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Abstract—Even though past, current and future trends suggest 

that multicore and cloud computing systems are increasingly 
prevalent/ubiquitous, this class of parallel systems is nonetheless 
underutilized, in general, and barely used for research on employing 
parallel Delaunay triangulation for parallel surface modeling and 
generation, in particular. The performances, of actual/physical and 
virtual/cloud multicore systems/machines, at executing various 
algorithms, which implement various parallelization strategies of the 
incremental insertion technique of the Delaunay triangulation 
algorithm, were evaluated. T-tests were run on the data collected, in 
order to determine whether various performance metrics differences 
(including execution time, speedup and efficiency) were statistically 
significant. Results show that the actual machine is approximately 
twice faster than the virtual machine at executing the same programs 
for the various parallelization strategies. Results, which furnish the 
scalability behaviors of the various parallelization strategies, also 
show that some of the differences between the performances of these 
systems, during different runs of the algorithms on the systems, were 
statistically significant. A few pseudo superlinear speedup results, 
which were computed from the raw data collected, are not true 
superlinear speedup values. These pseudo superlinear speedup 
values, which arise as a result of one way of computing speedups, 
disappear and give way to asymmetric speedups, which are the 
accurate kind of speedups that occur in the experiments performed. 
 

Keywords—Cloud computing systems, multicore systems, 
parallel delaunay triangulation, parallel surface modeling and 
generation. 

I. INTRODUCTION 

HE emergence as well as the adoption and use of 
multicore processors (and, therefore, the systems these 

processors power) is a trend that has been ongoing for over a 
decade or so. There has also been the trend of the adoption and 
use of cloud computing systems. Processor designers have 
discovered that, by using the technique of clock speed 
increases, they have reached the limits of processor speed 
improvements. In order to increase processor speeds today, 
designers are resorting to placing multiple cores on the same 
processor chip. This shift towards producing multicore 
processors is responsible for parallel computing becoming 
increasingly ubiquitous, including both the access to and the 
applications for parallel computing becoming increasingly 
more widespread. In particular, this paradigm shift in 
processor design and manufacture is very largely and 
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primarily responsible for the trend of the adoption/use of 
multicore systems, including multicore systems provisioned 
either physically or virtually (via cloud computing 
technology). These trends suggest and promise the future 
dominance of these kinds of system. In fact, [10] suggests that 
manycore processors will quickly extend and replace 
multicore ones, with the former processor type consisting of 
tens to hundreds of cores per processor chip. 

The quest for alternative means of accomplishing processor 
speed increase and the derivable benefits of adopting and 
using cloud computing systems furnish the motivation for the 
trend towards the adoption and use of, respectively, multicore 
and cloud computing systems. One envisages that the 
emergence and future dominance of multicore and manycore 
processors will usher the birth of the era of the vast 
prevalence, ubiquity or preponderance of parallel computing 
(including parallel algorithms development, parallel 
programming, parallel processing systems development, etc.) 
and the era of “desktop supercomputing.” Indeed, desktop 
supercomputing may be seen in the horizon already. It is easy 
to both see and underscore the aforementioned forecast 
because consumer computing devices, ranging from personal 
computers to smart phones, already come with and are 
powered by multicore processors today. Furthermore, cloud 
computing technology will facilitate the adoption and use of 
multicore systems, by enabling the provisioning of these 
systems more cheaply, more conveniently and virtually. 

Cloud computing systems are also demonstrating that users 
who adopt and use these systems derive benefits, ranging from 
reduced Total Cost of Ownership (TCO) to more cheaply and 
conveniently orchestrated scalability. Just like with systems 
with the multicore architecture, systems with the Services 
Oriented Architecture (SOA) are also increasingly being 
adopted and used for a wide range of computing applications. 
The SOA is the basic architecture of cloud computing 
systems. The SOA comes in various “flavors” or service 
models, including Software as a Service (SaaS), Infrastructure 
as a Service (IaaS), Platform as a Service (PaaS), Desktop as a 
Service (DaaS), and Disaster Recovery as a Service (DRaaS), 
etc. Various kinds of parallel computing systems (including 
multicore systems) are provisioned virtually, using cloud 
computing technology. Some may opine that the publicity and 
promotion accorded cloud computing, in recent times, is 
merely a hype and forecast that the following trend or 
development with cloud computing will decline, rather than 
increase, in the future: The adoption and use of what these 
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forecasters construe as an overestimated, overhyped 
computing model, which is merely associated with a lot of 
hysteria and publicity. Despite this opinion and forecast that 
some may hold and make, cloud computing nevertheless 
furnishes a computing paradigm and architecture, which also 
promises to dominate future computing systems, architectures 
and platforms. 

The goal of employing multicore systems, especially those 
provisioned virtually using cloud computing technology, for 
parallel surface modeling and generation is an auspicious and 
worthy one. This is especially true considering the findings, 
while conducting this study, that there is a dearth of research 
on the implementation and performance evaluation of parallel 
Delaunay triangulation for parallel surface modeling and 
generation, using multicore or cloud computing systems. 
Consequently, this research evaluates the performances, of 
actual/physical and virtual/cloud multicore systems/machines, 
at executing various algorithms that implement various 
parallelization strategies of the incremental insertion technique 
of the Delaunay triangulation algorithm. 

Delaunay triangulation is itself a domain discretization or 
meshing algorithm with a variety of applications; application 
areas include (1) Computer graphics: Surface modeling, 
volume rendering (2) Scientific visualization and 
interpolation in mathematical and natural sciences: Mesh 
generation for Partial Differential Equation (PDE) solution 
techniques, such as the Finite Element Method (FEM) 
analysis, which is employed in applications such as 
Computational Fluid Mechanics (CFD), Computational Solid 
Mechanics (CSM), Computational Electromagnetics (CE), etc. 
(3) Robotics: Computer vision and image synthesis, pattern 
recognition, etc. and (4) Structural networking for arbitrary 
point sets. 

This article is organized as follows: Section II furnishes a 
literature review on parallel Delaunay triangulation research; 
Section III presents a randomized incremental insertion 
algorithm (which is a technique of the Delaunay triangulation 
algorithm) and its evaluation methodology; Section IV 
furnishes a discussion on experimental results; Section V is a 
conclusion and Section VI furnishes recommendations for 
future work.  

II. LITERATURE REVIEW FOR RESEARCH ON SYSTEMS FOR 

PARALLEL DELAUNAY TRIANGULATION 

In the literature for research on the implementation and 
performance evaluation of parallel Delaunay triangulation for 
parallel surface modeling and generation, using multicore or 
cloud computing systems, very little work has been conducted 
to investigate the utilization of these systems for this purpose. 
These kinds of systems are actually very notably barely 
utilized for research on parallel Delaunay triangulation for 
parallel surface modeling and generation. In the literature, 
other kinds of parallel systems are typically employed for 
research on parallel Delaunay triangulation, including 
Connection Machines [17], [19], cluster (distributed) 
computing systems [16], [6], [4], [5], multiprocessor systems 
[11]-[13] and multicore systems [14], [15]. 

In the discussion in the literature, five different categories 
of the Delaunay triangulation algorithm can be identified. 
These categories of the Delaunay triangulation algorithm 
include the following: Divide-and-conquer, sweepline, 
incremental (including incremental construction and 
incremental insertion), gift-wrapping and convex-hull-based. 
These five methods are those for the direct Delaunay 
triangulation construction; there is also an indirect Delaunay 
triangulation construction technique, which starts with 
constructing the Voronoi diagram dual of any particular 
Delaunay triangulation and afterwards the Delaunay 
triangulation is constructed from the Voronoi diagram. 

Puppo et al. [17], which is a seminal article on parallel 
Delaunay triangulation, present a range of topics on the 
subject of parallel terrain modeling. Research efforts on 
parallel Delaunay triangulation are on the design, 
implementation and/or evaluation of the Delaunay 
triangulation [1], [19], [9], on the investigation of properties, 
features and/or application areas of the Delaunay triangulation 
in general [14]-[17], [7], [2]-[5], [6] and on a widely known as 
well as widely and practically used Delaunay triangulation 
implementation work [18]. Furthermore, [8], which is a 
research effort that this article transmits, discusses and 
analyzes surface modeling and generation as well as parallel 
Delaunay triangulation.  

In the literature, schemes and algorithms for parallel 
Delaunay triangulation are primarily and heavily de-pendent 
on a couple of things, namely: (1) The category or type of 
Delaunay triangulation algorithm employed and (2) The target 
parallel system type on which an algorithm was either 
implemented or intended to be implemented. The various 
types or categories of the parallel Delaunay triangulation 
algorithm that are typically discussed, in the literature, are the 
aforementioned five types while the various types of system 
targeted include shared-memory systems (including 
multiprocessor systems) and distributed computing, message-
passing-based systems. 

III. A RANDOMIZED INCREMENTAL INSERTION ALGORITHM 

AND ITS EVALUATION METHODOLOGY  

Kolingerová and Kohout [13], [11], [12] discuss research on 
various parallelization strategies of, or approaches to, a basic 
parallel type of Delaunay triangulation algorithm; these three 
articles provide information on the design and implementation 
of this algorithm. Each of these different parallelization 
strategies or approaches – the various strategies include the 
batch, burglary, optimistic, optimistic (circle), optimistic 
(prev) and pessimistic strategies – represents a different 
approach/strategy to accomplishing synchronization for this 
basic parallel algorithm. The basic algorithm, which is 
referred to as a randomized incremental insertion algorithm, is 
an incremental insertion type of the Delaunay triangulation 
algorithm. This article presents research, which studies and 
extends these works. 

The authors of the randomized incremental insertion 
algorithm used the various implemented parallelization 
strategies of, or approaches to, this algorithm to process both 
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artificially generated and real-life data sets. The artificially 
generated data sets are of various distributions, including the 
following: (A) Grid data set, (B) Uniform data set, (C) Gauss 
data set, (D) Cluster data set, (E) Arc data set, and (F) Sphere 
data set. The real-life data sets were obtained from the 
following: (A) A crater lake, which contains 100,001 points 
and (B) A whale, which contains 52,635 points. In the various 
experiments conducted in this research, in order to evaluate 
the various aforementioned parallelization strategies, 
algorithms for these strategies processed only the 100,001 
points of the crater lake (in other words, the algorithms 
evaluated in this research did not process any of the 
aforementioned artificially generated data sets or the real-life 
data set obtained from the whale). 

A. Operationalization of Variables and Research Design 

The table of Fig. 1 furnishes information on the top-level 
research design for the study presented in this article. The 
various variables, on which data will be collected (as shown in 
Fig. 1), are determined from the following: 
1.) Sequential algorithm execution times, obtained according 

to the following: 
a) Whether the system/machine is virtual or actual. 
b) Period of day – i.e., morning, afternoon and evening. 
2.) Parallel algorithm execution times, obtained according to 

the following: 
a) Whether the machine/system is virtual or actual. 
b) Number of threads/cores used – i.e., 1, 2, 4, 6 and 8 

threads/cores. 
c) Parallelization strategy used – i.e., batch, pessimistic, 

optimistic, optimistic (circle), optimistic (prev) and 
burglary. 

d) Period of day – i.e., morning, afternoon and evening. 
After collecting data on the variables described above, other 

variables are subsequently computed; these other variables, 
which are parallel processing speedups and efficiencies, are 
computed from the values obtained/measured for (both 
sequential and parallel) algorithm execution times and number 
of processors used to achieve respective/corresponding 
speedups. The variables described above, plus the setup 
described in Fig. 1, together furnish the experimental 
conditions for performing various experiments with the 
algorithms. 

 

 

Fig. 1 Top-level Research Design 
 
As a result of the fact that a repeated-measures experiment 

design is employed to address various hypotheses for this 
research, the dependent-means t-test is employed in the data 
analysis phase of the research. Fig. 2 is a generic table of 

variables, which was created for the t-test performed for each 
of N threads/cores (where N = 2, 4, 6 and 8); this means that, 
for each of the actual and virtual machines, four of such tables 
were created (each table was stored in a separate data analysis 
software file). Fig. 2 expatiates on Fig. 1 (note, however, that 
the table of Fig. 1 combines variables for both actual and 
virtual machines, while each of the tables illustrated in Fig. 2 
is either for an actual or for a virtual machine – i.e., there are 
four Fig. 2 tables for the actual machine and four Fig. 2 tables 
for the virtual machine). 

Figs. 2 and 3 show the variables used in the t-tests 
performed in this study. While the table of Fig. 2 shows six 
categorical variables and nine continuous variables, for each 
of N threads/cores, the table of Fig. 3 shows the same six 
categorical variables and six continuous variables, for each of 
N threads/cores. All the t-tests performed in this study were 
performed using these six categorical variables and 9 + 6 = 15 
continuous variables. (The six categorical variables are the six 
algorithm types. The first set of nine continuous variables 
consists of the three performance metrics, with a value being 
expected or obtainable for each of these three performance 
metrics during three different times of day – i.e., morning, 
afternoon and evening. The other set of six continuous 
variables consists of the three performance metrics, with a 
value being expected or obtainable for each of these three 
performance metrics for both the actual and virtual machines.) 

There are four other categorical variables in this study, 
namely: four different N threads/cores (where N = 2, 4, 6 and 
8). For the t-tests performed in this study, the categorical 
variables are the independent variables, while the continuous 
variables are the dependent variables. 

 

 

Fig. 2 Generic Table of Variables for the t-tests Performed for each N 
Threads/Cores (nine continuous variables) 

 
Legend for Fig. 2: 
V1 ≡ Variable 1 ≡ Morning_execution_time 
V2 ≡ Variable 2 ≡ Afternoon_execution_time 
V3 ≡ Variable 3 ≡ Evening_execution_time 
V4 ≡ Variable 4 ≡ Morning_speedup 
V5 ≡ Variable 5 ≡ Afternoon_speedup 
V6 ≡ Variable 6 ≡ Evening_speedup 
V7 ≡ Variable 7 ≡ Morning_efficiency 
V8 ≡ Variable 8 ≡ Afternoon_efficiency 
V9 ≡ Variable 9 ≡ Evening_efficiency 
Legend for Fig. 3: 
V1 ≡ Variable 1 ≡ Actual_execution_time 
V2 ≡ Variable 2 ≡ Virtual_execution_time 
V3 ≡ Variable 3 ≡ Actual_speedup 
V4 ≡ Variable 4 ≡ Virtual_speedup 
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V5 ≡ Variable 5 ≡ Actual_efficiency 
V6 ≡ Variable 6 ≡ Virtual_efficiency 
 

 

Fig. 3 Generic Table of Variables for the t-tests Performed for each N 
Threads/Cores (six continuous variables) 

 
The repeated-measures experiment design, which has been 

adopted for this research, is presented as follows: 
1) All the six parallelization strategies were run on the 

following two kinds of system, which have comparable 
platforms, including comparable system and processor 
specifications: A physical multicore system and a cloud 
multicore system. (The system and processor 
specifications of both kinds of system are furnished in 
Appendix I.) 

2) All the six parallelization strategies were run, on an actual 
multicore system as well as a virtual multicore system, 
during three different times of the day, namely: Morning, 
afternoon and evening. 

In both repeated-measures experimental designs/setups 
above, the same participating entities – i.e., the various 
parallelization strategies – were subjected or exposed to 
different experimental conditions/situations. 

In the foregoing experiment design, the following control 
measure was employed to guide the process of data collection: 
As a result of the fact that this research entails an evaluation 
and a comparison of the processing performances of systems 
that process algorithms for the Delaunay triangulation, there is 
the question of whether or not the following machines or 
systems with the very same hardware and platform 
specifications, as well as processing the same benchmark, 
demonstrate the same parallel processing performance: 
1) Physical multicore system. 
2) Virtual multicore system, which is provided via the cloud. 

To ensure that “apples are compared with apples,” the 
following control measure was adopted: Sequential vs. parallel 
processing performances were compared only when both of 
these sequential and parallel processing performances were 
obtained from the same kind of system – i.e. performances on 
a physical, actual sequential system were compared only with 
performances on a physical, actual parallel system and 
performances on a virtual sequential system were compared 
only with performances on a virtual parallel system (with the 
virtual system being provided via the cloud). 

The research design for this study also includes establishing 
the metrics for evaluating and comparing the performances of 
various algorithms and systems as well as the guidelines for 
planning/arranging how to go about – i.e. planning/arranging 
the procedure for – conducting experiments as well as 
performing data collection and data analysis.  

 

B. Establishing the Metrics for Comparison and Evaluation 
of Algorithms 

The basic performance metric is the running/execution time 
of various algorithms (including both serial/sequential and 
parallel). This basic performance metric plus other 
performance metrics (which are computed from execution 
times) were used to evaluate and compare the performance of 
the various algorithms, on both kinds of multicore machines, 
at processing a benchmark. The other performance metrics (in 
addition to execution time) include speedups and efficiencies 
of the algorithms. These three performance metrics comprise a 
framework for the evaluation and comparison of algorithms.  

C. Data Collection 

Data were collected on the performance of the algorithms 
and systems. The following couple of points furnish 
information on the methodology for conducting data 
collection: 
1) Data were collected/obtained, for the algorithms on actual 

and virtual machines, as follows: 
a) Data on the running times of the sequential and parallel 

algorithms were obtained. 
b) The speedups of parallel algorithms over sequential 

algorithms were determined. 
c) The efficiencies of parallel algorithms were determined. 
2) Data were collected/obtained from both repeated-

measures experiment designs/setups (which were 
mentioned in Section III.A). 

D. Data Analysis 

The various performance metrics, which were either 
obtained or determined/computed as mentioned in Section 
III.C, were used in conducting the data analysis for this study. 
This analysis entailed evaluating and comparing the 
performances or behaviors of algorithms representing the 
various parallelization strategies. The information, which is 
furnished by this analysis, includes the performances or 
behaviors of these algorithms, in terms of execution times, 
speedups and efficiencies. 

The dependent-means t-test is employed to test for the 
statistical significance of the following differences (more 
details on these differences are furnished in [8]): 
1) The differences between performance data obtained on 

(A) A physical multicore system and (B) A cloud 
multicore system. 

2) The differences between performance data obtained, on 
an actual multicore system as well as a virtual multicore 
system, during (A) The morning run and the afternoon run 
(B) The morning run and the evening run and (C) The 
afternoon run and the evening run. 

Before applying the dependent-means parametric t-test to 
the research data, the normality of the data was tested using 
the Kolmogorov-Smirnov (K-S) test. An approach adopted in 
conducting the t-test analysis for this research is to (A) Use the 
(parametric) t-test when the dataset does not violate the 
assumption of normality and (B) Use a non-parametric version 
or equivalent of the t-test when the dataset violates the 
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assumption of normality (the tests for normality, which were 
performed on the research data, showed that some datasets are 
not normal). The non-parametric version or equivalent of the 
t-test that was used (when a dataset violates the assumption of 
normality) is the Wilcoxon signed-rank test. All t-tests and 
tests for normality were performed using IBM® SPSS® 
Statistics, Version 22 (Release 22.0.0.0, 64-bit edition). 

IV. DISCUSSION ON EXPERIMENTAL RESULTS 

The data obtained from this study enables a dual and 
simultaneous couple of evaluations, as follows: (1) The data 
may be used to evaluate the performance of the cloud and 
physical parallel systems used in the study and (2) The data 
may be used to evaluate the performance of the various 
algorithms studied. While this dual analysis is conducted in 
this article, [8] furnishes a broader set of results as well as 
analysis and discussion, of the study and results furnished in 
this article, than the article itself does. The discussion on 
experimental results is categorized into the following major 
aspects: (1) Speedups and efficiencies characteristics, (2) 
Summary of t-tests performed, (3) Performance of actual 
machine vs. virtual machine in terms of execution time, (4) 
Performance of actual machine vs. virtual machine in terms of 
speedup and efficiency, (5) Performances of various 

algorithms on both machines during different runs, and (6) 
Asymmetric speedup performance for the batch strategy 
parallel program. 

A. Speedups and Efficiencies Characteristics 

The experimental results, which are given in Figs. 3-7, are 
not unlike those typically obtained from running parallel 
programs; i.e., (A) Speedups generally increase as the number 
of threads/cores increases, (B) Speedups generally reach a 
peak value, as the number of threads/cores approach, reach 
and exceed some value, and (C) Efficiencies generally 
decrease as the number of threads/cores increases. These kinds 
of result in the foregoing points numbers B and C are 
demonstrated to a greater extent for a parallel processing 
system that is characterized by poorer scalability. In other 
words, for non-superlinear scalability, the better the scalability 
of a parallel processing system, the more linear the graph of 
the system’s speedup performance will be as well as the more 
constant the graph of the system’s efficiency performance will 
be (non-superlinear scalability is meant here to include both 
linear scalability and sublinear scalability). Experimental 
results also show that speedups are generally greater than half 
of the number of threads/cores employed and parallel 
processing efficiency values are generally greater than 50%. 

 

 

Fig. 4 Average Speedups for Actual Machine 
 

 

Fig. 5 Average Speedups for Virtual Machine 
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Fig. 6 Average Efficiencies for Actual Machine 
 

 

Fig. 7 Average Efficiencies for Virtual Machine 
 
B. Summary of t-Tests Performed 

Gyang [8] presents detailed results of the t-test and 
Wilcoxon signed-rank test analyses performed; these results 
show the following, for the t-tests that were performed in the 
study: (A) For the six categorical variables and nine 
continuous variables, differences were taken between 36 pairs 
of variables, for each of the actual and virtual systems and (B) 
For the six categorical variables and six continuous variables, 
differences were taken between 12 pairs of variables, for both 
of the actual and virtual systems. 

The aforementioned 36 pairs of variables (per machine 
type) are computed as follows: Differences are taken between 
nine pairs of the nine continuous variables for each of the 4 
different numbers of threads/cores – i.e., each of 2, 4, 6 and 8 
threads/cores has three performance metrics and, for each of 
these performance metrics, the metrics in three different 
metric pairs are compared (each pair is obtained from each of 
the morning-afternoon, morning-evening and afternoon-
evening runs); this yields 9 × 4 = 36 variable pairs. The 
aforementioned 12 pairs of variables (for both machine types) 
are computed as follows: Differences are taken between three 
pairs of the six continuous variables for each of the four 
different numbers of threads/cores – i.e., each of 2, 4, 6 and 8 
threads/cores have three performance metrics and, for each of 

these performance metrics, the metrics in one metric pair are 
compared (this pair is obtained from the two different types of 
machine, i.e., actual and virtual); this yields 3 × 4 = 12 
variable pairs. 

Table I furnishes the results obtained, from the t-test and 
Wilcoxon signed-rank test analyses performed, on the 
differences between (A) The 36 pairs of variables per machine 
type and (B) The 12 pairs of variables for both machine types. 
The following are a summary of the results (which are 
presented in Table I) for the 36 and the 12 variables: 
 The following results were obtained, out of the 36 

possible variable pairs for the actual machine: 
o Two variable pair differences are statistically significant 

with respect to the execution time metric. 
o Three variable pair differences are statistically significant 

with respect to the speedup metric. 
o Four variable pair differences are statistically significant 

with respect to the efficiency metric. 
o The remaining 27 variable pairs are not statistically 

significant with respect to any of the metrics. 
 The following results were obtained, out of the 36 

possible variable pairs for the virtual machine: 
o One variable pair difference is statistically significant 

with respect to the execution time metric. 
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o Five variable pair differences are statistically significant 
with respect to the speedup metric. 

o Five variable pair differences are statistically significant 
with respect to the efficiency metric. 

o The remaining 25 variable pairs are not statistically 
significant with respect to any of the metrics. 

 The following results were obtained, out of the 12 
possible variable pairs for both machines: 

o The four variable pair differences with respect to the 
execution time metric are statistically significant. 

o The remaining eight variable pair differences (which are 
with respect to the speedup and efficiency metrics) are not 
statistically significant. 

Furthermore, in general, no variable pairs, with respect to 
any particular performance metric, demonstrated considerably 
more statistically significant differences than others. 

 
TABLE I 

INFORMATION ON DIFFERENCES THAT ARE STATISTICALLY SIGNIFICANT 

Machine Experimented on N-Thread/Core Performance Metrics Statistically Significant Differences 

Actual machine 

2-Thread/Core performance metrics There are no statistically significant differences between any of the variable pairs 

4-Thread/Core performance metrics There are no statistically significant differences between any of the variable pairs 

6-Thread/Core performance metrics The following differences are statistically significant: 
 The speedup difference between afternoon and evening runs 
 The efficiency difference between afternoon and evening runs 
 The execution time difference between morning and evening runs 
 The speedup difference between morning and afternoon runs 
 The speedup difference between morning and evening runs 
 The efficiency difference between morning and afternoon runs 
 The efficiency difference between morning and evening runs 

8-Thread/Core performance metrics The following differences are statistically significant: 
 The execution time difference between morning and afternoon runs 
 The efficiency difference between morning and afternoon runs 

Virtual machine 

2-Thread/Core performance metrics The following difference is statistically significant: The execution time difference between 
morning and afternoon runs 

4-Thread/Core performance metrics The following differences are statistically significant: 
 The speedup difference between morning and afternoon runs 
 The efficiency difference between morning and afternoon runs 

6-Thread/Core performance metrics The following differences are statistically significant: 
 The speedup difference between morning and afternoon runs 
 The speedup difference between morning and evening runs 
 The speedup difference between afternoon and evening runs 
 The efficiency difference between morning and afternoon runs 
 The efficiency difference between morning and evening runs 
 The efficiency difference between afternoon and evening runs 

8-Thread/Core performance metrics The following differences are statistically significant: 
 The speedup difference between morning and evening runs 
 The efficiency difference between morning and evening runs 

Actual machine vs. virtual 
machine 

2-Thread/Core performance metrics The following differences are statistically significant for all the Threads/Cores (i.e., 2, 4, 6 
and 8 Thread/Cores): Execution time differences between runs on actual and virtual 
machines 

4-Thread/Core performance metrics 

6-Thread/Core performance metrics 

8-Thread/Core performance metrics 

 
TABLE II 

AVERAGE EXECUTION TIMES FOR ACTUAL MACHINE 

Parallelization Strategy 1 Thread/Core 2 Threads/Cores 4 Threads/Cores 6 Threads/Cores 8 Threads/Cores 

Batch 1291.67 680.36 500.31 488.07 567.43 

Burglary 1818.33 928.75 511.61 382.82 304.50 

Optimistic 1823.00 933.09 505.33 387.78 301.12 

Optimistic (circle) 1685.67 895.76 518.56 468.02 489.18 

Optimistic (prev) 1860.00 956.49 514.33 381.31 307.83 

Pessimistic 1776.33 914.28 536.87 563.92 594.04 

 
TABLE III 

AVERAGE EXECUTION TIMES FOR VIRTUAL MACHINE 

Parallelization Strategy 1 Thread/Core 2 Threads/Cores 4 Threads/Cores 6 Threads/Cores 8 Threads/Cores 

Batch 2827.00 1515.00 924.54 887.71 945.06 

Burglary 3674.33 1861.33 1057.67 770.28 738.03 

Optimistic 3664.33 1908.00 1036.28 792.83 675.95 

Optimistic (circle) 3501.00 1869.00 1107.33 1023.00 1091.33 

Optimistic (prev) 3642.33 1913.33 1063.67 777.20 673.25 

Pessimistic 3536.00 1862.00 1166.00 1214.00 1242.33 
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TABLE IV 
RATIOS OF AVERAGE EXECUTION TIMES 

Ratios of Average Execution Times for Actual Machine to Average Execution Times for Virtual Machine 

Parallelization Strategy 1 Thread/Core 2 Threads/Cores 4 Threads/Cores 6 Threads/Cores 8 Threads/Cores 

Batch 2.19 2.23 1.85 1.82 1.67 

Burglary 2.02 2.00 2.07 2.01 2.42 

Optimistic 2.01 2.04 2.05 2.04 2.24 

Optimistic (circle) 2.08 2.09 2.14 2.19 2.23 

Optimistic (prev) 1.96 2.00 2.07 2.04 2.19 

Pessimistic 1.99 2.04 2.17 2.15 2.09 

 

C. Performance of Actual Machine vs. Virtual Machine in 
Terms of Execution Time 

Tables II and III furnish averages of execution times, for 
each parallelization strategy, on both the actual and virtual 
machines; these averages are taken over morning, afternoon 
and evening runs. 

D. Performance of Actual Machine vs. Virtual Machine in 
Terms of Speedup and Efficiency 

An analysis of Figs. 3-7 shows that these graphs are not 
very different from each other – i.e., data, on both speedups 
and efficiencies, shows that both the actual and virtual 
machines demonstrated very similar performances (in terms of 
these metrics) at executing the programs for the various 
parallelization strategies (however, this information should be 
considered in light of the fact that the actual machine is 
approximately twice faster than the virtual machine at 
executing the programs for the various parallelization 
strategies). This result is consistent with the result of the t-test 
performed on the data, which shows that the difference 
between the performances of both machines, in terms of the 
performance metrics of speedup and efficiency, is not 
statistically significant. This difference, which is not 
statistically significant, between the performances of both 
machines (in terms of the speedup and efficiency metrics) may 
be explained by the fact that these metrics were computed 
independently for both machines. Consequently, even though 
machine A executes a particular benchmark significantly 
faster than another machine B executes the same benchmark 
and both machines have about the same specifications, both 
machines can actually have comparable or similar speedups 
and efficiencies at processing the same benchmark. 

E. Performances of Various Algorithms on both Machines 
during Different Runs 

1) For each machine, the vast majority of statistically 
significant differences, between different runs, were with 
respect to the speedup and efficiency metrics (these 
differences were nearly exclusively with respect to the 
speedup and efficiency metrics and were with respect to 
the execution time metric on only a very few occasions). 
This result is somewhat the converse, a flip over, of the 
results on statistically significant differences between the 
performances of the machines themselves. In particular, 
note the following result summaries: 

a) Out of nine statistically significant differences between 
different runs for the actual machine, only two were with 

respect to the execution time metric (the other seven were 
with respect to the speedup and efficiency metrics). 

b) Out of 11 statistically significant differences between 
different runs for the virtual machine, only one was with 
respect to the execution time metric (the other 10 were 
with respect to the speedup and efficiency metrics). 

2) For both machines, only about a quarter of all the possible 
variable pairs had statistically significant differences. In 
particular, consider the following result summaries: 

a) Out of the 36 possible variable pairs for the actual 
machine, 27 variable pairs are not statistically significant 
with respect to any of the metrics. 

b) Out of the 36 possible variable pairs for the virtual 
machine, 25 variable pairs are not statistically significant 
with respect to any of the metrics. 

3) For the various algorithms, there were either no or only a 
few statistically significant differences (with respect to 
any performance metrics) between different runs when 
these algorithms are used with 2, 4 or 8 threads/cores. The 
preponderance of these statistically significant differences 
was observed when 6-threads/cores are used. In particular, 
consider the following result summaries: 

a) Out of nine statistically significant differences between 
different runs for the actual machine, seven were observed 
when 6-threads/cores are used (the remaining two were 
observed when 8-threads/cores are used). 

b) Out of 11 statistically significant differences between 
different runs for the virtual machine, six were observed 
when 6-threads/cores are used (the remaining five were 
observed when 2, 4 or 8 threads/cores are used). 

An explanation for the aforementioned finding is that these 
results are either an anomaly or are caused by some 
phenomenon (i.e., since the vast majority of these statistically 
significantly different metrics are observed when 6-
threads/cores were used with all parallelization strategies, this 
suggests that all these parallelization strategies are having 
relatively highly variable performances between various runs 
when 6-threads/cores were used). Regarding this observation 
and possible anomaly, information presented in the graphs in 
Figs. 3-7 may be able to shed some more light. An analysis or 
appraisal of these graphs shows that, in general, as the number 
of threads/cores increases from two through eight, there is a 
change in the general behavior of speedups and efficiencies at 
the point when the number of threads/cores gets to be equal to 
six. 
4) In general, no particular pair of runs (i.e., either the 

morning and afternoon runs, the morning and evening 
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runs or the afternoon and evening runs) demonstrated 
considerably more statistically significant differences 
(with respect to various performance metrics) than other 
pairs of runs. 

An explanation for the finding in point number one above is 
that these results are an anomaly. Execution time is a raw 
performance metric that is derived directly from the machines; 
consequently, this metric reveals an intrinsic characteristic or 
property of the machines. Unlike this metric, the speedup and 
efficiency performance metrics were derived or computed 
from other quantities (by using the usual formulae for 
computing speedup and efficiency); these metrics reveal 
combined characteristics or properties of both machine and 
algorithm taken or considered together. 

In terms of differences in performance during different runs 
on the same machine, it is not unreasonable to expect that the 
statistical significance of a metric that reveals intrinsic 
behaviors of a machine will be less anomalous than the 
statistical significance of a metric that reveals combined 
behaviors of both machine and algorithm taken or considered 
together. The result that the metrics, which had statistically 
significant differences, do not represent intrinsic 
characteristics or properties of the machines appears to be a 
reasonable basis for the suggestion that the finding in point 
number one above may simply be an anomaly. 

In this study, statistically significant differences, between 
the performances of the same benchmark algorithms, on the 
same machine, during different runs of these algorithms, were 
observed. This is not an observation that one would expect to 
encounter and the finding in point number two above (which 
shows that this observation is not very prevalent) maybe 
provide some support for not expecting this result. However, it 
is only for a physical machine that it is reasonable to not 
expect this observation; it is reasonable to expect this 
observation for a cloud machine. This is because there should 
be more variability, in performance between different runs, for 
the virtual machine than for the actual machine (if at all any 
significant variability for the actual machine). 

The reason for expecting the being of the aforementioned 
greater variability in performance for the virtual machine (than 
for the actual machine) is because the physical machine does 
not share its hardware with other machines at all, while the 
cloud machine typically shares some common underlying 
hardware with other virtual machines. One would expect that 
any particular virtual/cloud machine would demonstrate a 
significantly wider range of different, varying performances or 

capabilities during any long enough period (say, for example, 
a 24-hour period; this is a period for which the usage 
characteristics of a system may repeat in a pattern that occurs 
during 24-hour-long cycles). A greater variable performance 
for the cloud machine should be expected because, for 
different times during a long enough period, the following 
would happen: 
1) . Unlike for a physical system, for a cloud system, the 

probability that multiple (virtual) machines would be 
competing for some single underlying hardware’s 
resources and capabilities is nonzero. 

2) During those times, when multiple virtual machines 
actually compete for some single underlying hardware’s 
resources and capabilities, the performance of each 
individual virtual machine changes significantly or 
considerably, to one extent or another, depending on the 
number of virtual machines that get to run as well as the 
loads that these virtual machines get to process 

F. Asymmetric Speedup Performance for the Batch Strategy 
Parallel Program 

The implementation of the batch parallelization strategy 
results in speedup that is asymmetric. This speedup is 
characterized as symmetric using the following criteria (which 
are considered together, in combination) when two threads are 
used: (1) These two threads are assigned different kinds of 
tasks to perform and (2) The amount of work, which is 
performed by the one thread that is specified to be spawned, is 
significantly greater than the amount of work performed by 
the specialized thread; this observation is supported by the fact 
that, in Tables I and II, the reciprocals of speedup values, for 
the batch strategy parallel program, are significantly greater 
than 0.5 (a user of the batch strategy parallel program specifies 
that the program should spawn one of these threads, while the 
other thread is a specialized thread that also gets to be 
spawned). The variables in Tables V and VI are defined as 
follows: 
1) The execution time : This is the time it takes the serial 

version of the program to compute the Delaunay 
triangulation. 

2) The execution time : This is the time it takes two 
threads to compute the Delaunay triangulation. In the case 
of the batch strategy, these two threads are 1-thread that is 
specified to be spawned plus the specialized thread. In the 
case of the other strategies, these two threads are 2-
threads that are specified to be spawned. 

 
TABLE V 

RECIPROCALS OF SPEEDUP VALUES WHEN 2-THREADS ARE USED (ACTUAL MACHINE) 

Parallelization 
Strategy 

Morning Run (  = 1746 ms) Afternoon Run (  = 1681 ms) Evening Run (  = 1671 ms) 

 (ms) Reciprocal of speedup ( / )  (ms) Reciprocal of speedup ( / )  (ms) Reciprocal of speedup ( / ) 

Batch 1256.00 0.72 1361.00 0.81 
1258.0

0 
0.75 

Burglary 918.39 0.53 933.78 0.56 934.07 0.56 

Optimistic 909.74 0.52 934.27 0.56 955.25 0.57 

Optimistic (circle) 892.50 0.51 911.26 0.54 883.51 0.53 

Optimistic (prev) 1025.00 0.59 940.05 0.56 904.41 0.54 

Pessimistic 888.00 0.51 923.04 0.55 931.81 0.56 
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TABLE VI 
RECIPROCALS OF SPEEDUP VALUES WHEN 2-THREADS ARE USED (VIRTUAL MACHINE) 

Parallelization 
Strategy 

Morning Run (  = 3348 ms) Afternoon Run (  = 3608 ms) Evening Run (  = 3453 ms) 

 (ms) Reciprocal of speedup ( / )  (ms) Reciprocal of speedup ( / )  (ms) Reciprocal of speedup ( / ) 

Batch 2798.00 0.84 2905.00 0.81 2778.00 0.80 

Burglary 1803.00 0.54 1887.00 0.52 1894.00 0.55 

Optimistic 1846.00 0.55 1922.00 0.53 1956.00 0.57 

Optimistic (circle) 1842.00 0.55 1910.00 0.53 1855.00 0.54 

Optimistic (prev) 1880.00 0.56 1962.00 0.54 1898.00 0.55 

Pessimistic 1833.00 0.55 1851.00 0.51 1902.00 0.55 

 
Going by the two criteria employed to characterize or 

define asymmetric speedup, we may generalize the 
observation of asymmetric speedup beyond only the case 
when two threads are used. Even though the data presented in 
Tables V and VI is only for the case when two threads are 
used, there is no reason to doubt that similar results will be 
seen for the case when x > 2 threads used, where x is defined, 
for the batch strategy as x = N threads specified to be spawned 
+ the one specialized thread and, for the other strategies, as x = 
only the N threads specified to be spawned. Furthermore, the 
N threads, which a user of the batch strategy parallel program 
specifies that the program should spawn, are assigned the 
same task to perform and this task is different than the task 
that is assigned to the specialized thread to perform. 

The graphs in Figs. 3-7 show what looks like superlinear 
speedup performance for the batch strategy parallel program, 
when a user of the program specifies that two threads should 
be spawned. However, this performance is not truly 
superlinear speedup performance. Rather, this batch strategy 
parallel program performance is as a result of the fact that the 
speedup and efficiency values data, which is plotted in the 
graphs of Figs. 3-7, was computed (for the parallel programs 
of all the parallelization strategies) based on using Nspecified 
(i.e., number of threads specified to be spawned), not based on 
using Nspawned (i.e., number of threads that were actually 
spawned). For the batch strategy parallel program, Nspawned = 
Nspecified + 1 while, for the parallel programs of all the other 
strategies, Nspawned = Nspecified. 

It is worth noting that the implementation of the batch 
strategy parallel program results in either asymmetric or 
pseudo superlinear speedup performance for this parallel 
program, depending on which of two ways is employed to 
compute speedup and efficiency values for the program. One 
of these ways (by which to compute speedup and efficiency 
values) is to use Nspecified (as has been done and the resulting 

data plotted in Figs. 3-7). When speedup and efficiency values 
are computed this way, pseudo superlinear performance is 
observed. The other way (by which to compute speedup and 
efficiency values) is to use Nspawned. When speedup and 
efficiency values are computed this way, we have speedup that 
is asymmetric (recall the two criteria employed for the 
aforementioned definition of asymmetric speedup).  

For the batch strategy parallel program, Nspawned = Nspecified + 
1 because the implementation of this parallel program is such 
that, whenever a user of the program specifies that only N 
threads should be spawned, the program actually spawns N + 
1 threads [11]-[13]. This explanation for the observed pseudo 
superlinear scalability performance is also supported by data 
collected during the experiments in this study (in particular, 
the data presented in Tables VII and VIII and the charts in 
Figs. 8-13). Regarding this data collected during the 
experiments in this study, consider the following variables and 
the ensuing discussion: 
1) The execution time, , when the serial version of the 

program is run. This serial version of the program is 
independent on any of the various parallelization 
strategies employed for the various parallel versions of 
the algorithm (i.e., it is a sequential version of the 
algorithm, which has not been parallelized in any way, let 
alone been parallelized using any of the various 
parallelization strategies employed for the various parallel 
versions of the algorithm). 

2) The execution time, , when any of the various parallel 
versions of the program is run and it is specified that this 
parallel version of the program should be executed with 
only one thread used/spawned (each of the various 
parallel versions of the algorithm has been parallelized 
using one or the other of the various parallelization 
strategies). 

 
TABLE VII 

RELATIONSHIP BETWEEN  -  AND 2-THREAD/CORE EFFICIENCY (ACTUAL MACHINE) 

Parallelization  
strategy 

Morning Run Afternoon Run Evening Run 

 -  (ms) 2-Thread/Core Efficiency (%)  -  (ms) 2-Thread/Core Efficiency (%)  -  (ms) 2-Thread/Core Efficiency (%)

Batch 490 132.0 320 120.8 413 122.1 

Burglary -19 95.1 -194 90.0 -144 89.4 

Optimistic -53 96.0 -157 90.0 -161 87.5 

Optimistic (circle) 30 97.8 -40 92.2 51 94.6 

Optimistic (prev) -180 85.2 -90 89.4 -212 92.4 

Pessimistic 33 98.3 -119 91.1 -145 89.7 
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TABLE VIII 
RELATIONSHIP BETWEEN  -  AND 2-THREAD/CORE EFFICIENCY (VIRTUAL MACHINE) 

Parallelization  
strategy 

Morning Run Afternoon Run Evening Run 

 -  (ms) 2-Thread/Core Efficiency (%)  -  (ms) 2-Thread/Core Efficiency (%)  -  (ms) 2-Thread/Core Efficiency (%)

Batch 550 113.4 703 111.3 675 119.2 

Burglary -200 92.8 -229 95.6 -185 91.2 

Optimistic -457 90.7 -47 93.9 -80 88.3 

Optimistic (circle) -198 90.9 76 94.5 28 93.1 

Optimistic (prev) -493 89.0 215 91.9 -240 91.0 

Pessimistic -282 91.3 125 97.5 -42 90.8 

 

 

Fig. 8 2-Thread/Core Efficiency against  -  (Morning Run on Actual Machine) 

 

Fig. 9 2-Thread/Core Efficiency against  -  (Afternoon Run on Actual Machine) 
 

Tables VII and VIII show the relationship, between the 
difference  -  and the 2-Thread/Core efficiency values, for 
both the virtual and actual machines as well as for all 
parallelization strategies. Figs. 8-13 furnish graphs/charts of 
the data in Tables VII and VIII. The data in Tables VII and 
VIII show that, in general, the higher the difference  - , the 
higher the 2-Thread/Core efficiency value; this relationship is 
also shown by the linear trend lines in Figs. 8-13. 

The data in Tables VII and VIII show that the difference  
-  ranges from +320ms to +703ms, during all runs on both 
actual and virtual machines, for the batch strategy parallel 
program, which is the program that demonstrates pseudo 
superlinear speedup. The following points, which may be 
derived from Tables VII and VIII and Figs. 8-13, suggest that 
the serial/sequential program is possibly performing some 
extra processing, which the 1-thread-spawned instance of the 
batch strategy parallel program is not performing: 

1)  >  for all cases when the batch strategy parallel 
program runs, on either the actual or virtual machine, 
during any run. This fact is true for only the batch strategy 
parallel program alone (and untrue for the other versions 
of the parallel program, which are implemented using the 
other parallelization strategies). 

2) The differences  -  are greater, by far, for the batch 
strategy than these differences for the various other 
strategies (on either the actual or virtual machine, during 
any run). 

The foregoing data/facts, about the batch parallelization 
strategy, support and demonstrate the insight that, for this 
strategy, the executing serial version of the randomized 
incremental insertion algorithm does more work than the 
executing parallel version of the algorithm using the batch 
parallelization, with 1 thread spawned.  
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Fig. 10 2-Thread/Core Efficiency against  -  (Evening Run on Actual Machine) 
 

 

Fig. 11 2-Thread/Core Efficiency against  -  (Morning Run on Virtual Machine) 
 

 

Fig. 12 2-Thread/Core Efficiency against  -  (Afternoon Run on Virtual Machine) 
 

 

Fig. 13 2-Thread/Core Efficiency against  -  (Evening Run on Virtual Machine) 
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V. CONCLUSION 

This study evaluated the performances of two types of the 
multicore system at executing various parallelization strategies 
of the incremental insertion technique of the Delaunay 
triangulation algorithm. The multicore systems used in the 
study are actual or physical and virtual or cloud multicore 
machines. The background to and methodology employed for 
this study is presented. The study produced results that are 
analyzed as well as herein presented and discussed/interpreted 
in fairly great detail. Results show that the differences 
between the performances of both machines were statistically 
significant with respect to the execution time metric, but not 
with respect to the speedup and efficiency metrics (the actual 
machine is approximately twice faster than the virtual machine 
at executing the programs for the various parallelization 
strategies). The results also show that some of the differences 
between the performances of various algorithms on both 
machines, during different runs of the algorithms on the 
systems, were statistically significant with respect to various 
performance metrics employed in this study. A perusal of 
results shows the scalability behaviors of the various 
parallelization strategies. An interesting result observed is that, 
depending on which of two ways is employed to compute 
speedup and efficiency values, the batch strategy parallel 
program results in either asymmetric or pseudo superlinear 
speedup performance for this program (these pseudo 
superlinear speedup values were observed with only the batch 
strategy parallel program, when the number threads specified 
to be spawned is equal to 2). 

VI. FUTURE WORK 

This study investigated the performances of only two types 
of one class of parallel systems, namely: (1) Cloud multicore 
system and (2) Physical multicore system. Future studies, 
which extend this research, may investigate questions and 
hypotheses on the performance, characteristics and behavior 
of parallel systems, which have not been considered in this 
study, for parallel surface modelling and generation using 
parallel Delaunay triangulation. The recommended areas for 
future research, which are herein furnished, are given in the 
backdrop or context of the understanding that systems on 
which parallel processing may be performed are getting 
increasingly ubiquitous – multicore and similar parallel 
systems promise as well as are envisaged to be increasingly 
ubiquitous. Consequently, any identified significance or 
benefits of using these systems promises to be a benefit for not 
only the present, but also for the foreseeable future. 

In the not-too-distant history of computing, parallel 
computing systems have been only high-end systems that get 
to be exclusively reserved for only very few users, especially 
in the academia and government; however, a trend that has 
been around in the past decade or so, as well as shows promise 
of being around for some time into the future, is a great 
increase in the prevalence of parallel computing systems. The 
prevalence of these systems is such that they are quite 
ubiquitous indeed (a very apt example of this current and 

future trend is the abundance of multicore systems, which 
have enabled parallel computing systems – ranging from 
personal computers to smart phones – to be made available in 
the hands of “ordinary” people, for performing their everyday 
computing tasks). 

Furthermore, it is easy to foresee a future in which research 
in and development of parallel algorithms, for the following 
applications, will continue to be undertaken: Computational 
geometry applications, in general, and Delaunay triangulation 
applications, in particular. A major motivation, for these 
forecast research and development efforts, will be the goal of 
exploiting the many, varied and increasingly ubiquitous 
computing systems on which parallel processing can be 
accomplished or performed. Consequently, it is also easy to 
see how these forecast research and development efforts 
would be apt recommended areas for future research – i.e., 
research in and development of parallel algorithms in an 
area/field, which entails the application of parallel computing 
concepts, principles and techniques for constructing the 
Delaunay triangulation. 

Another recommendation for future research is that a study 
be conducted and a control measure, which was not 
incorporated into this study, would be adopted in the 
recommended study. Since the platforms of the actual and 
virtual machines used in this study are not exactly the same, 
but are only comparably the same, it appears like it is useful to 
conduct research that employs system platform specifications 
that are exactly the same (rather than merely comparably the 
same). This recommendation is given despite an assumption 
made in [8] that, in general, the slight differences that exist 
between the platform specifications of the physical and cloud 
machines used in this research should not be significant for 
this particular study. This recommended research will 
eliminate the following possibility, which this assumption 
merely advises is unlikely: The observed statistically 
significant discrepancy, between the execution time 
performances of the physical and cloud machines, is due to the 
differences between the platform specifications of both 
machines. 

Some related areas, which are also recommended for further 
research, for either various individual Delaunay triangulation 
algorithms or various categories of this algorithm, include 
evaluating and investigating – including comparing and 
contrasting – the following: (A) Code complexities of the 
program codes that implement the algorithms and (B) 
Computational complexities of the algorithms, in terms of the 
following and particularly for multicore systems: (i) 
Execution/running time (ii) Storage space required and (iii) 
Processor-storage accesses required. 
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