration in order to 
maintain parsimony and are therefore, not well represented. 
Representatives are chosen from their respective 
networks/clusters by using the correlation footprint method. 
This is illustrated above in Fig. 2. 

IV. RESULTS 

The results using the model are superior to those previously 
discussed in other papers when adjusted for sample size (see 
Table I). As a further note, it is important to qualify that 
results are highly dependent on sample size up to a certain 
point. Right column of Tables I A and B shows results which 
have been stabilized while the left column is based on eight 
subjects to compare with the results discussed in [3]. 

From Fig. 3, one can also see that correlation increases with 
the number of factors (from 6 to 10) without decrease in 
adjusted R2. Judging from the trend and given the size of the 
large regression sample, there is still room for further increase 
in performance by increasing the number of factors. 

TABLE I.A 
CORRELATION PERFORMANCE FOR DIFFERENT NUMBER OF HUBS FROM 

SAMPLE DATA SET, DS1 
Set with first 8 subjects from DS1 DS1, Set with 52 subjects 
#Hubs Correlation Adj R-square #Hubs Correlation Adj R-square

35 0.66 0.46 35 0.48 0.38 
25 0.63 0.42 25 0.46 0.36 
20 0.60 0.38 20 0.43 0.31 
15 0.57 0.35 15 0.42 0.29 
10 0.53 0.31 10 0.39 0.25 
9 0.52 0.29 9 0.38 0.24 
8 0.51 0.28 8 0.37 0.23 
7 0.49 0.26 7 0.36 0.22 
6 0.49 0.25 6 0.35 0.21 

 
TABLE I.B 

CORRELATION PERFORMANCE FOR DIFFERENT NUMBER OF HUBS FROM 

SAMPLE DATA SET, DS2 
Set with first 8 subjects from DS2 DS2, Set with 40 subjects 
#Hubs Correlation Adj R-square #Hubs Correlation Adj R-square

35 0.63 0.38 35 0.53 0.31 
25 0.60 0.35 25 0.51 0.29 
20 0.56 0.31 20 0.48 0.26 
15 0.54 0.29 15 0.46 0.24 
10 0.50 0.22 10 0.42 0.20 
9 0.46 0.20 9 0.41 0.19 
8 0.44 0.19 8 0.40 0.18 
7 0.43 0.18 7 0.39 0.17 
6 0.43 0.18 6 0.38 0.17 

Results show how performance of correlation varies with the number of 
factors used as well as the number of subjects. Different columns are shown to 
illustrate the importance of taking into consideration the number of subjects 
used as this has major impact on the performance seen. 
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Fig. 3 Matching improves with increase in number of factors 

V. DISCUSSIONS 

A. Summary of Findings 

The results show here demonstrated that explaining 
connectivity patterns via significant representatives using a 
simple linear framework is feasible despite the complexity of 
the brain network and low signal-to-noise ratio. Not only is the 
performance comparable to the best in this field but its 
performance could potentially be further enhanced by 
exploring the addition of more factors. 

B. Applications and Future Work 

There are a few future directions that this model can take. 
Firstly, further efforts could be taken to provide a more 
holistic approach to optimize the search for hubs with the aim 
not only limited to enhancing the correlation performance 
further but also to improve the biophysical interpretation 
underneath the choices. 

Secondly and not entirely mutually exclusive from the first 
is that multiple connectivity linkages provide an ecosystem 
which can be monitored and any deviation from a “healthy” 
ecosystem may signal a display of anomalous characteristic. 
This makes it a potential useful method for discovery of 
biomarkers. 

Finally, it is easy to try to blend this model with other 
models. For example, different ROIs can be simulated 
coherently via this framework and be placed as inputs into 
more complex diffusion frameworks and processes. The list is 

far from exhaustive since the model is so generic and simple 
and can be morphed easily for different purposes. 

C. Limitations and Shortfalls 

At its present form, the model is not without its various 
limitations. 

Large variance in performance. On average, the correlation 
is around 0.38~0.45 for the different datasets but within each 
dataset, this can range from 0.2 to 0.6 for different individuals. 
This large variance is not desirable as it means some subjects 
might have low matches (M1<0.3). There are two ways to 
improve the situation – one is to try to reduce the variance due 
to subject variability or the other way is to accept the large 
variance and try to raise the mean level further. Raising the 
mean level can be easily achieved by improving the search for 
factors or a combination of improving the search and 
increasing the number of factors. Based on experience from 
trial and error, increasing factors is likely to provide quick and 
short-term benefits while improving global search strategy is 
likely to yield more lasting long-term benefits.   

Out of sample performance. Currently, the model still needs 
to improve its out of sample performance. The main 
determinant of out-of-sample performance is how well one set 
of parameters from training set works on a non-trained set and 
this is affected by how different the two sets are.  There are 
two kinds of differences. One kind arises from the natural 
variance in brain functional connectivity; the other is due to 
man-made nuisance effects that have crept into the dataset 
because of the way the experiments are set up. The lesser the 
model is susceptible to the second kind of difference through a 
more robust process pipeline, the better will be its potential for 
practical day to day usage. 

Resolution. The resolution that is being used currently is 
[10mm x 10mm x 10mm]. Increasing this resolution increases 
computation burden without necessarily providing practical 
improvement in insights. Theoretically, the accuracy of the 
current search is affected because of scanning at a rougher 
scale. However, as Fig. 4 shows, the general connectivity 
patterns are not really affected much even after reducing the 
resolution. 

Model consistency. The model also needs more fine tuning 
in terms of consistency as showed in Table II. The table 
basically illustrates the different levels of consistency in factor 
choice when different datasets are used. Consistency in factor 
choice can be as high as 70% but once weights or coefficients 
are considered, consistency drops below 50%. This is 
expected as consistency in factor choices is normally easier to 
achieve than consistency in weights. 

Inter-subject variability. Perhaps, the most visible shortfall 
is the decrease in performance when increasing in the number 
of subjects as seen in Fig. 5. This drop can be made up for to 
some extent by increasing in factors as well as improving 
factor search strategy. However, more comprehensive and 
careful exploration is required to test how much can be 
improved. 
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Fig. 4 Functional connectivity with Posterior Cingulate Cortex as seed voxel. One can see the strong resemblances between in connectivity 
patterns even though the resolutions are different. This provides justification for performing analysis first at a lower resolution and then making 

suitable refinements and adjustments for high resolution when needed 
 

TABLE II.A 
ALIGNMENT BETWEEN ON MODELS BASED ON DS1 AND DS2 

#Hubs Factor choice Coefficient alignment 

10 71.6 41.4 

9 73.7 40.0 

8 74.6 38.5 

7 76.2 37.8 

6 78.8 37.2 

 
TABLE II.B 

ALIGNMENT BETWEEN ON MODELS BASED ON DS3 AND DS1 

#Hubs Factor choice Coefficient alignment 

10 67.6 61.9 

9 69.6 60.9 

8 71.3 60.9 

7 72.9 58.5 

6 75.1 59.6 

TABLE II.C 
ALIGNMENT BETWEEN ON MODELS BASED ON DS2 AND DS3 

#Hubs Factor choice Coefficient alignment 

10 65.2 50.2 

9 67.4 49.5 

8 68.9 47.7 

7 69.9 44.1 

6 72.1 42.8 

Model stability (%). This table illustrates the degree of alignment when the 
same set of factors are calibrated with different datasets. There are 2 types of 
alignment measured here, namely, factor alignment and coefficient alignment. 
Factor alignment measures the chance where two datasets choose the same set 
of factors. Coefficient alignment measures the chance where coefficients 
cannot be proven to be statistically different from each other for the same 
factor. One can see that the factor alignment rate is in the range of 65%~75% 
and expectedly, the smaller number of factors, the higher the alignment rate. 
Coefficient alignment is harder to achieve compared to factor alignment as 
weights might vary even for the same set of factors for different subjects. As 
expected, coefficient alignment is highest between DS1 and DS3 as they came 
from the same primary data sets. 

 

 

Fig. 5 Variation of performance and fit with number of subjects. The figures above show that the correlation performance is relatively stable 
given the size of subjects used (>35). Some of the figures noted in previous research in this field must be carefully considered as they still lack 

the necessary sample size for stability 
 

D. Conclusions 

The multivariate linear regression model proposed here 
shows that it is both possible to be simple and effective when 
it comes to modeling functional connectivity. The proposed 
model achieves a performance which is superior to current 
batch of models in this area. 

Two key weaknesses of the model are its weaker out-of-
sample performance when compared to in-sample 
performance as well as the visible decrease in performance 
when large sample size is used. However, raising the 
correlation performance of in sample testing tends to improve 
the performance of out-of-sample testing and make this less 
conspicuous. For example, if in-sample correlation rising to 
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0.6 results in out-of-sample correlation rising to 0.5, then, one 
may be readier to overlook such a weakness. Increasing 
number of factors as well as improving global search method 
for hubs are likely strategies that will yield results.  

Despite of its limitations, the current model is still very 
useful if its usage is restricted to only in-sample calibration 
and by planning the process pipeline carefully to avoid the 
introduction of nuisance factors as much as possible. 
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