
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:12, No:3, 2018

197

1

Abstract—In today’s scenario, the complexity of digital signal
processing (DSP) applications and various microcontroller
architectures have been increasing to such an extent that the
traditional approaches to multiplier design in most processors are
becoming outdated for being comparatively slow. Modern processing
applications require suitable pipelined approaches, and therefore,
algorithms that are friendlier with pipelined architectures. Traditional
algorithms like Wallace Tree, Radix-4 Booth, Radix-8 Booth, Dadda
architectures have been proven to be comparatively slow for
pipelined architectures. These architectures, therefore, need to be
optimized or combined with other architectures amongst them to
enhance its performances and to be made suitable for pipelined
hardware/architectures. Recently, Vedic algorithm mathematically
has proven to be efficient by appearing to be less complex and with
fewer steps for its output establishment and have assumed renewed
importance. This paper describes and shows how the Vedic algorithm
can be better suited for pipelined architectures and also can be
combined with traditional architectures and algorithms for enhancing
its ability even further. In this paper, we also established that for
complex applications on DSP and other microcontroller architectures,
using Vedic approach for multiplication proves to be the best
available and efficient option.

Keywords—Wallace tree, Radix-4 Booth, Radix-8 Booth, Dadda,
Vedic, Single-Stage Karatsuba, Looped Karatsuba.

I. INTRODUCTION

ULTIPLIER is an important and integral block of every
microcontroller and DSP processor. Optimizing this

block analytically has been significant and critical so as to
support today’s complex scenario of DSP applications. This
makes it essential for circuit designers to rise above the
stereotype and conceive new multiplication techniques and
algorithms with/without the support of conventional
algorithms for efficient usage [1]-[4]. This gives the
motivation to study and compare different traditional
architectures and use its ability to combine with a novel Vedic
architecture (not used for designing multipliers before
although known to exit for centuries) so that it can be best
used to design pipelined techniques along with the
conventional algorithms in tandem to enhance ability of the
existing algorithms and architectures. Traditional algorithms
like Wallace Tree, Radix-4 Booth, Radix-8 Booth, and Dadda
can be compared to study its ability and advantageous aspects
so that their ability can be combined with the Vedic
algorithms to suit and enhance the present endeavour of

Akhilesh G. Naik is with Birla Institute of Technology and Science, Pilani,
Goa Campus, India (e-mail: p20160015@goa.bits-pilani.ac.in).

Dipankar Pal is with Birla Institute of Technology and Science, Pilani, Goa
Campus, India (corresponding author; e-mail: dipankarp@goa.bits-
pilani.ac.in).

pipelined architectures. The fact that modern DSP applications
with complex analytics require complex calculations and
hence prefer microcontroller architectures with pipelined
stages to be exploited for throughput and speed, gives a boost
for exploring the internal techniques of Vedic algorithms [11],
[12], which have genetics of functioning with parallel
mathematical operation and reduced computations. On one
side, it has been proved that the Wallace-Tree simplifies and
thereby speeds up the partial product compression with its tree
like structure. On the other hand, it is also true that the Booth
(Radix-4, Radix-8) algorithm [3], [9], depending on their
encoding techniques reduce the number of partial products
based on the Radix phenomena that they employ. Booth
combined with Wallace Tree [2], [10], [13], [14] can speed up
the overall throughput scenario by utilizing the ability to
reduce the partial products on one end and to simplify the
compression of partial products utilizing the parallel
compression based on Wallace Tree algorithm [5] and its
optimization architectures. Similar to Wallace-Tree, the Dadda
algorithm also has a tradition of compressing the partial
products, but in a limited manner, as each step-height is based
on a certain factor of multiplication to its successor. Hence,
amongst these, Booth (Radix-4, Radix-8) algorithm [1], [14] is
the only algorithm which utilizes the method of reducing the
number of partial product terms, whereas the Wallace Tree
[5], [8] and Dadda algorithms [6], [7] completely rely on the
advantage of compressing the partial product terms in a
parallel manner reducing the number of steps with a particular
factor. Section II of the paper explores the existing multiplier
algorithms with examples and particularly explains the
characteristics of the Wallace-Tree, Dadda and Booth (Radix-
4, Radix-8) algorithms followed by Section III, which
provides the explanation of the Vedic algorithms and its
technique of optimizations to enhance its ability to deal with
various current pipelined scenarios and also will provide a
glimpse of how to combine the traditional algorithms with
Vedic methods to increase the overall ability in tandem even
further. Section IV provides a new idea proposed by these
authors of further optimization of the Vedic algorithm in
combination with the Wallace Tree algorithm/architecture.
Section V concludes the paper describing the novelty added to
the Vedic algorithm by the proposed architectural
optimization.

II. CHARACTERISTICS OF TRADITIONAL ALGORITHMS

The traditional algorithms under investigation in this paper
are Wallace Tree, Booth (Radix-4, Radix-8), and Dadda. The
reason behind investigating these particular algorithms is the

Akhilesh G. Naik, Dipankar Pal

Analytical Comparison of Conventional Algorithms
with Vedic Algorithm for Digital Multiplier

M

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:12, No:3, 2018

198

fact that they can be used in combination with the Vedic
algorithms to enhance or further optimize the overall ability.
The novelty is thus obtained in the overall algorithm and
overall architectural combination.

A. Wallace Tree

Wallace Tree [2], [5] is based on the concept of optimizing
the architectures with compressors employed in parallel for
speeding up the compression of the partial products and hence
reducing the number of steps required to establish the output.

Fig. 1 shows the Wallace Tree architecture in which the
partial products are arranged in a tree-like triangular structure
which reduces the complexity to log N as compared to (Log
N)2, if the partial products had been added normally, where N
is the number of bits. This type of structural mapping can be
combined with other algorithms, which work on reducing the
number of partial terms.

Fig. 1 Wallace Tree Structural Mapping

TABLE I
RADIX-4 ENCODING

Multiplier
Y2i-1 Y2i Y2i+1

Encoded Operation
on Multiplicand, X

 0 0 0 0X

 0 0 1 +X

 0 1 0 +X

 0 1 1 +2X

 1 0 0 -2X

 1 0 1 -X
 1 1 0
 1 1 1

-X
0X

B. Dadda Algorithm

Similar, to Wallace Tree, Dadda algorithm [6], [7] also
utilizes the concept of reducing the steps for compressing of
partial products, but in a limited manner. In this, each step-size
is dependent on a factor of multiplication of its successor.
Hence, the Dadda algorithm will have each step stage
dependent on a factor of its successor for its height reduction.
The algorithm can also be termed as the reduced form of
Wallace Tree, as Wallace Tree utilizes the total possible
reduction as compared to the height dependent one as in
Dadda. Fig. 2 depicts the structural view of Dadda algorithm
wherein each step height (dj) is 1.5 times of its successor. This
algorithm provides its best feature in reducing number of steps
in partial-product-compression when the height of successive
partial products reduces by the maximum value (typically

2/3=0.67).

Fig. 2 Dadda Concept

C. Booth Algorithm (Radix-4, Radix-8)

These algorithms [3] basically deal with encoding of the
bits based on predefined encoding operation techniques. The
algorithm provides the advantage in terms of reducing the
number of partial product terms based on the Radix technique
that it uses. The Radix-4 technique [4], [10] reduces the partial
product terms to N2/2, whereas Radix-8 [1] technique reduces
the partial product terms to N2/3, where N is the number of
bits. In this algorithm the bits-encoding functions based on the
equation given as:

N= 1+log2 R (1)

A brief outline of the algorithm is given here. As per (1), in

the Radix-4 encoding technique, the number of bits encoded at
a time is 3, whereas in Radix-8 technique, the number of bits
encoded at a time is 4. The encoding operation for its
corresponding bits pattern is as depicted in Tables I and II for
Booth Radix-4 and Radix-8, respectively [1], [4], [10].

TABLE II

RADIX-8 ENCODING

Multiplier
 Yi+2 Y2i-1 Y2i Y2i+1

Encoded Operation
on multiplicand, X

0 0 0 0 0X
0 0 0 1 +X
0 0 1 0 +X
0 0 1 1 +2X
0 1 0 0 +2X
0 1 0 1 +3X
0 1 1 0
0 1 1 1
 1 0 0 0
 1 0 0 1
 1 0 1 0
 1 0 1 1
 1 1 0 0
 1 1 0 1
 1 1 1 0
 1 1 1 1

+3X
+4X
-4X
-3X
-3X
-2X
-2X
-X
-X
0X

A3 A2 A1 A0
B3 B2 B1 B0

 A3B0 A2B0 A1B0 A0B0
 A3B1 A2B1 A1B1 A0B1
 A3B2 A2B2 A1B2 A0B2
A3B3 A2B3 A1B3 A0B3

4 BIT X 4 BIT
MULTIPLICATION

GENERATION
OF PARTIAL
PRODUCTS

A3BO
A3B1 A2B1 A2B0

A3B2 A2B2 A1B2 A1B1 A1B0
A3B3 A2B3 A1B3 A0B3 A0B2 A0B1 A0B0

WALLACE
TREE

CONCEPT

. . . .

. . . .

4 BIT X 4 BIT
MULTIPLICATION

GENERATION
OF PARTIAL
PRODUCTS

.

.

DADDA
CONCEPT

.
. . .

.
.

dj =3

dj =2

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:12, No:3, 2018

199

Since this algorithm gives an advantage on reducing the
number of partial products, the steps required to generate the
partial products are lesser as compared to the Wallace Tree
and Dadda algorithms. To make the best use in an optimized
manner, the advantage of reduction in the number of partial
products can be used along with the advantage of reduction in
the number of steps required to compress the partial products.
In other words, Booth (Radix-4, Radix-8) [4], [1], can be
combined with the Wallace Tree [5] and Dadda algorithms
[6], [7] to gain the overall reduction in complexity and to
achieve least delay in obtaining the multiplication output. The
same concept can be applied to Vedic (Karatsuba) algorithm
[12] too, as we shall see next.

The Karatsuba algorithm [11], [12] itself can be looped to
achieve its best delay for gaining recursive enhancement in the
speed of the multiplier. This concept, which is the contribution
of these authors, is explained in the following section.

III. SINGLE-STAGE KARATSUBA AND LOOPED KARATSUBA

Normal Karatsuba algorithm for decimal numbers is based
on the technique where that the digits are divided into half,
and then performing the trick of multiplication by step
reduction using certain mathematical analysis. Table III
depicts the N digits X and Y being split each into 2× N/2
digits having denoted by A, B and C, D, respectively.
Combining them as shown in the Table III will reversely lead
to X and Y having N digits. Multiplying X and Y will lead to
(2) resulting in four product terms (AC, BD, AD, BC) as
usual.

TABLE III
BIT DIVISION IN RECURSIVE KARATSUBA

N N/2 N/2
Combining X1 and
Y1 to form X and Y

X A B
Y C D

X= (A*(10(N/2))) + B
Y= (C*(10(N/2))) + D

 X*Y=(AC*10(N))+BD+((AD + BC)*10(N/2)) (2)

But Karatsuba utilizes a trick, wherein these four product

terms can be reduced to three product terms. Equations (3) and
(4) gives the trick of Karatsuba as follows:

 (A+B) * (C+D) = AC+BD+(AD+BC) (3)

(AD+BC)=((A+B)*(C+D)) –(AC+BD) (4)

Having the repetitive terms in (4) and just by analyzing the

term (AD+BC) with the terms that are already calculated or
available leads to only three product terms AC, BD being
already calculated, and the third product term ((A+B)*(C+D))
which is required to be calculated totally leading to only three
unique product terms in the multiplication process. The same
concept can be applied in bit/binary form to employ Karatsuba
digitally having the power of ‘2’ instead of power of ‘10’,
which in turn means only shifting the number, bit-wise or
digit-wise to the left, respectively.

Mathematically, Looped Karatsuba is depicted in Fig. 3.
Recurrence equation [11] for the number of steps is:

O(N) = 3*(O(N/2)) (5)

where O(N) gives the number of steps, N is the number of
bits. O(N/2) is multiplied by the number of steps recursively.

BIT MULTIPLICATION USING LOOPED KARATSUBA
 1001
 x 1000

0100 1000

 (10x10)x24+(01x00)+[[(10+01)x(10+00)]-[(10x10)+(01x00)]]x22

=(10x10)x24+(01x00)+[[(11)x(10)]-[(10x10)+(01x00)]]x22

=((0100)x24)+000000+((0110-0100)x22)
=01001000

(10x10) – Karatsuba Algorithm
(1x1)x22+(0x0)+[[(1+0)x(1+0)]-[(1x1)+(0x0)]]x21

=(1x1)x22+(0x0)+[[(1+0)x(1+0)]-[(1x1)+(0x0)]]x21
=100+0+0000
=0100

(01x00) – Karatsuba Algorithm
(0x0)x22+(1x0)+[[(0+1)x(0+0)]-[(0x0)+(1x0)]]x21

=(0x0)x22+(1x0)+[[(0+1)x(0+0)]-[(0x0)+(1x0)]]x21
=000+0+00
=000

(11x10) – Karatsuba Algorithm
(1x1)x22+(1x0)+[[(1+1)x(1+0)]-[(1x1)+(1x0)]]x21
=(1x1)x22+(1x0)+[[(10)x(01)]-[(1)+(0)]]x21
=100+0+(10)
=0110

Fig. 3 Looped Karatsuba (LK) demonstrated mathematically

This enhances the complexity to , which is
approximately equal to N1.585. Table IV depicts the

comparison of different existing conventional algorithms
(Wallace Tree, Dadda, Booth (Radix-4, Radix-8)) with the

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:12, No:3, 2018

200

Vedic algorithms (Karatsuba) like Single-Stage Karatsuba
(SSK) and Looped Karatsuba (LK) optimization on the
complexity in terms of partial product generation.

TABLE IV

ALGORITHM COMPLEXITY FOR PARTIAL PRODUCTS GENERATION

Algorithms
Complexity for Partial
Products Generation

Wallace Tree, Dadda
Radix-4 Booth
Radix-8 Booth

Single-Stage Karatsuba
Looped Karatsuba (LK)

N2
N2/2
N2/3

(N1.58)2

(N1.58)1.58

Fig. 4 Graph depicting the least complexity achieved in Looped
Karatsuba (LK) as compared to Single-Stage Karatsuba (SSK)

Single-Stage Karatsuba gives the complexity of (N1.58)2 as

compared to Looped Karatsuba (LK), which will further
reduce the complexity for same bit-length to only (N1.58)1.58,
reporting thereby an improvement.

Looped Karatsuba (LK) plays an important role for
increased number of bits as compared to Single-Stage
Karatsuba (SSK), which is evident from the graph shown in
the Fig. 4.

Single-Stage Karatsuba (SSK) concept is based on
application of the Karatsuba algorithm only at the first stage
following normal multiplication using gates/MUX. Thus in
SSK, the digits are split into two halves using Karatsuba at the
first stage and then the split-digits are multiplied directly. In
Looped Karatsuba (LK) however, the split numbers (from the
first stage) are again subjected to the same algorithm. This
further continues repetitively or recursively until the numbers
can be directly multiplied. It can be pictorially shown (avoided
here for brevity).

IV. LOOPED KARATSUBA COMBINED WITH WALLACE-TREE

Since it is evident from Section III that Looped Karatsuba
gives least complexity for higher number of bits, it can be
combined further with Wallace Tree structure [2], [10]
(described in Section II) for compressing of the three
multiplication product terms which can optimize the algorithm
even further making it an ideal candidate for pipelined
architectures.

Without using Wallace Tree structure, this algorithm would
compress employing full adders and half adders normally,
giving the complexity of (Log N)2. But employing or

combining with Wallace Tree [2], [10], it can optimized
further to achieve a complexity reduced to log N as depicted in
Fig. 5, which can reduce the delay greatly thereby increasing
the speed in a given pipelined architecture.

Fig. 5 Graph depicting the least complexity achieved when Wallace
Tree is being used

From Figs. 4 and 5, it is evident that with Wallace Tree

utilized for the compression of the product terms generated
from Looped Karatsuba (LK), the Looped Karatsuba (LK)
algorithm is improved and optimized further for higher
number of bits and can be the best candidate available to date
for pipelined architectures by enhancing the speed optimizing
the throughput.

V. CONCLUSION

This paper compares and describes the traditional
algorithms with Vedic algorithm (Single-Stage Karatsuba).
The authors have further proposed the Looped Karatsuba by
extending the known Karatsuba algorithm recursively to
establish how the modification of the age-old Vedic algorithm
optimized the delay further. In this paper, the other novelty
included involves using a Wallace-Tree Structure in tandem
with Looped Karatsuba (LK) concept which provides further
enhancement in speed and can best be best suited among
available techniques for pipelined architectures and multi-core
processor architectures. This novel architecture (Vedic
(Looped Karatsuba) in combination with Wallace-Tree
Structure) can enhance the speed of modern DSP applications
involving high-end computational complexities, which can
boost present day electronic and communication technologies
and system architectures.

REFERENCES
[1] H. Jiang, J. Han, F. Qiao and F. Lombardi, “Approximate Radix-8 Booth

Multipliers for Low-Power and High-Performance Operation”, IEEE
Trans. Computers, vol. 65, no. 8, pp. 2638-2644, Aug. 2016.

[2] R. S. Waters and E. E. Swartzlander, “A Reduced Complexity Wallace
Multiplier Reduction,” IEEE Trans. Computers, vol. 59, no. 9, pp. 1134-
1137, Aug. 2010.

[3] K. Tsoumanis, S. Xydis, C. Efstathiou, N. Moschopoulos and K.
Pekmestzi, “An Optimized Modified Booth Recoder for Efficient Design
of the Add-Multiply Operator”, IEEE Trans. Circuits and Systems I, vol.
61, no. 4, pp.1133-1143, 2014.

[4] W. Liu, L. Qian, C. Wang. H. Jiang, J. Han, F. Lombardi, “Design of
Approximate Radix-4 Booth Multipliers for Error-Tolerant

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:12, No:3, 2018

201

Computing", IEEE Trans. Computers, vol. 66, no. 8, pp.1435-1441,
2017.

[5] N. Sureka, R. Porselvi and K. Kumuthapriya, “An Efficient High Speed
Wallace Tree Multiplier”, IEEE International Conference on
Information Communication and Embedded Systems (ICICES), pp.
1023-1026, 2013.

[6] B. Jeevan, S. Narendar, Dr. C.V. Krishna Reddy, Dr. K. Sivani, “A High
Speed Binary Floating Point Multiplier Using Dadda Algorithm”, 2013
International Multi-Conference on Automation, Computing,
Communication, Control and Compressed Sensing(iMac4s), pp. 455-
460, 2013.

[7] Vinod Budhe, Prasanna Palsodkar, Prachi Palsodakar, “Design and
Verification of Dadda Algorithm Based Binary Floating Point
Multiplier”, 2014 International Conference on Communication and
Signal Processing, pp. 1073-1077, 2014.

[8] K. B. Jaiswal, N. Kumar V, and P. Seshadri, Lakshminarayanan G.,
“Low Power Wallace Tree Multiplier Using Modified Full Adder”,
IEEE International Conference on Signal Processing, Communication
and Networking (ICSCN), pp. 1-4, 2015.

[9] Manjunath, V. Harikaran, K. Manikanta, Sivananthan S. and
Sivasankaran K., “Design and Implementation of 16x16 Modified Booth
Multiplier”, IEEE Online International Conference on Green
Engineering and Technologies (IC-GET), pp. 1-5, 2015.

[10] S. Asif and Y. Kong, “Performance Analysis of Wallace and Radix-4
Booth-Wallace Multipliers”, IEEE Electronic System Level Synthesis
Conference (ESLsyn), pp. 17-22, 2015.

[11] Srini Devadas, “Introduction to Algorithms,” Lecture 11: Integer
Arithmetic, Karatsuba Multiplication, MIT Open Course Ware,
Massachusetts Institute of Technology, 6.006, Fall 2011. Available at:
https://www.youtube.com/watch?v=eCaXlAaN2uE.

[12] A. Mehta, C. B. Bidhul, S. Joseph and Jayakrishnan P., “Implementation
of Single Precision Floating Point Multiplier using Karatsuba
Algorithm”, International Conference on Green Computing,
Communication and Conservation of Energy (ICGCE), pp. 254-256,
2013.

[13] K. Shruthilaya and M. Vinoth, “Power Estimation of Modified Booth
Recoder for Efficient Add-Multiply Operator”, IEEE Conference on
Computing for Sustainable Global Development (INDIACom), pp. 1684-
1689, 2015.

[14] R. Pratibha, P. Sandhya, and R. Varun, “Design of High Performance
and Low Power Multiplier using Modified Booth Encoder”, IEEE
International Conference on Electrical, Electronics and Optimization
Techniques (ICEEOT), pp. 794-798, 2016.

