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Abstract—In today’s scenario, the complexity of digital signal 
processing (DSP) applications and various microcontroller 
architectures have been increasing to such an extent that the 
traditional approaches to multiplier design in most processors are 
becoming outdated for being comparatively slow. Modern processing 
applications require suitable pipelined approaches, and therefore, 
algorithms that are friendlier with pipelined architectures. Traditional 
algorithms like Wallace Tree, Radix-4 Booth, Radix-8 Booth, Dadda 
architectures have been proven to be comparatively slow for 
pipelined architectures. These architectures, therefore, need to be 
optimized or combined with other architectures amongst them to 
enhance its performances and to be made suitable for pipelined 
hardware/architectures. Recently, Vedic algorithm mathematically 
has proven to be efficient by appearing to be less complex and with 
fewer steps for its output establishment and have assumed renewed 
importance. This paper describes and shows how the Vedic algorithm 
can be better suited for pipelined architectures and also can be 
combined with traditional architectures and algorithms for enhancing 
its ability even further. In this paper, we also established that for 
complex applications on DSP and other microcontroller architectures, 
using Vedic approach for multiplication proves to be the best 
available and efficient option. 
 

Keywords—Wallace tree, Radix-4 Booth, Radix-8 Booth, Dadda, 
Vedic, Single-Stage Karatsuba, Looped Karatsuba.  

I. INTRODUCTION 

ULTIPLIER is an important and integral block of every 
microcontroller and DSP processor. Optimizing this 

block analytically has been significant and critical so as to 
support today’s complex scenario of DSP applications. This 
makes it essential for circuit designers to rise above the 
stereotype and conceive new multiplication techniques and 
algorithms with/without the support of conventional 
algorithms for efficient usage [1]-[4]. This gives the 
motivation to study and compare different traditional 
architectures and use its ability to combine with a novel Vedic 
architecture (not used for designing multipliers before 
although known to exit for centuries) so that it can be best 
used to design pipelined techniques along with the 
conventional algorithms in tandem to enhance ability of the 
existing algorithms and architectures. Traditional algorithms 
like Wallace Tree, Radix-4 Booth, Radix-8 Booth, and Dadda 
can be compared to study its ability and advantageous aspects 
so that their ability can be combined with the Vedic 
algorithms to suit and enhance the present endeavour of 
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pipelined architectures. The fact that modern DSP applications 
with complex analytics require complex calculations and 
hence prefer microcontroller architectures with pipelined 
stages to be exploited for throughput and speed, gives a boost 
for exploring the internal techniques of Vedic algorithms [11], 
[12], which have genetics of functioning with parallel 
mathematical operation and reduced computations. On one 
side, it has been proved that the Wallace-Tree simplifies and 
thereby speeds up the partial product compression with its tree 
like structure. On the other hand, it is also true that the Booth 
(Radix-4, Radix-8) algorithm [3], [9], depending on their 
encoding techniques reduce the number of partial products 
based on the Radix phenomena that they employ. Booth 
combined with Wallace Tree [2], [10], [13], [14] can speed up 
the overall throughput scenario by utilizing the ability to 
reduce the partial products on one end and to simplify the 
compression of partial products utilizing the parallel 
compression based on Wallace Tree algorithm [5] and its 
optimization architectures. Similar to Wallace-Tree, the Dadda 
algorithm also has a tradition of compressing the partial 
products, but in a limited manner, as each step-height is based 
on a certain factor of multiplication to its successor. Hence, 
amongst these, Booth (Radix-4, Radix-8) algorithm [1], [14] is 
the only algorithm which utilizes the method of reducing the 
number of partial product terms, whereas the Wallace Tree 
[5], [8] and Dadda algorithms [6], [7] completely rely on the 
advantage of compressing the partial product terms in a 
parallel manner reducing the number of steps with a particular 
factor. Section II of the paper explores the existing multiplier 
algorithms with examples and particularly explains the 
characteristics of the Wallace-Tree, Dadda and Booth (Radix-
4, Radix-8) algorithms followed by Section III, which 
provides the explanation of the Vedic algorithms and its 
technique of optimizations to enhance its ability to deal with 
various current pipelined scenarios and also will provide a 
glimpse of how to combine the traditional algorithms with 
Vedic methods to increase the overall ability in tandem even 
further. Section IV provides a new idea proposed by these 
authors of further optimization of the Vedic algorithm in 
combination with the Wallace Tree algorithm/architecture. 
Section V concludes the paper describing the novelty added to 
the Vedic algorithm by the proposed architectural 
optimization.  

II. CHARACTERISTICS OF TRADITIONAL ALGORITHMS 

The traditional algorithms under investigation in this paper 
are Wallace Tree, Booth (Radix-4, Radix-8), and Dadda. The 
reason behind investigating these particular algorithms is the 
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fact that they can be used in combination with the Vedic 
algorithms to enhance or further optimize the overall ability. 
The novelty is thus obtained in the overall algorithm and 
overall architectural combination. 

A. Wallace Tree 

Wallace Tree [2], [5] is based on the concept of optimizing 
the architectures with compressors employed in parallel for 
speeding up the compression of the partial products and hence 
reducing the number of steps required to establish the output.  

Fig. 1 shows the Wallace Tree architecture in which the 
partial products are arranged in a tree-like triangular structure 
which reduces the complexity to log N as compared to (Log 
N)2, if the partial products had been added normally, where N 
is the number of bits. This type of structural mapping can be 
combined with other algorithms, which work on reducing the 
number of partial terms. 

 

 

Fig. 1 Wallace Tree Structural Mapping 
 

TABLE I 
RADIX-4 ENCODING 

Multiplier 
Y2i-1 Y2i Y2i+1 

Encoded Operation 
on Multiplicand, X 

 0 0 0 0X 

 0 0 1 +X 

 0 1 0 +X 

 0 1 1 +2X 

 1 0 0 -2X 

 1 0 1 -X 
 1 1 0 
 1 1 1  

-X 
0X 

B. Dadda Algorithm 

Similar, to Wallace Tree, Dadda algorithm [6], [7] also 
utilizes the concept of reducing the steps for compressing of 
partial products, but in a limited manner. In this, each step-size 
is dependent on a factor of multiplication of its successor. 
Hence, the Dadda algorithm will have each step stage 
dependent on a factor of its successor for its height reduction. 
The algorithm can also be termed as the reduced form of 
Wallace Tree, as Wallace Tree utilizes the total possible 
reduction as compared to the height dependent one as in 
Dadda. Fig. 2 depicts the structural view of Dadda algorithm 
wherein each step height (dj) is 1.5 times of its successor. This 
algorithm provides its best feature in reducing number of steps 
in partial-product-compression when the height of successive 
partial products reduces by the maximum value (typically 

2/3=0.67). 
 

 

Fig. 2 Dadda Concept 

C. Booth Algorithm (Radix-4, Radix-8) 

These algorithms [3] basically deal with encoding of the 
bits based on predefined encoding operation techniques. The 
algorithm provides the advantage in terms of reducing the 
number of partial product terms based on the Radix technique 
that it uses. The Radix-4 technique [4], [10] reduces the partial 
product terms to N2/2, whereas Radix-8 [1] technique reduces 
the partial product terms to N2/3, where N is the number of 
bits. In this algorithm the bits-encoding functions based on the 
equation given as: 

 
N= 1+log2 R           (1) 

 
A brief outline of the algorithm is given here. As per (1), in 

the Radix-4 encoding technique, the number of bits encoded at 
a time is 3, whereas in Radix-8 technique, the number of bits 
encoded at a time is 4. The encoding operation for its 
corresponding bits pattern is as depicted in Tables I and II for 
Booth Radix-4 and Radix-8, respectively [1], [4], [10].  

 
TABLE II 

RADIX-8 ENCODING 

Multiplier 
 Yi+2 Y2i-1 Y2i Y2i+1 

Encoded Operation 
on multiplicand, X 

0 0 0 0 0X 
0 0 0 1 +X 
0 0 1 0 +X 
0 0 1 1 +2X 
0 1 0 0 +2X 
0 1 0 1 +3X 
0 1 1 0 
0 1 1 1  
 1 0 0 0 
 1 0 0 1 
 1 0 1 0 
 1 0 1 1 
 1 1 0 0 
 1 1 0 1 
 1 1 1 0 
 1 1 1 1 

+3X 
+4X 
-4X 
-3X 
-3X 
-2X 
-2X 
-X 
-X 
0X 

A3 A2 A1 A0
B3 B2 B1 B0

                               A3B0 A2B0 A1B0 A0B0
                     A3B1 A2B1 A1B1 A0B1 
           A3B2 A2B2 A1B2 A0B2
A3B3 A2B3 A1B3 A0B3

4 BIT X 4 BIT 
MULTIPLICATION

GENERATION 
OF PARTIAL 
PRODUCTS

A3BO    
A3B1 A2B1 A2B0

A3B2 A2B2 A1B2 A1B1 A1B0
A3B3 A2B3 A1B3 A0B3 A0B2 A0B1 A0B0

WALLACE 
TREE 

CONCEPT

. . . .

. . . .

           . . . .
         . . . .                        
       . . . .
     . . . .

4 BIT X 4 BIT 
MULTIPLICATION

GENERATION 
OF PARTIAL 
PRODUCTS

    
  . . . .
. . . . .

. . . . . . .

DADDA 
CONCEPT

.    
. . .

. . . . .
. . . . . . .

dj =3

dj =2



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:12, No:3, 2018

199

 

 

Since this algorithm gives an advantage on reducing the 
number of partial products, the steps required to generate the 
partial products are lesser as compared to the Wallace Tree 
and Dadda algorithms. To make the best use in an optimized 
manner, the advantage of reduction in the number of partial 
products can be used along with the advantage of reduction in 
the number of steps required to compress the partial products. 
In other words, Booth (Radix-4, Radix-8) [4], [1], can be 
combined with the Wallace Tree [5] and Dadda algorithms 
[6], [7] to gain the overall reduction in complexity and to 
achieve least delay in obtaining the multiplication output. The 
same concept can be applied to Vedic (Karatsuba) algorithm 
[12] too, as we shall see next.  

The Karatsuba algorithm [11], [12] itself can be looped to 
achieve its best delay for gaining recursive enhancement in the 
speed of the multiplier. This concept, which is the contribution 
of these authors, is explained in the following section. 

III. SINGLE-STAGE KARATSUBA AND LOOPED KARATSUBA 

Normal Karatsuba algorithm for decimal numbers is based 
on the technique where that the digits are divided into half, 
and then performing the trick of multiplication by step 
reduction using certain mathematical analysis. Table III 
depicts the N digits X and Y being split each into 2× N/2 
digits having denoted by A, B and C, D, respectively. 
Combining them as shown in the Table III will reversely lead 
to X and Y having N digits. Multiplying X and Y will lead to 
(2) resulting in four product terms (AC, BD, AD, BC) as 
usual. 

 

TABLE III 
BIT DIVISION IN RECURSIVE KARATSUBA 

N N/2 N/2 
Combining X1 and 
Y1 to form X and Y 

X A B 
Y C D  

X= (A*(10(N/2))) + B 
Y= (C*(10(N/2))) + D 

 
 X*Y=(AC*10(N))+BD+((AD + BC)*10(N/2))     (2) 

 
But Karatsuba utilizes a trick, wherein these four product 

terms can be reduced to three product terms. Equations (3) and 
(4) gives the trick of Karatsuba as follows: 

 
 (A+B) * (C+D) = AC+BD+(AD+BC)      (3) 

 
(AD+BC)=((A+B)*(C+D)) –(AC+BD)      (4) 

 
Having the repetitive terms in (4) and just by analyzing the 

term (AD+BC) with the terms that are already calculated or 
available leads to only three product terms AC, BD being 
already calculated, and the third product term ((A+B)*(C+D)) 
which is required to be calculated totally leading to only three 
unique product terms in the multiplication process. The same 
concept can be applied in bit/binary form to employ Karatsuba 
digitally having the power of ‘2’ instead of power of ‘10’, 
which in turn means only shifting the number, bit-wise or 
digit-wise to the left, respectively.  

Mathematically, Looped Karatsuba is depicted in Fig. 3. 
Recurrence equation [11] for the number of steps is: 
 

O(N) = 3*(O(N/2))         (5) 
 

where O(N) gives the number of steps, N is the number of 
bits. O(N/2) is multiplied by the number of steps recursively. 

 

BIT MULTIPLICATION USING LOOPED KARATSUBA
          1001
      x  1000

0100 1000

 (10x10)x24+(01x00)+[[(10+01)x(10+00)]-[(10x10)+(01x00)]]x22

=(10x10)x24+(01x00)+[[(11)x(10)]-[(10x10)+(01x00)]]x22

=((0100)x24)+000000+((0110-0100)x22)
=01001000

(10x10) – Karatsuba Algorithm                                         
(1x1)x22+(0x0)+[[(1+0)x(1+0)]-[(1x1)+(0x0)]]x21 

=(1x1)x22+(0x0)+[[(1+0)x(1+0)]-[(1x1)+(0x0)]]x21 
=100+0+0000
=0100

(01x00) – Karatsuba Algorithm
(0x0)x22+(1x0)+[[(0+1)x(0+0)]-[(0x0)+(1x0)]]x21 

=(0x0)x22+(1x0)+[[(0+1)x(0+0)]-[(0x0)+(1x0)]]x21 
=000+0+00
=000

(11x10) – Karatsuba Algorithm
(1x1)x22+(1x0)+[[(1+1)x(1+0)]-[(1x1)+(1x0)]]x21 
=(1x1)x22+(1x0)+[[(10)x(01)]-[(1)+(0)]]x21 
=100+0+(10)
=0110  

Fig. 3 Looped Karatsuba (LK) demonstrated mathematically 
 

This enhances the complexity to , which is 
approximately equal to N1.585. Table IV depicts the 

comparison of different existing conventional algorithms 
(Wallace Tree, Dadda, Booth (Radix-4, Radix-8)) with the 
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Vedic algorithms (Karatsuba) like Single-Stage Karatsuba 
(SSK) and Looped Karatsuba (LK) optimization on the 
complexity in terms of partial product generation.  

 
TABLE IV 

ALGORITHM COMPLEXITY FOR PARTIAL PRODUCTS GENERATION 

Algorithms 
Complexity for Partial 
Products Generation 

Wallace Tree, Dadda 
Radix-4 Booth 
Radix-8 Booth 

Single-Stage Karatsuba 
Looped Karatsuba (LK) 

N2 
N2/2 
N2/3 

(N1.58)2 

(N1.58)1.58 

 

 

Fig. 4 Graph depicting the least complexity achieved in Looped 
Karatsuba (LK) as compared to Single-Stage Karatsuba (SSK) 

 
Single-Stage Karatsuba gives the complexity of (N1.58)2 as 

compared to Looped Karatsuba (LK), which will further 
reduce the complexity for same bit-length to only (N1.58)1.58, 
reporting thereby an improvement. 

Looped Karatsuba (LK) plays an important role for 
increased number of bits as compared to Single-Stage 
Karatsuba (SSK), which is evident from the graph shown in 
the Fig. 4. 

Single-Stage Karatsuba (SSK) concept is based on 
application of the Karatsuba algorithm only at the first stage 
following normal multiplication using gates/MUX. Thus in 
SSK, the digits are split into two halves using Karatsuba at the 
first stage and then the split-digits are multiplied directly. In 
Looped Karatsuba (LK) however, the split numbers (from the 
first stage) are again subjected to the same algorithm. This 
further continues repetitively or recursively until the numbers 
can be directly multiplied. It can be pictorially shown (avoided 
here for brevity).  

IV. LOOPED KARATSUBA COMBINED WITH WALLACE-TREE  

Since it is evident from Section III that Looped Karatsuba 
gives least complexity for higher number of bits, it can be 
combined further with Wallace Tree structure [2], [10] 
(described in Section II) for compressing of the three 
multiplication product terms which can optimize the algorithm 
even further making it an ideal candidate for pipelined 
architectures. 

Without using Wallace Tree structure, this algorithm would 
compress employing full adders and half adders normally, 
giving the complexity of (Log N)2. But employing or 

combining with Wallace Tree [2], [10], it can optimized 
further to achieve a complexity reduced to log N as depicted in 
Fig. 5, which can reduce the delay greatly thereby increasing 
the speed in a given pipelined architecture. 

 

 

Fig. 5 Graph depicting the least complexity achieved when Wallace 
Tree is being used 

 
From Figs. 4 and 5, it is evident that with Wallace Tree 

utilized for the compression of the product terms generated 
from Looped Karatsuba (LK), the Looped Karatsuba (LK) 
algorithm is improved and optimized further for higher 
number of bits and can be the best candidate available to date 
for pipelined architectures by enhancing the speed optimizing 
the throughput.  

V. CONCLUSION 

This paper compares and describes the traditional 
algorithms with Vedic algorithm (Single-Stage Karatsuba). 
The authors have further proposed the Looped Karatsuba by 
extending the known Karatsuba algorithm recursively to 
establish how the modification of the age-old Vedic algorithm 
optimized the delay further. In this paper, the other novelty 
included involves using a Wallace-Tree Structure in tandem 
with Looped Karatsuba (LK) concept which provides further 
enhancement in speed and can best be best suited among 
available techniques for pipelined architectures and multi-core 
processor architectures. This novel architecture (Vedic 
(Looped Karatsuba) in combination with Wallace-Tree 
Structure) can enhance the speed of modern DSP applications 
involving high-end computational complexities, which can 
boost present day electronic and communication technologies 
and system architectures. 
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