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Model-Driven and Data-Driven Approaches for
Crop Yield Prediction: Analysis and Comparison

Xiangtuo Chen, Paul-Henry Cournède,

Abstract—Crop yield prediction is a paramount issue in
agriculture. The main idea of this paper is to find out efficient
way to predict the yield of corn based meteorological records.
The prediction models used in this paper can be classified into
model-driven approaches and data-driven approaches, according to
the different modeling methodologies.

The model-driven approaches are based on crop mechanistic
modeling. They describe crop growth in interaction with their
environment as dynamical systems. But the calibration process of
the dynamic system comes up with much difficulty, because it
turns out to be a multidimensional non-convex optimization problem.
An original contribution of this paper is to propose a statistical
methodology, Multi-Scenarios Parameters Estimation (MSPE), for the
parametrization of potentially complex mechanistic models from a
new type of datasets (climatic data, final yield in many situations).
It is tested with CORNFLO, a crop model for maize growth.

On the other hand, the data-driven approach for yield prediction
is free of the complex biophysical process. But it has some strict
requirements about the dataset.

A second contribution of the paper is the comparison of these
model-driven methods with classical data-driven methods. For this
purpose, we consider two classes of regression methods, methods
derived from linear regression (Ridge and Lasso Regression, Principal
Components Regression or Partial Least Squares Regression) and
machine learning methods (Random Forest, k-Nearest Neighbor,
Artificial Neural Network and SVM regression).

The dataset consists of 720 records of corn yield at county scale
provided by the United States Department of Agriculture (USDA) and
the associated climatic data. A 5-folds cross-validation process and
two accuracy metrics: root mean square error of prediction(RMSEP),
mean absolute error of prediction(MAEP) were used to evaluate the
crop prediction capacity.

The results show that among the data-driven approaches, Random
Forest is the most robust and generally achieves the best prediction
error (MAEP 4.27%). It also outperforms our model-driven approach
(MAEP 6.11%). However, the method to calibrate the mechanistic
model from dataset easy to access offers several side-perspectives.
The mechanistic model can potentially help to underline the stresses
suffered by the crop or to identify the biological parameters of interest
for breeding purposes. For this reason, an interesting perspective is
to combine these two types of approaches.

Keywords—Crop yield prediction, crop model, sensitivity analysis,
paramater estimation, particle swarm optimization, random forest.

I. INTRODUCTION

IN agriculture research, crop yield prediction is a major

topic of interest for farmers, decision makers and

agricultural organizations. It is made very difficult by the

variety of agricultural systems, the diversity of biophysical
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processes implied in plant growth, the complexity of crop

responses to stress, etc. What’s more, farmers decisions,

such as land preparation, irrigation, sowing date or fertilizer

applications, have also a great influence on crop yield.

Normally, this prediction is carried out according to the

farmers’ long-term experience for specific fields, crops and

climate conditions [1]. Nevertheless, a non-linear behavior of

plant reaction to the environment introduces large deviations

from year to year and makes the traditional method inaccurate

[2]. Thus, more efficient methods have been developed,

which can be generally classified as crop growth models and

data-driven models.

Agronomic models, just as CORNFLO [3], are generally

based on the mechanistic description of biophysical processes.

In most cases, they are considered as a discrete dynamic

system. That is to say, they can be represented in the following

form:

Xt+1 = Ft(Xt, Ut, θ) (1)

where Xt and Ut represent the state variables and

environmental variables of the system at time t, θ is

the parameter vector, and Ft denotes the eco-physiological

processes involved in the model. It is assumed here that the

process is deterministic, but it is also possible to consider

modeling noises [4]. This kind of dynamic system has opened

interesting perspectives for a better understanding of plant

growth as well as for potential applications in breeding or

decision aid in farm management. But the parameterization of

such models is however a difficult issue due to the complexity

of the involved biological processes and the interactions

between these processes [5].

A typical parameterization method for discrete dynamic

models is described in [6], and an application in the case of

mechanistic plant growth model is given in [5]. Let (tk)1≤k≤n

denote the sequence of times at which the plant was observed,

and yk the observation vector at time tk. The vector of

observations is thus implicitly a function of the vector of

parameters θ:

y = f(θ) + ε (2)

with ε ∼ N (0,Σ) and f represents the model used. Then,

generalized least squares estimator or maximum likelihood

estimator can be implemented.

However, this methodology has several disadvantages:

firstly, the experiment is so expensive in terms of time and

money that the sample size is usually quite small; secondly,

the experiments are conducted in the same environment, which

makes the genericness of the calibrated model questionable.
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In this work, another type of plant observation data is

used to calibrate crop models: {Ui, yi}1≤i≤N , where Ui is

the records of the environmental variable in scenario i, while

yi is the yield (the final state) of plant in scenario i. The

lost information of the plant at different stages is hedged

by the diversity of crop performance in different scenarios.

This methodology is named as multi-scenarios parameter

estimation and the original idea can be found in [3]. After

parameterization, the calibrated model will be compared with

the data-driven methods for its predictive capacity.

As for data-driven approaches, they refer to statistical

learning methods using historical data to calibrate a

non-mechanistic prediction system, that is to say a model

not based on specific domain knowledge. In this work, since

the available data-set is in the form {Ui, yi}, the data-driven

approaches will be used to build a regression model of the

form:

y = g(U) + ε (3)

where y = (y1, y2, . . . , yn)
t ∈ R

n, ε = (ε1, ε2, . . . , yn)
t ∈

R
n and g is a ”black box” trained by available data and the

specific methods called in modeling process. Solutions can be

divided into two parts: the statistical methods like Ridge and

Lasso regressions, principal component regression and partial

least squares regression; the machine learning methods like

regression trees, random forest, k-nearest neighbors (KNN),

Artificial neural network (ANN), SVM regression, etc. In this

work, a systematic analysis will be conducted to compare the

predictive capacity of these data-driven methods in terms of

crop yield prediction.

These methodologies are tested on a database provided

by the statistical service of the United States Department

of Agriculture (USDA), on corn yield at county scale. The

data set is presented in Section II. Then crop model analysis,

the MSPE methodology and its predictive capacity evaluation

will be performed in Section III. In Section IV, some typical

statistical methods and machine learning methods are briefly

recalled and evaluated. Finally, a discussion of these two

methodologies is detailed in Section V.

II. DATA DESCRIPTION AND CRITERIA

A. Data Description

The data used in this work is obtained for one specific corn

genotype over 10 years from 2001 to 2010 in diverse counties

of the USA. The data for a given site of a given year (site-year

data) is called a scenario. There are 720 scenarios available in

this work and each scenario is composed by a set of climate

data and a final crop yield value (average yield at country

scale).

1) Climate Data: Each scenario is composed by daily

records of five important climate variables: daily maximum

and minimum temperatures, radiation, precipitation and

potential evapo-transpiration. Thus, each climate data set

contains 365 measurements and each scenario instance is

represented by a set of 1825 (365 * 5) numeric value.

Xi = (Xi1, Xi2, . . . , Xid) is a vector of feature measurement

for the ith scenario’s climate data.

2) Crop Yield Data: The crop yield of the ith scenario,

noted yi, is a single numeric value representing the total mass

of maize seed collected on the harvest day (in g/m2).

B. Criteria

1) Mean Squared Error Prediction (MSEP): The mean

squared error of prediction, or MSEP, is a standard criterion for

assessing the predictive capabilities of a model in ecological

and agronomic studies [7] . It measures the difference between

the observations y and the predictions of the model f(θ), and

is defined as follows:

MSEP(θ̂) = Eθ̂[(y − f(θ̂))2] (4)

Since the dimension of MSEP is the squared dimension of

the observation, it is more convenient to use the root of the

quadratic error:

RMSEP(θ̂) =

√
MSEP(θ̂) (5)

If another independent data-set is available, that is different

from the one on which the parameter estimation was

conducted, an unbiased estimator of RMSEP is given by [8]:

ˆRMSEP(θ̂) =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (6)

where yi and ŷi are the observed and predicted crop yields in

scenario i at harvest time.

2) Mean Absolute Percentage Error (MAPE): The mean

absolute percentage error, or MAPE, is another measure of

prediction accuracy for a forecasting method in statistics [9].

It usually expresses accuracy as a percentage, and is defined

by the following formula:

MAPE(θ̂) =
100

n

n∑
i=1

| yi − ŷi
yi

| (7)

where yi and ŷi are the observed and predicted crop yield in

scenario i at harvest.

III. PLANT MODEL ANALYSIS AND EVALUATION

A. CORNFLO: A Plant Model of Maize

The CORNFLO model is a plant growth model that

simulates the growth and yield of maize [3]. It is inspired

from the SUNFLO model for sunflower [10]. A detailed model

description can be found in Appendix A.

B. Model Calibration with MSPE

Model calibration is based on the MSPE methodology. The

main steps are the following ones:

• First, we take advantage of the prior knowledge on the

parameters to derive prior distributions and perform a

global sensitivity analysis of the model parameters to

screen the most important ones that will be estimated

in priority;

• Then, we implement an efficient nonconvex optimization

method, the parallel particle swarm optimization, to
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TABLE I
GENOTYPE PARAMETERS IN CORNFLO MODEL

Parameter Unit Meaning
A2 Rank of the leaf which has the largest leaf surface in the entire plant growth period
A3 cm2 Potential surface of the largest leaf of the simulated plant
phyllodeini ◦C·days Phyllochrone parameters for plant leaves
Ratio phyllodefe Ratio of phyllode and phyllofe
F1 ◦C·days Thermal time needed the beginning of flowering
M3 ◦C·days Thermal time needed for the physiological maturity
k coeff Leaf extinction coefficient
phyllofeini ◦C·days Phyllochrone parameters for plant leaves
NFF Number of leaves
HI Harvest Index: a constant biomass proportion of the wet grain
RUE Maximum radiation use efficiency
M0 ◦C·days Thermal time needed for the early maturation

search for the maximum of the distribution of the

estimated parameters;

• Finally, we choose the best configuration regarding the

number of estimated parameters by model selection

criteria.

1) Reduction of the Variability: Model calibration is a

critical issue for models with a large number of parameters

and restricted data [11]. So the first task is to select the most

important parameters according to some criteria.

The sensitivity analysis (SA) technique makes it possible

to evaluate the sensitivity of the response variable to the

disturbances of model inputs [12]. This kind of analysis makes

it possible to identify the parameters having the most influence

on the results of the model, specifically chosen to be the

experimental variables (here the final yield).

Sobol’s method is a popular method for sensitivity analysis

based on the variance decomposition of the model’s output,

which allows a clear interpretation of the SA results. In

the framework of plant growth models, [14] proposes an

improvement of the Homma-Saltelli method for the calculation

of the Sobol sensitivity indices. Parameters are ranked

according to their global SI, and then, the models will be

calibrated with the important parameters selected by SA.

As stated in Appendix A, the CORNFLO model has 12

genotype parameters. Their definitions are listed in Table I. A

summary of the variation intervals adopted for each parameter

and their recommended value settings can be found in Table

II. The fact that the model describes mechanistic processes of

crop growth allows the determination of reasonable ranges of

variations for the parameters and thus prior distributions for

SA.

TABLE II
VARIATION INTERVALS AND RECOMMENDED VALUES FOR MODEL

PARAMETERS

Parameter Interval Recommended Value
A2 [7, 19] 14.07
A3 [400, 720] 645

phyllodeini [22, 42] 32
Ratio phyllodefe [0.5, 0.9] 0.7

F1 [410, 890] 723
M3 [950, 1750] 1477

k coeff [0.4, 0.75] 0.53
phyllofeini [30, 50] 40

NFF [12, 26] 21
HI [0.3, 0.8] 0.5
RUE [0.5, 0.9] 3.5
M0 [550, 1060] 884

The Sobol sensitivity analysis is carried out, the ordered

parameters and their SI can be found in Table III. The

combination: A2, NFF , RUE, M3, F1 and M0, is

considered to be the ”important parameters” to be calibrated

first because the sum of their first order SI > 90%, which

means that the variability of these parameters alone contributes

to more than 90% of the output’s uncertainty. But the

parameter, NFF , which represents the number of potential

leafs, can be estimated accurately with direct experimental

measurements. Finally the chosen parameter vector contains

five elements: A2, RUE, M3, F1 and M0.

2) Least-Squares Minimization: As underlined above,

model calibration with MSPE methodology does not use

the commonly used data frame (yt1, yt2, . . . , yti)t1≤ti≤tN

for plant growth models as in [10], which contains several

observation at different moments but in a single scenario

(environment). Instead, another data frame (Ui, yi)1≤i≤N ,

which contains the observation of the final state but in multiple

scenarios (environments) is adopted.

For the least squares criterion, the estimation of the

parameter vector θ̂ can be classically expressed as follows:

θ̂ = argmin
θ

n∑
i=1

(yi − f(θ, Ui))
2. (8)

where θ is the parameter vector containing the five elements

selected beforehand, θ = (A2, RUE,M3, F1,M0), Ui

contains the environmental information of scenario i, yi is

the final observation of the crop yield in scenario i.
Note that since the prior on the parameters, finding the

minimum of the least-squares criterion within the given

interval, correspond to finding the maximum a posteriori in

a Bayesian context, if errors in the different scenarios are

supposed homoscedastic.

a) Nonconvex optimization: As illustrated in (8), the

parameter estimation process is an optimization problem.

However, a strong characteristic induced by the non-linearity

of the model is the nonconvexity of the function to optimize.

For illustration, two 3-D optimization surfaces of the objective

function are drawn in Fig.1.

As a result, the particle swarm optimization, which is a

global optimization method, will be applied to resolve the

optimization problem.

b) Particle swarm optimization method: The particle

swarm optimization (PSO) is a global stochastic optimization
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TABLE III
FIRST ORDER AND TOTAL SOBOL SENSITIVITY INDEX OF CONRNFLO MODEL

Index A2 NFF RUE M3 F1 M0 A3 · · ·
S1 0.256 0.213 0.173 0.161 0.075 0.051 0.011 · · ·
ST 0.293 0.247 0.224 0.173 0.081 0.059 0.015 · · ·

(a) objective function surface with axes F1 and A3 (b) objective function surface with axes F1 and M3

Fig. 1 (a), (b) show the 3D objective function surface with different axes in the plant model calibration process

method proposed by Eberhart and Kennedy in 1995 [16]. It is

based on the concepts of individual improvement, population

cooperation and competition of social animals, such as bird

flocking or fish schooling. In this algorithm, each individual

of the swarm, called particle, keeps track of the best solution

along its own discovery and that by the whole swarm. Then,

the particles move in the search space according to Equ.9 and

Equ.10:

−→vi t = −→vi t−1+c1×rt1(
−→pi −−→xi

t−1)+c2×rt2(
−→pg−−→xi

t−1) (9)

−→xi
t = −→xi

t−1 +−→vi t (10)

where i represents particle index, t denotes the iteration

number, −→v is the velocity of the particle, while −→x
represents the particle’s position. The coefficients c1, c2
are search parameters that reflect the different influences of

different resources on velocity. r1 and r2 are two random

(time-dependent) variables with uniform distribution U [0, 1].−→pi and −→pg denote respectively the best solution found by

particle i and by the whole group.

However, as stated in [17] and [18], the basic algorithm

faces some disadvantages: firstly, it is easy to fall into local

optima; secondly, there will be a risk of particles’ explosion;

thirdly, it requires powerful computational capacity. In order to

overcome these disadvantages, many different improvements

have been proposed: [19] shows the importance of the number

of particles, but the ideal number depends on the past

experience; [20] introduces the notion of ”neighbor topology”

and improves significantly its global search ability; [21], [22]

and [23] put forward the notions of ”confidence coefficient”,

”maximum speed”, ”constriction factor” and ”inertia factor” to

limit the particles in the confined searching space; [24] comes

TABLE IV
ESTIMATION RESULT WITH ALL 720 RECORDS

A2 F1 M0 M3 RUE
recommended value 14.07 723 884 1477 3.5
estimated value 13.95 707.35 869.45 1453.70 3.33

up with a synchronized parallel PSO version and significantly

improves computational efficiency.

In this work, the MSPE methodology is based on the local

version with Von Neumann neighbour topology. The velocity

upload equation is updated with the following equation:

−→vi t = ω×−→vi t−1+ c1× rt1(
−→pi −−→xi

t−1)+ c2× rt2(
−→pk −−→xi

t−1)
(11)

where the inertia factor ω = 0.7298, the confidence

coefficients c1 = c2 = 1.948, and −→pk represents the best

position (solution) of the kth subgroup. And the number of

particles is set to be 1200 after several tests. The Improved

algorithm as well as all the statistical methods are implemented

in the PYGMALION modeling platform [15]

C. Results

1) Calibration Results: In a nonconvex optimization

problem, there is no algorithm that can ensure the convergence

to the global optimum, neither does the PSO [25]. In order to

find out the optimal setting of the parameter vector θ̂, the

optimization process of all the 720 records is repeated 100

times to check the stability of the computed optimal value

and also tune the number of iterations for the algorithm. The

estimated value in Table IV is considered to be the best setting

of parameter vector θ.

2) Influence of the Number of Scenarios: It is interesting

to study the influence of the number of scenarios to know in

real-case situations the number of data that will be necessary

estimate properly model parameters. For this purpose, the 720
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(a) distribution of A2 (b) distribution of F1

(c) distribution of M0 (d) distribution of M3

(e) distribution of RUE

Fig. 2 (a), (b), (c), (d), (e) give the distributions with kernel interpolation lines of the five components in parameter vector θ: A2, F1, M0, M3, RUE, with
sample size = 500

records are divided into two parts: the training set with 600

records and testing set with 120 records.

Samples of different sizes, like 300, 400, 500, are extracted

from the training set, with which the optimization process

is carried out. And these processes are repeated for 100

times from which we get the distributions (see Figure 2) and

we can obtain the mean and standard error evaluating the

estimation uncertainty for each parameter, see Tables V and
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TABLE V
MAXIMUM POSTERIORS OF THE FIVE PARAMETERS WITH DIFFERENT

SAMPLE SIZE

sample size A2 F1 M0 M3 RUE
300 13.9157 708.1574 876.6731 1453.391 3.3143
400 14.0123 707.9132 868.7222 1462.214 3.3242
500 13.9189 707.3595 869.3464 1453.617 3.3253

TABLE VI
STANDARD ERRORS OF THE FIVE PARAMETERS WITH DIFFERENT

SAMPLE SIZES

sample size A2 F1 M0 M3 RUE
300 0.6172 20.4081 37.0013 57.7638 0.0556
400 0.3662 18.5054 19.084 35.0282 0.0346
500 0.3572 14.7435 15.3157 33.4155 0.0292

TABLE VII
FITNESS AND PREDICTION CAPACITY EVALUATION

sample size RMSEP0 RMSEP MAEP0 MAEP
300 70.34584 72.58696 6.01% 6.23%
400 70.29415 72.47566 5.93% 6.18%
500 70.21552 72.38343 5.87% 6.12%

VI respectively. The fitness and the prediction capacity are

evaluated and compared according to their RMSEP0, RMSEP,

MAEP0 and MAEP as shown in Table VII.

IV. DATA-DRIVEN METHODS

Data-driven regression is a family of statistical methods

that do not impose domain-based knowledge in the regression

process, and only consider data sets in the form (Ui, yi)1≤i≤N ,

where Ui represents the multidimensional input variables and

yi represents the response variable. The goal is to highlight

the relationships that may exist between the different data and

to derive statistical information which allows a more succinct

description of the data [26].

In agriculture research, data-driven methods have known an

increasing attention in the last years. Classically, the goal is to

predict crop yield yi from the climate series records Ui as in

Equ.3. As can be easily understood, climatic data between

different scenarios raise some colinearity issues (data the

analysis of these data often comes across colinearity issues. A

criteria named ”condition number” is widely used to evaluate

this property [28].

A. Condition Number

In numerical analysis, condition number measures the

dependence of the solution of a numerical problem with

respect to the data of the problem, in order to check the

validity of a calculated solution with respect to these data.

More generally, it can be said that the condition number

associated with a problem is a measure of the difficulty of

numerical computation of the problem, a problem with small

condition number is said to be well conditioned [29].

For the multivariate linear model Y = Xβ + ε with

standardized covariates, the associated condition number is

calculated by the following expression:

κ(X) =

√
λmax

λmin
(12)

where λmax, λmin represent maximal and minimal

eigenvalues of (XTX) respectively.

In our study, the condition number κ(U) = 1.56 × 104 is

high, which corresponds to the fact that the climate variable

series are strongly correlated, as expected.

B. Solutions to High Correlation

In order to deal with the high correlation, devise methods

have been propose. Generally, they can be classified into

classical statistical and machine learning methods [30]

according to their different principals.

Normally, the classical statistic methods try to reduce

dimension by choosing independent components. Meanwhile

the selected components should keep as much as possible the

discrepancy of the initial data U . Ridge regression [31], [32],

principal component regression (PCA) [33] or partial least

squared regression (PLS)[34] are classical methods for this

purpose, contrary to lasso regression which is known to handle

poorly correlations.

We also test classical machine learning methods: Decision

Tree (DT), Random Forest (RF), KNN, ANN and SVM

regression are tested in this study [36].

C. Results

A 5-fold cross validation is applied, and the average

RMSEP0, RMSEP, MAEP0 and MAEP are compared to

choose the best data-driven method to do crop yield prediction.

The results are listed in Table VIII.

The methods based on dimension reduction, such as ridge

and lasso regression, PCA and PLS, demonstrated their

approximate ability in fitting model (with RMSPE about 49

g/m2). And their predictive capacities are also close to each

other (with RMSPE around 58 g/m2). As for the machine

learning methods, the differences are stronger because of

their different learning principles. The random forest and

ANN, which are considered to be the typical nonlinear model,

show their remarkable capacity in model fitness (with RMSE0

less than 30 g/m2). It also implies on the contrary that

the nonlinearity of the plant biological process. In brief, the

random forest is chosen to best the most effective data-driven

method for crop yield prediction in this research.

V. CONCLUSION AND DISCUSSION

In this work, we have studied a new methodology named

multiple scenarios parameter estimation to calibrate the plant

model with another data frame {U, y}. In order to improve

the robustness of this method, a synchronous parallelised PSO

optimization, which is a global optimization algorithm, has

also been introduced. The CORNFLO model is well calibrated

and its prediction capacity is improved with MAEP 6.11%.

On the other hand, some data-driven approaches have also

been applied to predict the crop yield. These methods are

commonly used to deal with the collinearity, since there is

always a very strong correlation among the climate variables

series. Finally, Random Forest regression is demonstrated to

be the most efficient in terms of crop yield prediction with

MAEP 4.27%.



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:11, No:7, 2017

340

TABLE VIII
FITNESS AND PREDICTION CAPACITY EVALUATION OF DATA-DRIVEN

METHODS

Method RMSEP0 RMSEP MAEP0 MAEP
Ridge 48.969 57.260 4.01% 4.63%
Lasso 48.004 57.345 3.92% 4.64%
PCA 49.536 58.043 4.14% 4.76%
PLS 49.356 58.112 4.21% 4.82%
DT 49.855 64.417 4.03% 5.05%
RF 21.897 54.018 1.69% 4.27%

KNN 43.600 57.459 3.53% 4.62%
ANN 29.247 69.786 2.17% 5.11%
SVM 53.793 58.931 4.17% 4.75%

From the above, the data-driven approaches outperforms

our model-driven approach on the principle of crop yield

prediction. Nonetheless, mechanistic models present some

advantages: the fact that parameters and intermediate output

variables have biological meanings can help understand crop

growth, like for example stress periods or the identification of

biological parameters of interest, while such analysis are not

possible with data-based methods. Thus, some effort will be

made in the future to combine these two methodologies.

APPENDIX

Description of the CORNFLO Model

The CORNFLO model is a plant growth model that

simulates the growth and yield of maize [37]. It is inspired

from SUNFLO model for sunflower [10]. It consists of

the following three important modules: crop phenology

module, morphogenesis and photosynthesis module, biomass

production and distribution module.

A. Phenology Module

Normally, the initiation and the development of an organ

depends on the cumulative time and also their environmental

temperature. So does the development of plant from one stage

to another. In order to combine the influence of these two

factors and to simplify the model complexity, a new notion

(variable) named ”thermal time” (cumulative heat) has been

introduced into the plant modeling [38]. It has been proved

in [39] that the cumulative heat used in this way often has a

significant advantage over the use of normal calendar time. In

this model, the development of the plant is characterized by a

succession of physiological stages according to four phases

calculated by the thermal time: flowering bud appearance

time (E1 ◦C·days), beginning of flowering (F1 ◦C·days),
beginning of grain filling (M0 ◦C·days) and physiological

maturity (M3 ◦C·days). The daily efficient temperature

(Teff (d)
◦C) at day d is calculated by (13):

Teff (d) = Tmoy(d)− Tbase. (13)

with Tmoy(d) the daily average temperature at day d and

Tbase the phenology base temperature. According to [40],

it is generally equal to 10 for maize. The thermal time

TT (d)(◦C·days) at day d is calculated as the accumulation

of Teff (d). Then it is used to determine at which stage the

plant is.

B. Morphogenesis and Photosynthesis Module

A3(cm3) is the parameter giving the potential surface of

the larger leaf of the simulated plant and A2 is the rank of

the leaf which has the largest leaf surface in the entire plant

growth period. Ae(i)(cm2) is the largest leaf surface for the

leaf of rank i. It is calculated with A2 and A3 in (14):

Ae(i) = A3 ∗ e−0.0344∗(i−A2)2+0.000731∗(i−A2)3 (14)

The thermal time of appearance and death for

leaf i are designated as TTde pot(i)(
◦C·days) and

TTfe pot(i)(
◦C·days). The duration of leaf expansion

denoted as TTexp pot(i)(
◦C·days), expressed in thermal time

is as following:

TTdepot(i) =

⎧⎪⎨
⎪⎩
1, for 0 ≤ i ≤ 2

TTdepot(i− 2) ∗ phyllodeini, for 2 ≤ i ≤ 5

TTdepot(4) + (i− 5) ∗ phyllodepot, for 5 ≤ i
(15)

TTfepot(i) =

{
TTfepot(i− 1) + (i− 8) ∗ phyllofepot, for i > 8

TTfepot(i− 1) ∗ phyllofeini, for i ≤ 8
(16)

TTexp pot(i) = TTfe pot(i)− TTde pot(i) (17)

where phyllodeini(◦C·days) and phyllofeini(◦C·days) are

parameters of phyllochrone for leaf of rank below 8. For

the other leaf, the beginning and ending time are noted as

phyllodepot(◦C·days) and phyllofepot(◦C·days).They are

the variables that depend on the number of leaves NFF , the

stage F1, and the parameter Ratio phyllofede defined as

(18) and (19):

phyllofepot =
F1− 7 ∗ phyllofeini

NFF − 8
(18)

phyllodepot = phyllofepot ∗Ratio phyllofede (19)

The expansion speed of the leaf i is calculated by its

potential surface of leaf Ae(i) and its thermal expansion time

TTexp pot(i):

Vexp pot(i) =
Ae(i)

TTexp pot(i)
(20)

Thus, the surface of leaf i on day d, SFi pot(d, i)(cm
2) is

given by (21):

SFpot(d, i) = SFpot(d−1, i)+Vexp pot(d, i)∗Teff (d) (21)

It is initialized by SFpot(0, i) = 0, ∀i.Then, the total leaf

area SFPpot(d)(cm
2) at day d is given by (22):

SFPpot(d) =

n∑
i=1

SFpot(d, i) (22)

The ratio of the green portion of all the leaf surface is noted

as Frac verte. This coefficient will be used to calculate the

index of leaf area LAI pot(cm2/m2) as in (24):

Frac verte(d) = 1− TT (d)− F1

M3− F1
(23)
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LAI pot(d) = dens ∗ SFP pot(d) ∗ Frac verte(d)/10000
(24)

where dens(m−2) is the planting density of maize.

C. Biomass Production and Biomass Distribution Module

In order to calculate the biomass, another two parameters

should be introduced: the radiation absorption efficiency Ei(d)
and the radiation use efficiency Eb(d)(g.MJ−1). They are

defined as in (25) and (26):

Ei(d) = 0.95 ∗ (1− e−k coeff∗LAI pot(d)) (25)

Eb(d) =

⎧⎪⎨
⎪⎩
RUE for M0 ≥ TT (d)

RUE ∗ (1− TT (d)−M0
M3−M0 ) for M3 ≥ TT (d) > M0

0, for TT (d) > M3
(26)

with the extinction coefficient k coeff and the maximum

radiation use efficiency RUE(g.MJ−1). Both are genotype

parameters.

According to the energetic approach of [41], the daily

biomass production dMS(g.m−2) should be calculate by the

energy transferred from the solar energy. In this model, the

solar energy is represented by the radiation RG(d)(MJ.m−2).
Finally, a climate efficiency coefficient which is relatively

constant at 0.48 will be used to adjust this equation:

dMS(d) = 0.48 ∗RG(d) ∗ Eb ∗ Ei(d) (27)

So the total biomass at day d,MStot(d)(g.m
−2) results

from the accumulation of the daily biomass production given

in (28):

MStot(d) =
d∑

t=1

dMS(t) (28)

In order to determine the final crop yield, denoted as

MSgrain(d), a constant proportion of biomass (harvest index,

HI) is assigned to the grain compartment:

y = MSgrain(d) = MStot(d) ∗HI (29)
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