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Abstract—Eddy viscosity models in turbulence modeling can be 

mainly classified as linear and nonlinear models. Linear formulations 
are simple and require less computational resources but have the 
disadvantage that they cannot predict actual flow pattern in complex 
geophysical flows where streamline curvature and swirling motion 
are predominant. A constitutive equation of Reynolds stress 
anisotropy is adopted for the formulation of eddy viscosity including 
all the possible higher order terms quadratic in the mean velocity 
gradients, and a simplified model is developed for actual oceanic 
flows where only the vertical velocity gradients are important. The 
new model is incorporated into the one dimensional General Ocean 
Turbulence Model (GOTM). Two realistic oceanic test cases (OWS 
Papa and FLEX' 76) have been investigated. The new model 
predictions match well with the observational data and are better in 
comparison to the predictions of the two equation k-epsilon model. 
The proposed model can be easily incorporated in the three 
dimensional Princeton Ocean Model (POM) to simulate a wide range 
of oceanic processes. Practically, this model can be implemented in 
the coastal regions where trasverse shear induces higher vorticity, and 
for prediction of flow in estuaries and lakes, where depth is 
comparatively less. The model predictions of marine turbulence and 
other related data (e.g. Sea surface temperature, Surface heat flux and 
vertical temperature profile) can be utilized in short term ocean and 
climate forecasting and warning systems. 
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I. INTRODUCTION 

URBULENCE modeling in computational fluid dynamics 
and geophysical modelling can be classified into four 

major approaches as eddy viscosity model, Reynolds stress 
model, large eddy simulation, and direct numerical simulation. 
Eddy viscosity models are simple and require less 
computational resources as compared to other mentioned 
approaches and are based on the Reynolds averaged Navier 
Stokes (RANS) equations in which Reynolds stresses appear 
as a result of time averaging of momentum conservation 
equations. The transport equations for mean velocity with the 
Reynolds stress term can be written as 
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where U and P are the velocity and pressure, respectively. 
Boussinesq [1] was the first to postulate the assumption that 
the Reynold stress tensor is proportional to the strain rate 
tensor and can be written as 
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The strain rate tensor ijS  is defined as 
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t  is the eddy viscosity which takes into account the 

enhanced momentum transfer because of turbulence and k is 
the turbulent kinetic energy. 

In the standard k   model [2], t  is defined as  

 

                               

2

t

k
c




                                   
(5) 

 

To obtain t , the transport equations of turbulence kinetic 

energy k and dissipation rate  are needed to be solved in the 

k   model [2], [3]. Mellor and Yamada [4] solved 

equations for k and kl , where l is the length scale. c is the 

structure parameter. Wilcox [5] replaced dissipation   by   

(which is the ratio of dissipation and kinetic energy). In k   
two equation model, the structural parameter is a constant 
value that can be defined by referring to local equilibrium 
shear layers, but in the geophysical turbulence model of 
Mellor and Yamada the structural parameter was taken as 
function of shear and buoyancy. The effects of buoyancy, 
vorticity and Reynolds stress anisotropy were included in the 
structural parameter [6]. 

In the general ocean turbulence model [7], the transport 
equations of turbulence kinetic energy and dissipation are 

modelled as follows:                 
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where, P  and B  are the production terms due to shear and 
buoyancy, respectively. The detailed description of the model 
constants and the terms used in the above equations are 
available in [7]. 

Reynolds stress anisotropy can be defined as 
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Maity and Warrior [8] proposed an eddy viscosity model 

based on a transport equation of second invariant of Reynolds 
stress anisotropy and studied the natural convection flow and 
mixing in a vertical water column. For non-equilibrium shear 
flows Craft et al. [9] proposed a non linear eddy viscosity 
model and took Reynolds stresses as more general function of 
vorticities and mean velocities. Considering the above 
formulation of anisotropy tensor, Sasmal et al. [10], [11] 
proposed an eddy viscosity formulation for geophysical 
turbulent flows and validated the model against various 
realistic test cases. 

In this paper, a constitutive equation for Reynolds stress 
anisotropy tensor is adopted which accounts the effects of 
streamline curvature and swirl effects [9], [12]. The transport 
equation of Maity and Warrior [8] for the second invariant of 
Reynolds stress anisotropy tensor is solved. By assuming 
velocity variations only in the vertical direction, a formulation 
for eddy viscosity is developed, which can tackle complex 
geophysical turbulent flows by taking into consideration of the 
bed roughness and curvature.  

II. FORMULATION OF THE PROBLEM 

The one dimensional form of the Reynolds-averaged 
Navier-Stokes equations, energy conservation and salt 
conservation equation are used for the study of natural 
convection flow and heat transfer in a vertical water column. 
Effects of the advection, internal pressure gradients and 
horizontal transport are neglected. 
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where U and V are the velocities, g is the acceleration of 
gravity,  is the elevation of the free surface,   is the 

averaged density, and 0  is a constant reference density 

resulting from Boussinesq approximation [13]. f  is the 

Coriolis frequency and is taken as:  
 

2 sinf                                     (11) 
 

where,   is the earth's angular velocity and   is the latitude 

[14]. 
The energy and salinity conservation equations can be 

written respectively as 
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where T and S are the temperature and salinity respectively. 

  denotes the molecular diffusivity, pc is the heat capacity. 

I denotes the short wave radiation and its vertical divergence 
is taken as the source term in the energy conservation equation 
[12]. 

The net shortwave radiation, 0I  at the surface is used as a 

source of heat and follows the exponential formula of Paulson 
and Simpson [15], 
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where 1  and 2  are the absorption coefficients and they 

depend on water type [16],  B z is a damping term which 

accounts for bioturbidity and the value of the source term in 
the transport equation of temperature depends on type of water 
[15]. For OWS Papa and FLEX76, Jerlov type II (turbid 
water) and type I (clear water) are used respectively. 

The heat fluxes at the air-sea interface were calculated 
using the bulk formulae of Kondo [17]. Following Burchard 
[18], boundary conditions for the surface heat fluxes can be 
expressed as  
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where t  is the eddy diffusivity, 0  is the density of sea 

water and T  is the average temperature, pc  specific heat of 

sea water at constant pressure (J kg-1 oC-1) and   represents 

the sea surface elevation. ,  s lQ Q  and bQ are the sensible heat 

flux, the latent heat flux, and the long wave back radiation, 
respectively and tot s l bQ Q Q Q    is the total surface heat 

flux. The boundary condition for the surface fresh water flux 
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(salinity flux) can be written using difference between 

evaporation and precipitation fluxes ( EQ , PQ ) as  
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where,  0 0  is the density of fresh water at sea surface 

temperature. The salinity flux is often neglected in short term 
calculation since their values are relatively small compared to 
the heat flux [18]. 

 
TABLE I 

MODEL CONSTANTS 

1C  
2C  

2C  
4C  

5C  
6C  

7C  

-0.04 0.1 0.02 0.1 -0.8 -0.6 0.6 

A. New Formulation of Eddy Viscosity 

The Reynolds stress in terms of Boussinesq eddy viscosity 
can be written as 
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The constitutive equation [12] for the Reynolds stress 

anisotropy tensor is considered for the present eddy viscosity 
formulation: 
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A similar expression can be written for jib , by 

interchanging the indices i and j
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The vorticity tensor ij , is defined as 
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Multiplying (18) and (19), an expression for the second 

invariant of Reynolds stress anisotropy can be obtained, 
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After rearrangement of the terms, 
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In the real oceans, because of the strong disparity between 

the horizontal and vertical dimensions, the strain and vorticity 
take a simplified form. Thus, by considering only vertical 
gradients of velocity and neglecting variations of U and V in 
other directions, the strain and vorticity tensors acquire the 
form [19] 
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B. Transport Equation for the Second Invariant of Stress 
Anisotropy 

An equation for the second invariant developed by Craft et 
al. [12] is taken into consideration. A transport equation for 
Reynolds stress anisotropy can be written as, 
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The transport equation for bII  is derived by multiplying the 

above equation by 2 ijb . The resulting equation for the stress 

invariant is written as 
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where ijd  represents the diffusive transport, ijP  is the shear 

production, ij  is the pressure strain correlation which is the 

summation of slow and rapid term, and ij  is the dissipation 

rate of  Reynolds Stress and kd , kP  and   are the 

corresponding contractions.  
In order to model the pressure strain correlation, the Poisson 

equation for fluctuating pressure should be solved for 
determining the pressure fluctuations [20] 
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The above equation can be solved through the 

decomposition of the pressure fluctuation as 
 

' '' slow rapidp p p                                (27) 

 
Slow and rapid pressure fluctuations satisfy the following 

equations. 
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The slow term represents the turbulence-turbulence 

interactions and is known as the return to isotropy term, when 
a system is excited into turbulence through the effect of mean 
shear, strain or buoyancy, the turbulence develops anisotropies 
in Reynolds stresses [21], dissipation rates [22] and in length 
scales [23], [24]. Most of the two-equation eddy viscosity 
formulations assume that the return to isotropy process is 
instantaneous, this erroneous assumption can be overcome 
through the incorporation of the slow term into eddy viscosity 
formulation. For the representation of interaction turbulence 
and mean flow gradient, a formulation of rapid pressure term 
is adopted in this paper.  

The second moment closure model of Craft et al. [12] for 
the pressure strain correlation is written as 
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S
ij ijb   and 
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ij ijb   work out to be 

 
* * 0.5

1 1 1( ) ( ) ( )S
ij ij b b bb II c III c c II A             (36) 

  

                    0.6 0.3R
ij ij ij ij b kb b P II P                       (37) 

 
Equation (27) can be simplified as: 
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After suitable modifications and assumption for the 

geophysical flows, equations for bII  [8] can be written as:  
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where bIII  is the third invariant of Reynolds stress anisotropy 

tensor 
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*A is the Lumley's stress flatness parameter [25] which is zero 

at the wall where turbulence goes to two-component limit. 
For preventing the model from blowing up during 

numerical simulations, realizability constraints for the second 
invariant were considered. The values of second invariant can 
be larger than one, near the walls because of higher values of 
turbulent stresses at those regions, those were not considered 
in this study. 
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Fig. 1 Time series of sea surface temperature (SST) profiles during 
Flex 76: a. present model, b. k-epsilon model and c. observed data 

III. NUMERICAL MODELING AND RESULTS 

The temperature decreases with depth in the ocean and an 
upward and downward movement of water occurs as a result 
of temperature difference between the fluids, which can be 
termed as free or natural convection flow, is dependent on the 
temperature, salinity and depth of the water. A one-
dimensional water column model "General Ocean Turbulence 
Model" [7] is used to study the natural convection flow in a 
vertical water column. The newly developed formulation is 
used to simulate the flow, and the results obtained from the 
simulation are compared with the observational results of 
ocean weather station papa (OWS Papa) and a realistic ocean 
test case of the Fladenground experiment 1976 (FLEX 76).  

 

 

Fig. 2 Time series of temperature profiles during Flex 76 

The discretization of the domain is achieved by dividing the 
domain into required number of intervals. The vertical 
discretization was refined at the surface and bottom. The 
discrete values for the mean flow quantities such as x and y 
components of velocity, temperature and salinity represent 
interval means and are located at the centers of the interval, 
and the turbulent quantities are positioned at the interfaces of 
the intervals. The staggering of the grid allows for a second 
order approximation of the vertical fluxes of momentum and 
tracers without averaging. Averaging of the eddy diffusivities 
is required for the vertical fluxes of kinetic energy, length 
scale and dissipation. Because of absence of advection and 
fully implicit treatment of diffusion, the time stepping is 
equidistant, based on two time levels. For momentum and 
tracers, a fully implicit discretization scheme is used, which 
results in a system of linear equations with tri-diagonal matrix 
for each transport equation. The resulting tri-diagonal matrix 
is solved by means of simplified Gaussian elimination [7], 
[26].  

The Fladenground experiment was performed at the 
northern North Sea at a water depth of 145 meter and a 

position 58 .55 N  and 0 .55 E . Measurements of 
meteorological forcing and temperature profiles were carried 
out in spring 1976. Various turbulence modelers have 
validated their models and compared the performance of 
various turbulence models against FLEX 76 data (e.g. [10] and 
[14]). Fig. 1 represents the time series of temperature profiles 
during the Fladenground experiment 1976. From the present 
model predictions, it is observed that there is little 
improvement over the model predictions of the k-epsilon 
model for the sea surface temperature profiles. Time series of 
temperature profiles at a depth of 100 meter are shown in Fig. 
2. Since the present model properly represents the complex 
flow fields because of the addition of cubic nonlinear terms in 
the formulation of the Reynolds stress anisotropy, an 
improved prediction of temperature profiles is observed at a 
depth of 100 meter. On the Julian day 133, a storm occurred 
on that site, the storm can be noticed from the vertical 
temperature profiles from Fig. 3. Figs. 3 (a) and (b) represents 
Julian day 124 and 136 respectively. Both before and after 
storm, predictions of temperature are better than k-epsilon 
model and are matching with the trends of observational data.  
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Fig. 3 Vertical temperature profiles during FLEX 76, before and after 
the storm 

 
The station PAPA is located in the North Pacific, at 

145 W  and 50 N , where sea temperature profiles and 
meteorological data have been collected from 1940s to the 
early 1980s. The current simulations of OWS Papa have been 
performed for the year 1961. For OWS Papa, meteorological 
data for sea surface temperature, air pressure, wind speed and 
direction are available. In station OWS Papa, horizontal 
advection of heat and salt is assumed to be small. Time series 
of SST profiles of OWS Papa are shown in Fig. 4. In the three 
separate figures, the different model predictions are compared 
with the observed data. OWS papa observational results are 
available up to 250-meter depth. In Figs. 5 and 6, time and 
vertical variations of temperature profiles are shown. The 
model predictions of temperature profiles are better than k-
epsilon model predictions. Fig. 7 show the variation of eddy 
viscosity with depth. K-epsilon model predicts almost zero 
viscosity in lower layers, but the present model shows nonzero 
viscosity in those layers, which can be considered as an 
improvement of the result because of the non linear terms in 
the formulation of the eddy viscosity.  

 

 

 

 

Fig. 4 Time series of sea surface temperature (SST) profiles for OWS 
papa: a. Present model, b. k-epsilon model and c. observed data 
 

 

Fig. 5 Time series of temperature profiles for OWS papa: comparison 
of the model predictions with observed data 

 

 

Fig. 6 Vertical profiles of temperature: comparison of the model 
predictions with the observed data 
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Fig. 7 Profile of eddy viscosity: comparison of the present model and 
k-epsilon model predictions for OWS papa 

IV. CONCLUSIONS 

Effects of complex strain fields can be tackled by using 
nonlinear terms in the constitutive equation as done by other 
researchers. Addition of cubic terms to the Reynolds stress 
anisotropy constitutive equation ensures proper representation 
of flow field by mimicking streamline curvature and swirl 
effects in geophysical flows. Other eddy viscosity models 
predict almost zero viscosity in the lower layers, but the 
present model shows nonzero viscosity in those layers which 
is an improved prediction of the eddy viscosity field. Because 
of addition of swirling and curvature effects, also there is a 
marked improvement of the predicted temperature profiles. 
This model along with other related (weather prediction) 
models can be utilized for environmental impact assessment of 
power plants and in short term ocean and climate forecasting 
and warning systems. In future course of work, focus can be 
placed on the modelling of the near wall geophysical turbulent 
flows by considering the wall invariant parameters such as 
strain and stress invariants in the formulation of eddy viscosity 
or through incorporation of the pressure strain correlation 
representing the wall damping effects in the transport equation 
of the stress invariant. 

NOMENCLATURE 

U  Velocity 
  Mass density 

t  
Eddy Viscosity 

P Pressure 
c  Structure Parameter 

T Temperature 
S Salinity 

ij  
Vorticity tensor 

ijS  Strain rate tensor 

  Dissipation rate 

ije  Dissipation anisotropy tensor 

ij  Kronecker delta 

  Kinematic viscosity 
k Kinetic energy 

ij Total pressure strain 

t Time 

ijb Reynolds stress anisotropy 

bII Second invariant of Reynolds stress anisotropy  

bIII Third Invariant of Reynolds stress anisotropy 
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