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 
Abstract—Forced vibration problem of a delaminated beam 

made of fiber metal laminates is studied in this paper. Firstly, a 
delamination is considered to divide the beam into four sections. The 
classic beam theory is assumed to dominate each section. The layers 
on two sides of the delamination are constrained to have the same 
deflection. This hypothesis approves the conditions of compatibility 
as well. Consequently, dynamic response of the beam is obtained by 
the means of differential transform method (DTM). In order to verify 
the correctness of the results, a model is constructed using 
commercial software ABAQUS 6.14. A linear spring with constant 
stiffness takes the effect of contact between delaminated layers into 
account. The attained semi-analytical outcomes are in great 
agreement with finite element analysis. 
 

Keywords—Delamination, forced vibration, finite element 
modelling, natural frequency. 

I. INTRODUCTION 

IBER metal laminated beams are widely used in aerospace 
structures, and delamination is one of the most common 

types of damage in these components. It causes a significant 
stiffness reduction which makes the vibrational characteristics 
sensitive. It is of great importance to pinpoint the behavior of 
damaged structure in free and forced vibration as a health 
monitoring method. In order to investigate the delamination, 
Ramkumar et al. [1] presented a Timoshenko beam model 
which contains four beams neglecting the coupling between 
transverse and axial vibrations. They extracted natural 
frequencies and mode shapes of the problem. Wang et al. [2] 
expanded the model of Ramkumar et al. taking the 
aforementioned coupling into consideration. They used the 
assumptions of classic beam theory. Oveysi and Kharazi [3] 
studied buckling and post-buckling of composite laminate 
considering the contact between two delaminated layers. They 
modeled the contact as a linear spring. Anastasiadis and 
Simitses [4] also used a spring of constant stiffness to model 
the contact problem in buckling. Kargarnovin et al. [5] put 
forth a closed form solution to analyze dynamically the 
problem of forced vibration of a delaminated composite beam 
exposed to constant moving load. In this study, the 
delaminated beam is simulated with four connected subbeams.  

In this study, forced dynamic problem of a delaminated 
beam made of fiber metal laminates is investigated. Natural 
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frequencies of the beam can be simply derived using DTM. 
Then, with the assumption of constrained mode, delaminated 
layers are modeled. In this case, delaminated layers are 
presumed to have the same deflection which is physically 
feasible. With this hypothesis, the forced vibration problem 
would be analyzed through modal dynamics. Constrained 
mode problem turns out to give orthogonal mode shapes. In 
this section, the beam is divided in four sections for all of 
which Euler Bernoulli beam theory is utilized. Afterwards, 
dynamic response of the problem is validated through a finite 
element modelling in ABAQUS 6.14. Afterwards, the problem 
is investigated semi analytically and then verified making use 
of a simulation in ABAQUS 6.14. In the latter case, a spring 
of linear stiffness counts for the contact between delaminated 
layers.   

II. GOVERNING EQUATIONS OF THE PROBLEM 

Fig. 1 shows a delaminated beam with four sections. In this 
paper, it is assumed that the delaminated parts (2 and 3) are 
constrained to move together which means that ଶܹ ൌ ଷܹ. 

 

 

Fig. 1 Schematic of a delaminated beam 
 

Euler Bernoulli beam equation of motion under transverse 
distributed load is defined as 
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in which ܹሺݔ,  is the bending ܦ ,ሻ is the beam deflectionݐ
stiffness, ߩ is the density, ܣ is the beam cross section, and 
݂ሺݔ,  ሻ is the applied load. Taking advantage of modalݐ
analysis, a linear combination of beam normal modes is 
assumed as follows 
 

,࢞ሺࢃ ሻ࢚ ൌ ∑ ሻ࢞ሺ࢐࢝
ஶ
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where ݓ௝ሺݔሻ and ߟ௝ሺݐሻ are normal modes and the mode shapes 
contribution in system response, respectively. Also ݆ denotes 
modes number. Assuming harmonic response results in  
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In the above equation, ௝߱ 	designates jth mode frequency. It 

is possible to use (2) to write (1) as  
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Making use of (3), (4) can be expressed as  
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Multiplying (5) with ݓ௞ሺݔሻ and integrating on (0, L) domain 

leads to 
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Constrained mode assumption for delamination results in 

orthogonality of mode shapes. Hence, we have the simplified 
equation for ݇ ൌ ݆ 
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In (7), ܳ௝ሺݐሻ is generalized force regarding jth mode defined 

as 
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Generalized mass, ௝݉௝ is computed as 
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Solution of (7) is demonstrated as 
 

ሻݐ௝ሺߟ ൌ ௝ܣ cos൫ ௝߱ݐ൯ ൅ ௝ܤ sin൫ ௝߱ݐ൯ 

൅׬ ܳ௝
௧
଴ ሺ߬ሻ sin ௝߱ሺݐ െ ߬ሻ ݀߬                       (10) 

 
Substituting (10) in (2) gives the solution to (1) 
 

ܹሺݔ, ሻݐ ൌ ∑ ሾܣ௝ cos൫ ௝߱ݐ൯ ൅ ௝ܤ sin൫ ௝߱ݐ൯
ஶ
௝ୀଵ   

൅ ଵ

ఠೕ
׬ ܳ௝
௧
଴ ሺ߬ሻ sin ௝߱ሺݐ െ ߬ሻ ݀߬ሿݓ௝ሺݔሻ              (11) 

 
The first two terms in above equation are related to free 

vibration that can be obtained using initial conditions. The last 
term shows forced vibration response of the system. In order 
to investigate a delaminated beam, natural frequencies are 
firstly derived. After computing natural frequencies of the 
beam by DTM method [6] and using step functions, mode 
shape of the whole beam can be expressed as 
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in which ݓଵሾ݆ሿ, ݓସሾ݆ሿ	are continuous section's mode shapes and 
 ଶሾ݆ሿ is delaminated section's mode shape. It should beݓ
mentioned that ݔ௡ሺ݊ ൌ 1,2,3,4ሻ are boundary points at different 
sections and ݑሺݔ െ   .଴ݔ ଴ሻ is step function atݔ

III. FINITE ELEMENT MODELLING OF THE BEAM 

In order to verify the results obtained, a finite element 
evaluation is performed in ABAQUS 6.14. In this regard, 
linear standard 8-noded solid elements (C3D8R) were used. 
The interaction in delaminated part is defined as a contact 
normal spring with the stiffness of 1.7x106 N/m. Hexahedral 
linear standard elements were used in order to discretize the 
problem and satisfying the convergence. A two-step analysis 
is done in which firstly linear perturbation evaluation derives 
the natural frequencies of the beam. In the following step, 
modal dynamics, dynamic response of the beam exposed to 
external loads is attained.  

IV. RESULTS AND DISCUSSION 

In this section, a load is applied to the beam and verified 
using finite element modelling. A cantilever beam of 150 mm 
length and 26.29 mm width is used. The specimen contains 
two aluminum layers of 0.44 mm thickness on top and bottom. 
The composite laminate in the middle of beam is made of 
glass epoxy with 1.52 total thickness and stacking sequence of 
[0/90]s. Delamination between aluminum and composite layer, 
with 20.73 mm length, is located at a distance of 54.51 mm 
from clamped end. Mechanical properties of the beam 
components are tabulated in Table I. 

 
TABLE I 

MECHANICAL PROPERTIES OF ALUMINUM AND GLASS EPOXY 

Aluminum Grade 1000 properties 

ρ E ߥ 

2700 kg/m3 72 GPa 0.32 

Composite properties 

ρ E1 E2, E3 G12, G13 G23 ߥଵଶ, ଷଵߥ  ଷଶߥ

1540 kg/m3 36 GPa 5GPa 2.7GPa 1.92GPa 0.25 0.301 

 
A cosine applied force as ܨ ൌ cos	ሺ200ݐሻ is considered. The 

analytical and finite element dynamic response are shown in 
Figs. 2 and 3, respectively. As it is clear, the results are in 
great agreement.  Additionally, FFT diagrams of the intact and 
delaminated beams using two solutions have been presented in 
Figs. 4-7. The first dominant frequency in all four following 
figures is the applied load frequency (200 rad/s or 31.74 Hz). 
It can be concluded that the beam starts to move at a 
frequency equal to the one of external load. Two remained 
frequencies belong to natural response of the problem. 
Comparing the two first natural frequencies shown in Figs. 4 
and 5, it is understood that delamination results in reduction of 
beam stiffness leading to lower natural frequency; in these two 
figures, fundamental frequency of the intact beam (97.05 Hz) 
has reduced to 93.38 Hz. The second natural frequency (607.3 
Hz) decreases to 561.5 Hz as well. The same conclusion holds 
for finite element solution in Figs. 6 and 7. 
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Fig. 2 Analytical solution of forced vibration problem exposed to cosine force 
 

 

Fig. 3 Finite element solution of forced vibration problem exposed to cosine force 
 

 

Fig. 4 FFT diagram of the intact beam using semi-analytical solution 
exposed to cosine force 

 

Fig. 5 FFT diagram of the delaminated beam using semi-analytical 
solution exposed to cosine force 
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Fig. 6 FFT diagram of the intact beam using ABAQUS modelling 
exposed to cosine force 

 

 

Fig. 7 FFT diagram of the delaminated beam using ABAQUS 
modelling exposed to cosine force 
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