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Abstract—The aim of this paper is the comparison of three

different methods, in order to produce fuzzy tolerance relations for
rainfall data classification. More specifically, the three methods are
correlation coefficient, cosine amplitude and max-min method. The
data were obtained from seven rainfall stations in the region of
central Greece and refers to 20-year time series of monthly rainfall
height average. Three methods were used to express these data as a
fuzzy relation. This specific fuzzy tolerance relation is reformed into
an equivalence relation with max-min composition for all three
methods. From the equivalence relation, the rainfall stations were
categorized and classified according to the degree of confidence. The
classification shows the similarities among the rainfall stations.
Stations with high similarity can be utilized in water resource
management scenarios interchangeably or to augment data from one
to another. Due to the complexity of calculations, it is important to
find out which of the methods is computationally simpler and needs
fewer compositions in order to give reliable results.

Keywords—Classification, fuzzy logic, tolerance relations,
rainfall data.

I.INTRODUCTION

N recent years, the domain of fuzzy logic has made
enormous progress and is taught in many countries around

the world at both undergraduate and postgraduate levels, while
its implementation has found fertile ground in many branches
of engineering sciences [1]. Fuzzy logic is derived from the
development of fuzzy sets theory of Lofti Zadeh [2]; it is well
structured and performs well in ambiguous or uncertain
environments. It is commonly accepted that the techniques
based on classical logic have proved unsuccessful to
approximate the procedures of common sense, learning from
experience, etc. [3]. Classical (two-valued) logic deals with
propositions that are either true or false. In many-valued logic,
a generalization of the classical logic, the propositions have
more than two truth values. Fuzzy logic is an extension of the
many-valued logic in the sense of incorporating fuzzy sets and
fuzzy relations as tools into the system of many-valued logic
[4]. Zadeh in [5] proposed the principle of incompatibility,
according to which: as the complexity of a system increases,
human ability to make precise and relevant (meaningful)
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statements about its behaviour diminishes until a threshold is
reached beyond which the precision and the relevance become
mutually exclusive characteristics. It is then that fuzzy
statements are the only bearers of meaning. A fuzzy relation
between X and Y as a fuzzy subset of X×Y was proposed by
Zadeh [2]. Zadeh later studied similarity relations in [6]. An
ordinary tolerance relation is a reflexive and symmetric
relation. Fuzzy tolerance relation in the name of resemblance
appears in [7]. More recently, Chakraborty and Das in [8], [9]
and Nemitz in [10] have studied fuzzy relations connected
with equivalence and fuzzy functions.

This paper examines three methods that produce fuzzy
tolerance relations for rainfall data classification. As is widely
known, the similarities among rainfall stations are an
interesting subject in hydrology science. For this reason, seven
rainfall stations in the region of central Greece were classified
using fuzzy logic. Fuzzy logic is appropriate for the
examination of rainfall data because of its inherent ambiguity
and uncertainty. The data obtained from the above-mentioned
rainfall stations refer to 20-year time series of monthly rainfall
height average. More specifically, the methods used to express
these data as a fuzzy relation, are correlation coefficient,
cosine amplitude and max–min method. The max-min
composition method was used for all three methods to reform
the specific fuzzy tolerance relation into an equivalence
relation. The max-min composition method is the one used by
Zadeh [5] in his original paper on approximate reasoning
using natural language if-then rules. Finally, the rainfall
stations were classified according to the level of confidence.

II.FUZZY LOGIC

A.Fuzzy Tolerance Relation
This paper implements three different methods to produce

fuzzy tolerance relation. These methods are:
1) Linear Correlation Coefficient, 2) Cosine Amplitude and

3) Max-Min method.
These methods make use of a collection of n data samples.

If these data samples are collected, they form a data array, ,= { , , … , }. Each of the elements, , in the data array
is itself a vector of length m, i.e., = { , ,… , }.

Hence, each of the data samples can be thought of as a point in
m-dimensional space, where each point needs m coordinates to
be completely described. Each element of a relation, ,
results from a pairwise comparison of two data samples, say
and , where the strength of the relationship between data
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sample and data sample is given by the membership
value expressing that strength, i.e., = , . The
relation matrix will be of size × and will be reflexive and
symmetric – hence a tolerance relation [11]. Also, a binary
relation that is reflexive and symmetric is usually called a
compatibility relation or tolerance relation [12].
1) The linear correlation coefficient method calculates in

the following manner (0 ≤ ≤ 1):
= ∑ ∑ ∑∑ ∑ ∑ ∑ (1)

where , = 1,2, … ,
2) The cosine amplitude method calculates in the

following manner (0 ≤ ≤ 1):
= ∑∑ ∑ , (2)

where , = 1,2, … ,
3) The max-min method is computationally simpler than the

cosine amplitude method and is different from the max-
min composition method. Calculate in the following
manner (0 ≤ ≤ 1):

= ∑ ( , )∑ ( , ), (3)

where , = 1,2, … ,
B.Fuzzy Classification Methodology

The basic and necessary steps for achieving rainfall data
classification are as follows:

Acquisition of rainfall data, 2) Implementation of one of the
three above methods, 3) Then a relation is obtained, called
tolerance relation, with the following properties:
 ∈ [0,1]
 = 1 (reflexivity)
 = (symmetry)
4) Relation , which is called equivalence relation, is

obtained from the tolerance relation , and has the three
following properties:

 = 1 (reflexivity)
 = (symmetry)
 , = , , = → , = ℎ∈ [0,1], then for any λ should apply≥ ( , ) (transitivity)

Also, a fuzzy binary relation that is reflexive, symmetric
and transitive is known as a fuzzy equivalence relation or
similarity relation [5].
5) Every tolerance relation can be reformed into an

equivalence relation by at most (n – 1) compositions

with itself according to the following equation (where n is
the cardinal number of the set defining ) [11]:

1
n-1= 1 ○ 1 ○ · · · ○ 1= (4)

Fuzzy composition can be defined just as it is for crisp
(binary) relations. Suppose is a fuzzy relation on the
Cartesian space X×Y, S is a fuzzy relation on Y×Z and is a
fuzzy relation on X×Z. Then, the fuzzy max-min composition
is defined in terms of the set-theoretic notation and
membership-function-theoretic notation in the following
manner: = ∘( , ) = ⋁ ( ( , )⋀ ( , )∈ (5)

6) Based on the equivalence relation , α-cut sets (or α-cut
) are defined, where 0 ≤ ≤ 1. The , which is a

classical set is defined as follows:= { | ( ) ≥ } (6)

7) Set [ ] = { | , ∈ R}, is defined as the equivalent
class on a universe of data, Χ and is contained in a
special relation , known as the equivalent relation. This
class is a set of all elements related to that have the
following properties [13]:

 ∈ [ ] → ( , ) ∈R
 [ ] ≠ ⇒[ ] ∩ = ∅
 ⋃ [ ]∈ =
The first property is that of reflexivity, the second property

indicates that equivalent classes do not overlap, and the third
property simply expresses the fact that the union of all
equivalent classes exhausts the universe Χ. Hence, the
equivalence relation can divide the universe X into mutually
exclusive equivalent classes, i.e.| R = {[ ]| ∈ } (7)

where, |R is called the quotient set. The quotient set of X
relative to , denoted |R, is the set whose elements are the
equivalence classes of X under the equivalence relation .

III.CASE STUDY

A.Study Area and Rainfall Data
The study area is located in central Greece and specifically

in the region of Karditsa. The rainfall stations with their
locations and elevations are shown in Fig. 1 and values
(monthly averages) are shown in Table I. In general, the
climate is characterized as continental with the mountainous
areas to the west and the lowland to the east. The maximum
rainfall occurs in the period October-March. In contrast,
during the months of April to September, the highest
evaporation values occur and the lowest rainfall is observed.
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Fig. 1 Rainfall stations with corresponding elevations in the region of Central Greece

TABLE I
MONTHLY AVERAGES (ΜΜ)

B.Tolerance and Equivalence Relations
By applying (1)-(3) to rainfall data, the tolerance relations

take the following form and satisfy the properties of
reflexivity and symmetry:
 Linear correlation coefficient

=
⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎡ 1 0.653 0.654 0.540 0.653 0.906 0.6730.653 1 0.359 0.135 0.306 0.556 0.6160.654 0.359 1 0.356 0.679 0.628 0.5840.540 0.135 0.356 1 0.575 0.508 0.5140.653 0.306 0.679 0.575 1 0.640 0.6130.906 0.556 0.628 0.508 0.640 1 0.6470.673 0.616 0.584 0.514 0.613 0.647 1 ⎦⎥⎥

⎥⎥⎥
⎥⎥⎥
⎤

 Cosine amplitude

=
⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎡ 1 0.982 0.988 0.977 0.964 0.997 0.9860.982 1 0.968 0.947 0.936 0.978 0.9780.988 0.968 1 0.969 0.966 0.988 0.9820.977 0.947 0.969 1 0.959 0.976 0.9730.964 0.936 0.966 0.959 1 0.963 0.9630.997 0.978 0.988 0.976 0.963 1 0.9850.986 0.978 0.982 0.973 0.963 0.985 1 ⎦⎥⎥

⎥⎥⎥
⎥⎥⎥
⎤

Year Vathilakos Karditsa Kerasia Loutropigi Mouzaki Rahoula Rentina
1981 80.6 25.3 126.2 104.9 80.3 85.0 99.2
1982 112.8 60.5 132.3 103.6 95.2 97.5 137.7
1983 86.6 47.7 83.5 78.5 48.9 82.0 85.5
1984 100.4 47.4 108.3 57.3 55.9 105.0 109.1
1985 92.3 41.0 140.7 81.4 59.6 97.4 120.8
1986 116.8 75.1 114.5 81.0 53.0 99.5 127.9
1987 84.5 58.5 132.0 30.6 75.3 84.9 104.3
1988 74.9 44.6 98.7 52.5 45.4 65.0 79.4
1989 76.4 29.8 103.6 53.8 33.6 58.3 63.2
1990 72.0 47.6 81.7 61.5 39.2 76.2 68.4
1991 78.6 51.1 91.2 66.1 36.7 85.9 78.1
1992 72.9 36.0 92.3 53.9 31.3 77.0 75.1
1993 83.1 38.3 89.6 72.2 61.1 83.4 89.2
1994 115.3 70.9 137.3 83.3 65.0 110.2 114.5
1995 90.4 53.9 120.5 60.5 34.1 87.1 96.1
1996 97.8 50.2 152.0 63.5 61.8 93.7 82.5
1997 122.7 42.9 131.5 79.0 79.8 117.1 85.7
1998 111.5 56.0 128.0 83.7 90.5 106.0 87.3
1999 97.0 44.8 116.3 77.0 42.0 92.2 80.8
2000 61.3 33.9 91.5 54.1 32.9 57.1 57.8
2001 78.7 38.1 79.5 53.7 27.0 77.4 70.9

2. Karditsa
103m

Coordinates (WGS84)
Station Latitude Longtitude

1 39°07'56.2314" 21°56'57.7381"

2 39°21'56.2446" 21°55'57.7493"

3 39°20'28.0995" 21°40'31.3516"

4 39°06'47.2664" 22°02'57.8837"

5 39°25'56.2508" 21°39'57.7027"

6 39°13'56.2260" 21°51'57.7498"

7 39°44'56.2625" 21°29'57.7036"

5. Mouzaki
226m

6. Rahoula
330m

1. Vathilakos
800m

4. Loutropigi
730m

7. Rentina
903m

3. Kerasia
1000m
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 Max – Min

=
⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎡ 1 0.521 0.807 0.739 0.602 0.933 0.8760.521 1 0.423 0.652 0.729 0.541 0.5190.807 0.423 1 0.618 0.488 0.782 0.7970.739 0.652 0.618 1 0.729 0.765 0.7540.602 0.729 0.488 0.729 1 0.625 0.5980.933 0.541 0.782 0.765 0.625 1 0.8660.876 0.519 0.797 0.754 0.698 0.866 1 ⎦⎥⎥

⎥⎥⎥
⎥⎥⎥
⎤

where x1=Vathilakos, x2=Karditsa, x3=Kerasia, x4=Loutropigi,
x5=Mouzaki, x6=Rahoula, x7=Rentina.

By applying (4) for relations , , and using (5) max–
min composition method, the tolerance relations are converted
into equivalence relations. The tolerance relation of
correlation coefficient method converted into equivalence
relation after two compositions ( = ○ = ), cosine
amplitude after one composition ( = ○ = ) and
max-min after three compositions ( = ○ = ), and
thus, the final equivalent relations , and for all methods
are defined.

=
⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎡ 1 0.6527 0.6543 0.5754 0.6543 0.9058 0.67300.6527 1 0.6527 0.5754 0.6527 0.6527 0.65270.6543 0.6527 1 0.5754 0.6786 0.6543 0.65430.5754 0.5754 0.5754 1 0.5754 0.5754 0.57540.6543 0.6527 0.6786 0.5754 1 0.6543 0.65430.9058 0.6527 0.6543 0.5754 0.6543 1 0.67300.6730 0.6527 0.6543 0.5754 0.6543 0.6730 1 ⎦⎥⎥

⎥⎥⎥
⎥⎥⎥
⎤

=
⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎡ 1 0.9819 0.9882 0.9773 0.9664 0.9970 0.98580.9819 1 0.9819 0.9773 0.9664 0.9819 0.98190.9882 0.9819 1 0.9773 0.9664 0.9882 0.98580.9773 0.9773 0.9773 1 0.9664 0.9773 0.97730.9664 0.9664 0.9664 0.9664 1 0.9664 0.96640.9970 0.9819 0.9882 0.9773 0.9664 1 0.98580.9858 0.9819 0.9858 0.9773 0.9664 0.9858 1 ⎦⎥⎥

⎥⎥⎥
⎥⎥⎥
⎤

=
⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎡ 1 0.7287 0.8069 0.7650 0.7287 0.9331 0.87560.7287 1 0.7287 0.7287 0.7293 0.7287 0.72870.8069 0.7287 1 0.7650 0.7287 0.8069 0.80690.7650 0.7287 0.7650 1 0.7287 0.7650 0.76500.7287 0.7293 0.7287 0.7287 1 0.7287 0.72870.9331 0.7287 0.8069 0.7650 0.7287 1 0.87560.8756 0.7287 0.8069 0.7650 0.7287 0.8756 1 ⎦⎥⎥

⎥⎥⎥
⎥⎥⎥
⎤

The relations , and satisfy the properties of
reflexivity and symmetry, but they also satisfy the property of
transitivity that transforms them into equivalence relations.
Continuation of compositions between relations , ,
and initial relations , and , respectively, will provide
the same results [14]. This is another way of verifying the
final equivalence relations.

C. α-Cut Sets
By taking α-cuts of fuzzy equivalent relations , and at

values α = 0.6730, α = 0.9882 and α = 0.8756, respectively, as
an example and using (6), the following defuzzified crisp
equivalence relations are derived:

. =
⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎡1 0 0 0 0 1 10 1 0 0 0 0 00 0 1 0 1 0 00 0 0 1 0 0 00 0 1 0 1 0 01 0 0 0 0 1 11 0 0 0 0 1 1⎦⎥⎥

⎥⎥⎥
⎥⎥⎥
⎤

. =
⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎡1 0 1 0 0 1 00 1 0 0 0 0 01 0 1 0 0 1 00 0 0 1 0 0 00 0 0 0 1 0 01 0 1 0 0 1 00 0 0 0 0 0 1⎦⎥⎥

⎥⎥⎥
⎥⎥⎥
⎤

. =
⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎡1 0 0 0 0 0 00 1 0 0 0 0 00 0 1 0 0 0 00 0 0 1 0 0 00 0 0 0 1 0 01 0 0 0 0 1 11 0 0 0 0 1 1⎦⎥⎥

⎥⎥⎥
⎥⎥⎥
⎤

D.Classification
The universe X contains the seven stations as:= { , , , , , , }
Table II shows the final classification of rainfall data

depending on α-cut levels for the three different methods.

TABLE II
CLASSIFICATION OF SEVEN RAINFALL STATIONS ACCORDING TO α-CUT LEVEL

α-cut Level Classification
Correlation Coefficient

0.5754 { , , , , , , }
0.6527 { , , , , , }[ ]
0.6543 { , , , , }[ ][ ]
0.6730 { , , }{ , }[ ][ ]
0.6786 { , }{ , }[ ][ ][ ]
0.9058 { , }[ ][ ][ ][ ][ ]

1.0 [ ][ ][ ][ ][ ][ ][ ]
Cosine Amplitude

0.9664 { , , , , , , }
0.9773 { , , , , , }[ ]
0.9819 { , , , , }[ ][ ]
0.9858 { , , , }[ ][ ][ ]
0.9882 { , , }[ ][ ][ ][ ]
0.9970 { , }[ ][ ][ ][ ][ ]

1.0 [ ][ ][ ][ ][ ][ ][ ]
Max - Min

0.7287 { , , , , , , }
0.7293 { , , , , }{ , }
0.7650 { , , , , }[ ][ ]
0.8069 { , , , }[ ][ ][ ]
0.8756 { , , }[ ][ ][ ][ ]
0.9331 { , }[ ][ ][ ][ ][ ]

1.0 [ ][ ][ ][ ][ ][ ][ ]
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We can express the classification scenario described in
Table II with a classification diagram, as shown in Fig. 2. It is
also shown that the higher the α-cut value, the more rigorous

the classification becomes. That is, each data point is assigned
to its own class when α gets larger.

As is easily understood, computationally process is quite
complex and many helpful algorithms can be used from [15].

Fig. 2 Classification diagram for the three different methods

IV.CONCLUSION

According to the results, we can state that fuzzy
classification of data can provide answers under a certain
degree of confidence in complex problems characterized by
ambiguity and uncertainty. In essence, the three methods
under study terminated by giving the same results at the
highest level of confidence for each method. On the other
hand, there were fundamental differences on rainfall data
classification for the rest α-cuts. For all methods the best
classification obtained, was in the stations Vathilakos and
Rahoula with a degree of confidence 0.9058 for correlation
coefficient, 0.997 for cosine amplitude and 0.9331 for max-
min. There is significant elevation difference between these
two stations, but they have the best similarity. In general, we
can say that the level of confidence varies significantly with
the method. Specifically, the minimum level of confidence for
correlation coefficient method is 0.5754, for cosine amplitude
is 0.9664 and for max-min is 0.7287. In addition, the fact that
the max-min method is computationally simpler than the other
two methods, but needs more compositions to extract
equivalence relation, is very important. Finally, it should be
noted that the whole process is quite complex as far as
computing is concerned, and the use of appropriate software
such as MATLAB is considered necessary for reliable results.
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