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Abstract—The Numerical weather prediction (NWP) models are
considered powerful tools for guiding quantitative rainfall prediction.
A couple of NWP models exist and are used at many operational
weather prediction centers. This study considers two models namely
the Consortium for Small–scale Modeling (COSMO) model and the
Weather Research and Forecasting (WRF) model. It compares the
models’ ability to predict rainfall over Uganda for the period 21st

April 2013 to 10th May 2013 using the root mean square (RMSE)
and the mean error (ME). In comparing the performance of the
models, this study assesses their ability to predict light rainfall events
and extreme rainfall events. All the experiments used the default
parameterization configurations and with same horizontal resolution
(7 Km). The results show that COSMO model had a tendency of
largely predicting no rain which explained its under–prediction. The
COSMO model (RMSE: 14.16; ME: -5.91) presented a significantly
(p = 0.014) higher magnitude of error compared to the WRF
model (RMSE: 11.86; ME: -1.09). However the COSMO model
(RMSE: 3.85; ME: 1.39) performed significantly (p = 0.003) better
than the WRF model (RMSE: 8.14; ME: 5.30) in simulating light
rainfall events. All the models under–predicted extreme rainfall events
with the COSMO model (RMSE: 43.63; ME: -39.58) presenting
significantly higher error magnitudes than the WRF model (RMSE:
35.14; ME: -26.95). This study recommends additional diagnosis of
the models’ treatment of deep convection over the tropics.

Keywords—Comparative performance, the COSMO model, the
WRF model, light rainfall events, extreme rainfall events.

I. INTRODUCTION

WEATHER predictions are required to guide decisions

in a couple of sectors such as defense, agriculture,

aviation and shipping among others [1]. The weather

prediction process has always been a challenging problem

as observed by Du et al. [2] and many others scholars.

This challenge is normally caused by the chaotic nature
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of the atmosphere and the incomplete knowledge of

processes that govern the evolution of the atmosphere [3]

which therefore introduces uncertainties in initial conditions.

However objective methods of weather prediction are known

and include the use of statistical weather prediction (SWP)

methods and the use of numerical weather prediction (NWP)

models [4].

The SWP methods rely on the relationships between the

predictor and the predictand (Fig. 1) and include a couple

of methods such as the use of linear regression, fuzzy logic,

neural networks and many more. For example Paras et al.

[1] used multiple linear regression to forecast rainfall, relative

humidity and found a satisfactory prediction level. However,

the SWP methods are limited by the quality of predictors, the

suitable predictor–predictand relations and also require a long

training predictor data set as explained by Grosjean et al. [5].

On the other hand, the NWP models consider the physical

processes governing the atmosphere, representing them using

governing equations and solving them numerically.

Fig. 1 Schematic illustration of the SWP method

This study uses the NWP models for quantitative rainfall

forecast (QRF). QRF is considered a challenge over the

Greater Horn of Africa, that includes Uganda, by Opijah et

al. [6] because rainfall is a product of a complex chain of

processes as explained by Böhme et al. [7] and Dierer et al.

[8]. However, a study by Sokol & Rezacova [9] found that

the NWP models at high horizontal resolution, as high as

1 Km can reproduce the precipitation fields comparable to

the fields generated by meteorological radars. For this reason,

Baldauf et al. [10] recognizes their role in producing severe

weather guidance. The limitations observed in the predicted

amount, location and evolution are caused by inappropriate

rainfall triggering in the model [9] and the quality of the initial

conditions [11].

One of the NWP models considered in this study is

the COSMO model. It was formerly known as the Lokal

Model and developed by meteorological services of Germany,

Greece, Italy, Poland, Romania, Russia and Switzerland [10]
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and they use it as the for operational weather prediction

[8]. This model is a limited area non–hydrostatic model for

forecasting operations on meso–β (20–200 Km) and meso–γ
(2–20 Km) scales [10], [8]. A study by Baldauf et al. [10]

using the COSMO model found it to satisfactorily simulate the

convective events over Germany. Additionally, this model has

been used in long–term rainfall validation studies by Böhme

et al. [7] and we summarize the COSMO modeling system

using Fig. 2 (a).

(a) The COSMO Model

(b) The WRF Model

Fig. 2 Simplified illustration of the NWP models used

Another NWP model used is the Weather Research and

Forecasting (WRF) model, which is a community model that

has both advanced research core and a non–hydrostatic core

suitable for research and operational weather prediction [12],

[13]. A study by Xu et al. [14] found this model having

the ability to simulate the diurnal patterns of rainfall. This

model consists of the WRF Preprocessing System (WPS),

the WRF-Variational (WRF-Var), the WRF-ARW solver and

post-processing and visualization [15]. The dynamical core of

the WRF model consists of non-hydrostatic dynamics, nesting

capability, and several parameterization schemes [16] (Fig. 2

(b)). The WRF model is recommended for high resolution

simulations by Mayor & Mesquita [17] and was developed

for regional weather prediction and research [16]. It has been

used in many NWP studies e.g. by Rajasekhar et al. [18],

Krogsæter et al. [19] and many others.

Other NWP models for operational weather prediction are

summarized in Table I. These models have varying horizontal

resolution which is due to the available computing resources

and production schedules [10], [11].

II. DATA AND METHODS

A. Data Sources and Quality Control

The daily rainfall data were obtained from the Uganda

National Meteorological Authority (UNMA) for 21 stations

(Fig. 3) for the period 2000–2015. These data were used

TABLE I
OPERATIONAL NWP MODELS FOR DIFFERENT WEATHER PREDICTION

CENTERS. ’AROME’ IS APPLICATIONS TO RESEARCH ON OPERATIONS

AT MESOSCALE. JMA IS THE JAPANESE METEOROLOGICAL AGENCY AND

UK MET IS UK METEOROLOGICAL OFFICE

NWP Model Developer Update Resolution
Japanese Model JMA 8 h/day 5 Km
Unified Model UK MET 6 h/day 5 Km
AROME model Meteo–France 24 h 2.5 Km

to determine the extreme rainfall threshold values for the

respective stations. The rainfall data for the period 21st April

to 10th May 2013 was then used to assess the models’

performance after first treating the rainfall data to quality

control checks such as completeness and the possibility of

unrealistic records like negative values.

Fig. 3 Map of Uganda showing the main study

The lateral boundary condition (LBC) data to initialize the

NWP models were obtained from the German Weather Service

(DWD) and the National Centers for Environmental Prediction

(NCEP) final analysis [20] for the COSMO model and the

WRF model respectively. The geographical data for the WRF

model pre-processing were obtained from the U.S. Geological

Survey while the geographical data for the COSMO model

was obtained from DWD. The geographical data for COSMO

was at a resolution of 7 km while the one for the WRF model

was at 5 km.

B. Experimental Design

The default physical parameterization schemes are used in

all the models as recommended by the model developer but

horizontal resolution in the WRF model is designed to match

the default horizontal resolution of the COSMO model i.e.

7 Km resolution for Africa. A 12 hour spin–up time was

allowed for the models to reduce spin-up errors. Additional

configurations of the models used is presented in Sections

II-B1 and II-B2 for the COSMO model and the WRF model

respectively.
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For a detailed assessment of the performance of the models,

the case of 1st May 2013 is used over Kasese region. On

this day, the region experienced heavy rainfall that led to the

bursting of rivers Nyamwamba and Mobuku and caused severe

flooding; death of eight people and displacement of about

9,663 people. The flooding also caused damage to houses and

bridges [21].

1) COSMO Model Experiment Design: The COSMO

model runs are designed with 7 Km horizontal resolution

single domain (Fig. 4 (a)) and having 50 vertical levels with

a terrain–following height vertical coordinates and rotated

horizontal geographical coordinate [8]. The model includes

prognostic variables of horizontal and vertical components of

wind, pressure perturbation, specific humidity, cloud water,

temperature, and turbulent kinetic energy [10], [8]. The study

employs the Tiedtke convective parameterization scheme and

has triggers of both shallow and deep convection [22], a

single moment microphysical scheme based on Lin et al.

[23] having capability to predict rainwater, cloud water, cloud

ice, graupel and snow and a radiation scheme based on the

radiative transfer equation suggested by Ritter & Geleyn [24].

The rotated spherical coordinate system is used for the map

projection and the model governing equations are solved on a

staggered Arakawa C-grid [25], [10]. The model also employs

Rayleigh damping in upper layers [8] and its dynamical core

is based on the finite difference method [25], [8].

2) WRF Model Experiment Design: The WRF model

version 3.8 experiment was designed with two domains (Fig.

4 (b)): the parent domain at a horizontal resolution of 35

Km and the nest at 7 Km horizontal resolution to enable

performance comparison with the COSMO model at 7 Km

horizontal resolution.

The WRF model used the staggered Arakawa C-grid;

30 vertical layers with model top fixed at 50 hPa; the

terrain–following mass coordinate as vertical coordinate

that allowed variation of vertical grid–spacing and the

Runge-Kutta 2nd order integration option. The default physical

parameterization schemes are used which are the Kain–Fritsch

convective scheme [26]; the WRF Single-Moment 3–class

micro–physical scheme [27]; the Rapid Radiative Transfer

Model as the longwave radiation scheme [28]; the Dudhia

scheme as the shortwave radiation scheme [29]; the Noah Land

Surface Model [30] and the Yonsei University scheme as the

planetary boundary layer scheme [31]. Fig. 2 (b) illustrates the

WRF modeling process used in the study.

C. Methods

The rainfall amount predicted by the model was computed

as the grid–point area averaged precipitation values. The model

output data were then compared with the station observed

rainfall data to compute the root mean square error (A) &

(1), the mean error (B) & (2) and the Students t-test (C) &

(3) for statistical comparison of the difference in the means

of the error magnitudes presented by the COSMO model and

the WRF model. Additional assessment of the performance of

the models is carried using the contingency table which is a

categorical performance measures to assess the ability of the

(a) The COSMO Model domain

(b) The WRF Model domain

Fig. 4 Domain used in the study

models to predict occurrences of rainfall (i.e. occurrence of

rain or no rain). The 2 x 2 contingency table is illustrated

using Table II as presented by [32].

TABLE II
THE 2× 2 CONTINGENCY TABLE

Simulated
Yes No

Observed
Yes HIT MISS
No False Alarm (FAR) Correct No

III. RESULTS

A. Overview of COSMO and WRF Model Performance

The performance of the NWP models is presented using

Table III for the root mean square error (RMSE) and the mean

error (ME). The results shows that the RMSE of COSMO

model ranges from 6.43 to 31.23 with a mean RMSE of 14.16

while the RMSE of WRF model ranges from 3.96 to 31.50

with a mean RMSE of 11.86. The ME results show that the

ME of COSMO model ranges from -13.07 to 1.53 with a mean
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ME of -5.91 and the ME for WRF model ranges from -7.88 to

7.15 with a mean ME of -1.09. Further investigation showed

that for 16 out of 21 study location, the COSMO model

presented a higher RMSE than the WRF model. Considering

the magnitudes of the ME, the results show that for 17 out of

21 study locations, the COSMO model had a higher magnitude

of ME than the WRF model. Additional analysis of the ME

error results show that all the models generally underestimated

rainfall but COSMO presented larger negative biases than

WRF model.

TABLE III
PERFORMANCE RESULTS FOR COSMO AND WRF MODELS

Station COSMO Model WRF Model
RMSE ME RMSE ME

Arua 14.82 -5.37 13.83 -3.44
Buginyanya 13.69 -9.26 18.2 7.15
Bushenyi 7.8 -4.25 8.25 -1.7
Entebbe 18.12 -9.5 18.45 -5.9
Gulu 6.43 -2.26 4.96 2.02
Jinja 10.81 1.53 8.25 1.55
Kabale 6.98 -4.17 4.03 -0.86
Kamenyamigo 13.36 -6.98 8.75 -2.27
Kasese 9.99 -3.94 9.8 1.04
Kibanda 10.78 -6.8 6.81 3.62
Kitgum 18.82 -13.07 12.6 -5.79
Kituza 13.38 0.06 3.96 -1.86
Lira 20.81 -10.14 19.98 -7.88
Makerere 20.16 -5.23 11.95 -6.01
Masindi 31.23 -11.19 31.5 -5.89
Mbarara 7.75 -3.4 6.9 3.57
Namulonge 18.74 -5.59 9.02 -2.62
Ntusi 8.65 -3.34 10.44 1.31
Serere 9.73 -3.74 8.85 0.12
Soroti 16.13 -7.71 16.12 -2.11
Tororo 19.18 -9.79 16.47 -2.11
Average 14.16 -5.91 11.86 -1.09

Additional analysis for the light rainfall events (Table VI),

defined as a rainfall event whose accumulated 24 hour rainfall

amount is less than 1 mm, shows that the COSMO model

had no rainfall on 23 light rainfall events out of 34. The

COSMO model had an overall RMSE for light rainfall events

of 3.85 and ME of 1.39. Further analysis of the COSMO

models performance in predicting the extreme rainfall events

(Table VII), defined by Ngailo et al. [33] as the rainfall events

whose accumulated 24 hour rainfall amount is greater than the

95th percentile showed that the COSMO model had an overall

RMSE of 43.63 and ME of -39.58.

Additional analysis for light rainfall events (Table VI) shows

that the WRF model generally overestimated light rainfall

events over 21 cases out of 31 cases of light rainfall events.

The WRF model presented an overall RMSE for light rainfall

events of 8.14 and ME of 5.30. Further analysis of WRF

models predictability of extreme rainfall events (Table VII)

presented an overall RMSE of 35.14 and ME of -26.95. The

under-prediction presented by the WRF model (ME = -26.95)

was due to the under-predicted of 29 extreme rainfall events

out of 35 events.

B. The Case Study of 1st May 2013

Spatial analysis of the performance of the COSMO and

WRF models on 01st May 2013 (Fig. 5) shows that COSMO

model generally did not simulate rainfall over major regions

of Uganda with exception of the Northeastern part of Lake

Victoria Basin and some light rainfall over Kasese region (Fig.

5 (b)). The WRF model presented isolated rainfall cases over

the Western Part of the country and heavy rainfall over the

Eastern part of Uganda (Fig. 5 (g)).

Additional results are presented using Table IV and the

results show that the COSMO model (ME: -7.03) presented

significantly different mean error (t = -2.246; p = 0.030)

compared to the WRF model (ME: 2.04). The COSMO model

failed to simulate the heavy rainfall that pounded Kasese

on 1st May 2013 (i.e. 40.8 mm) while the WRF model

under–predicted the rainfall (i.e. 7.5 mm)

The investigation of surface horizontal divergence showed

that COSMO model (Fig. 6 (a)) largely gave positive

horizontal divergence with a few areas having weak negative

divergence (i.e. convergence) like over the Lake Victoria and

Lake Kyoga compared to the surface horizontal divergence

presented by the WRF model (Fig. 6 (b)). Both models

presented a strong divergence over Kasese region with the

WRF model presenting the strongest. Scientifically, the models

should have simulated a low pressure region over Kasese

but instead simulated a strong horizontal divergence. It is

this failure of the models to simulate convection over Kasese

region that probably explain their failure to simulate the heavy

rains experienced over the region on 1st May 2013.

Additional examination of the surface temperature (in deg.

C) and mean sea level pressure (in hPa) presented using Fig.

7 as simulated by the models, showed that the COSMO model

normally presented higher lake surface temperature compared

to the lake temperatures simulated by the WRF model. Both

models presented comparable surface temperatures over the

case study area (Kasese region) and relatively similar sea level

pressure simulations.

TABLE IV
PERFORMANCE RESULTS FOR COSMO AND WRF MODELS ON 01st MAY

2013. ’OBS’ IS OBSERVED RAINFALL IN MM; COSMO IS RAINFALL

PREDICTED BY COSMO MODEL IN MM AND WRF IS RAINFALL

PREDICTED BY WRF MODEL IN MM

Station Rainfall (mm)
Obs COSMO WRF

Arua 0 0 8.2
Buginyanya 10.3 0 12.7
Bushenyi 0 0 10.5
Entebbe 8.5 0 1.1
Gulu 1.4 0 10.3
Jinja 1.3 15.3 6.2
Kabale 6.3 0 8.2
Kamenyamigo 0 0 5.8
Kasese 40.8 0 7.5
Kibanda 2.1 0 10.9
Kitgum 41.5 0 29.8
Kituza 1.8 0.4 1.3
Lira 1.8 0 15.6
Makerere 5.4 0.1 0.9
Masindi 0 0 22
Mbarara 0 0 11.3
Namulonge 0 0.1 0
Ntusi 0 0 5.8
Serere 3.2 0 5.9
Soroti 4.7 0 14.2
Tororo 35 0.6 18.8
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(a) COSMO 30/04 (b) COSMO 01/05

(d) COSMO 02/05 (e) WRF 30/04

(g) WRF 01/05 (h) WRF 02/05

Fig. 5 Simulation of rainfall on 01st May 2013 (i.e. 01/05). 30th Apr. 2013 (i.e. 30/04) is used for spin–up and 02nd May 2013 (i.e. 02/05) for post event
analysis

IV. DISCUSSION

The Table III presented a comparison of the performance of

the COSMO model and the WRF model. The RMSE results

shows that for 16 out of 21 study location, the COSMO model
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(a) COSMO model (b) WRF model

Fig. 6 Surface horizontal divergence presented by the COSMO model (a) and the WRF model (b) on 01st May 2013 (i.e. 01/05)

(a) COSMO model (b) WRF model

Fig. 7 Surface temperature and mean sea level pressure presented by the COSMO model (a) and the WRF model (b) on 01st May 2013 (i.e. 01/05)

presented a higher RMSE than the WRF model. Considering

the magnitudes of the ME, the results show that for 17 out of

21 study locations, the COSMO model had a higher magnitude

of ME than the WRF model. Additional analysis of the ME

results show that all the models generally underestimated

rainfall but COSMO presented larger negative biases than

WRF model. This under-prediction of the models is also

confirmed using the study case of 1st May 2013 for Kasese

region where all the models gave a high horizontal divergence

(Fig. 6) compounded with weak surface temperatures (Fig. 7)

which probably inhibited convective processes.

The comparative assessment of the COSMO model and the

WRF model performance in predicting light rainfall events

showed that the COSMO model presented a significantly
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smaller RMSE than that of the WRF model (COSMO: 3.85

and WRF: 8.14). Further comparison of the mean errors

presented by these models in predicting light rainfall events

showed that the COSMO model presented a significantly (p =

0.003) smaller magnitude of ME compared to the WRF model

(COSMO: 1.39 and WRF: 5.30). The weak performance of

COSMO model against the WRF model was due to the failure

of the COSMO model to simulate the rainfall events shown by

MISS of 68.5% in Table V. The WRF model on the other hand

presented a bigger magnitude of ME due to its high percentage

of the false alarm of 72.9%.

TABLE V
PERFORMANCE MEASURES BASED ON THE CONTINGENCY TABLE

COSMO (%) WRF (%)
HIT 46.2 62.4
FAR 31.3 72.9
MISS 68.5 14.6
Correct negative 63.9 27.1

Additional investigation of the performance of the COSMO

model in predicting the light rainfall events revealed that the

COSMO model presented a smaller RMSE in predicting light

rainfall events compared to the WRF model. This was caused

by the COSMO model failure to predict rain on 23 out of 34

light rainfall events (Table VI) which was also revealed by a

high percentage of the correct negative of 63.9% compared

to 27.1% presented by the WRF model (Table V). These

results show the under–performance of the COSMO model

in simulating the light rainfall events which has also been

reported in severe convective systems, complex orography

and even with weak precipitation events by Böhme et al.

(2011). Diagnostic studies by Dierer, et al. [8] and Crewell

et al. [34] found that the COSMO model presented a dry

humidity bias in the boundary layer and a wet humidity bias in

middle troposphere over wet periods which, Dierer, et al. [8]

suggested that it could probably explain the underestimation

of rainfall. The predictability results of the light rainfall events

further showed that the WRF model over–predicted the light

rainfall events which was also found by Yang et al. [35] while

evaluating the ability of WRF to simulate precipitation over the

downstream area of the Yalong River Basin found in China.

The analysis of the COSMO and WRF models predictability

of the extreme rainfall events showed that the COSMO model

presented a significantly higher RMSE than the WRF model

(COSMO: 43.63 and WRF: 35.14). A related study by Sokol

& Rezacova [9] noted that whereas COSMO at a horizontal

resolution of 2.8 Km provided the occurrence of the local

storms in Czech Republic, the amounts of rainfall predicted

were seriously underestimated and did not correspond to

reality. Additional comparison of the errors presented by

the COSMO and the WRF models further showed that the

COSMO model presented significantly (p = 0.014) higher

magnitude of error compared to the WRF model (COSMO:

-39.58 and WRF: -26.95). The COSMO model missed many

rainfall events including the extreme rainfall events (MISS:

68.5%) compared to the missed rainfall events presented by

the WRF model of 14.6% (Table V).

V. SUMMARY AND CONCLUSION

The study was aimed at comparing the performance of the

COSMO model and the WRF model in the simulation of

rainfall over the period 21st April 2013 to 10th May 2013.

The results showed that the COSMO model presented a slight

higher mean RMSE than that presented by the WRF model

(RMSE of COSMO: 14.16 and RMSE of WRF: 11.86). The

COSMO model also presented a higher magnitude of ME

compared to the WRF model (ME of COSMO: -5.91 and ME

of WRF: -1.09).

The COSMO model presented a smaller mean RMSE

compared to the WRF model in simulating the light rainfall

events (COSMO: 3.85 and WRF: 8.14). The COSMO model

also presented a smaller magnitude of ME in simulating the

light rainfall events compared to the WRF model (COSMO:

1.39 and WRF: 5.30). The results for predicting extreme

rainfall events showed that the COSMO model has an overall

RMSE of 43.63 compared to the RMSE presented by the

WRF model of 35.14 and that both models under–predicted

the extreme rainfall events including the case of Kasese on

01st May 2013.

Additionally the COSMO model presented a significantly

(p = 0.014) higher magnitude of mean error compared to

the WRF model (COSMO: -39.58 and WRF: -26.95). The

results generally show that the WRF model presents a better

performance in simulating rainfall compared to the COSMO

model over Uganda, the study region.

APPENDIX

The study employed two performance measures i.e. the root

mean square error (RMSE) and the mean error (ME).

A. Root Mean Square Error

The RMSE is obtained from the square root of the mean

square differences between predicted (i.e. P ) and observed

(i.e. O) when paired. It is computed mathematically as:

RMSE =

√√√√ 1

n

n∑
i=1

[Pi −Oi]
2

(1)

B. Mean Error

The ME is the mean of the differences (i.e Pi −Oi) which

is computed as:

ME =
1

n

n∑
i=1

[Pi −Oi] (2)

where i is the ith data point ordered in time.

C. The Student’s t–Test

The t–test is a parametric test used to test whether there

is a difference between the means of two univariate random

variables [36]. The null hypothesis used in the study was that

there is no difference between the RMSE of the two models.

For the COSMO model and the WRF model with sample
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TABLE VI
PERFORMANCE RESULTS OF COSMO AND WRF MODELS FOR THE

LIGHT RAINFALL EVENTS. ’OBS’ IS OBSERVED LIGHT RAINFALL

Station Date Light rainfall (mm)
Obs COSMO WRF

Buginyanya 21. Apr. 2013 0.6 0 19.1
Bushenyi 28. Apr. 2013 0.2 0 0
Entebbe 30. Apr. 2013 0.5 11.2 9.7
Gulu 3. May. 2013 0.4 0.1 7.1
Jinja 9. May. 2013 0.3 13.3 0
Kabale 29. Apr. 2013 0.6 0 2.4
Kasese 25. Apr. 2013 0.8 0 0
Kasese 30. Apr. 2013 0.6 0 7.3
Kasese 2. May. 2013 0.9 0 0.7
Kasese 3. May. 2013 0.2 0 2.3
Kamenyamigo 22. Apr. 2013 0.3 0 7.2
Kibanda 26. Apr. 2013 0.2 0 7
Kitgum 23. Apr. 2013 0.3 0 0
Kitgum 2. May. 2013 0.5 0 9.4
Lira 22. Apr. 2013 0.2 0 0.1
Makerere 21. Apr. 2013 0.1 4.6 0
Makerere 22. Apr. 2013 0.3 0 4
Makerere 4. May. 2013 0.4 4.3 1.2
Makerere 9. May. 2013 0.4 2.3 0
Makerere 10. May. 2013 0.8 0 5.6
Masindi 24. Apr. 2013 0.4 0 0
Mbarara 28. Apr. 2013 0.1 0 6.9
Mbarara 7. May. 2013 0.3 0 11.8
Ntusi 23. Apr. 2013 0.2 0 0.3
Ntusi 3. May. 2013 0.4 0.1 0
Ntusi 5. May. 2013 0.5 0 5.4
Serere 3. May. 2013 0.3 10.7 0.3
Serere 5. May. 2013 0.2 0 6.3
Serere 8. May. 2013 0.4 4.1 9.7
Soroti 3. May. 2013 0.5 7.3 0.7
Soroti 5. May. 2013 0.6 0 16.1
Tororo 22. Apr. 2013 0.8 0 13.3
Tororo 27. Apr. 2013 0.2 0 21.9
Tororo 30. Apr. 2013 0.1 2.8 18

TABLE VII
PERFORMANCE RESULTS OF COSMO AND WRF MODELS FOR THE

EXTREME RAINFALL EVENTS. ’OBS’ IS OBSERVED EXTREME RAINFALL

Station Date Threshold Light rainfall (mm)
Obs COSMO WRF

Arua 28. April 2013 19.9 50.1 0 0.6
Arua 8. May 2013 19.9 39.5 0 12.5
Buginyanya 29. April 2013 30.6 31.6 1.6 28.8
Buginyanya 9. May 2013 30.6 32.2 0.8 27.3
Bushenyi 2. May 2013 24.53 26.4 0 0
Entebbe 5. May 2013 35.95 39 0 6
Gulu 9. May 2013 20.54 26.1 1.4 18.4
Kasese 1. May 2013 18.5 40.8 0 7.5
Kamenyamigo 21. April 2013 15.73 40 0 16.3
Kamenyamigo 29. April 2013 15.73 27.5 0 8.2
Kamenyamigo 5. May 2013 15.73 27.8 0 8.6
Kibanda 5. May 2013 20.85 22.7 0 24.7
Kibanda 6. May 2013 20.85 29 0 30.1
Kitgum 21. April 2013 27.69 39 0 0.9
Kitgum 22. April 2013 27.69 37.6 0 21.4
Kitgum 1. May 2013 27.69 41.5 0 29.8
Kitgum 7. May 2013 27.69 28.4 0.2 7.7
Kituza 2. May 2013 34 34.3 1.4 31.2
Lira 5. May 2013 42.9 78 0 2.9
Makerere 28. April 2013 23.3 29.7 0 2.2
Makerere 29. April 2013 23.3 46.7 9.4 19
Makerere 2. May 2013 23.3 57.9 1.6 37.1
Makerere 6. May 2013 23.3 33.1 0 10.1
Masindi 25. April 2013 27.55 40.2 0 0
Masindi 27. April 2013 27.55 47.3 9.1 0.5
Masindi 6. May 2013 27.55 124.9 1 8.5
Mbarara 3. May 2013 27.08 30.5 0.1 20.4
Namulonge 21. April 2013 24.5 30.4 3.3 0
Namulonge 28. April 2013 24.5 40.5 0 22.4
Namulonge 30. April 2013 24.5 27 4.7 16.4
Namulonge 5. May 2013 24.5 50.5 0 41.1
Ntusi 4. May 2013 16.89 33.8 0 0.5
Soroti 2. May 2013 25.59 59.6 8.5 4
Soroti 4. May 2013 25.59 27.6 0 3
Tororo 4. May 2013 38.73 57.1 0 16.8

means x1 and x2 respectively, the Students t–test is defined

by:

t =
x1 − x2

s12

√
1
n1

− 1
n2

(3)

where n1 and n2 are the numbers of the variable of the

COSMO model and the WRF model respectively and s12 is

the pooled standard deviation computed using:

s212 =

n1∑
i=1

(xi − x1) +

n2∑
i=1

(yi − x2)

n1 + n2 − 2
(4)

where x and y are the variables (i.e. the RMSE and ME) of

the COSMO model and the WRF model respectively.
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