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  
Abstract—Relation between tolerance class and indispensable 

attribute and knowledge dependency in rough set model with tolerance 
relation is explored. After giving definitions and concepts of 
knowledge dependency and knowledge dependency degree for 
incomplete information system in tolerance rough set model by 
distinguishing decision attribute containing missing attribute value or 
not, the result of maintaining reflectivity, transitivity, augmentation, 
decomposition law and merge law for complete knowledge 
dependency is proved. Knowledge dependency degrees (not complete 
knowledge dependency degrees) only satisfy some laws after 
transitivity, augmentation and decomposition operations. An 
algorithm to solve attribute reduction in an incomplete decision table 
is designed. The correctness is checked by an example.  
 

Keywords—Incomplete information system, rough set, tolerance 
relation, knowledge dependence, attribute reduction. 

I. INTRODUCTION 

OUGH set model has been used to process imprecise or 
vague information to extract hidden and potential 

knowledge successively for many years. It was first suggested 
by Pawlak in 1982s [1]-[3]. For complete information systems, 
it establishes an indiscernibility relation (an equivalence 
relation) on a universe of objects and defines lower and upper 
approximations of a universe subset to form determinative rules 
and possible rules respectively. So it is widely applied in many 
areas such as business intelligence, classification, clustering, 
identification and etc. to solve decision, recognition or 
prediction problems [4], [5]. However, in incomplete 
information system (IIS) or incomplete decision table (IDT), 
because some object attribute values may miss for 
measurement error or data collecting limitations, such an 
indiscernibility relation cannot be constructed, owing to that the 
missing data (or null value) cannot be compared with other 
values. Fortunately, scientists have explored two main methods 
currently dispose such a case [6], [8]. One is to fill out missing 
values by appropriate values, e.g. means or frequent appeared 
values, to let the IIS or IDT be complete. This method is called 
indirect one. The other is to let the system or table remain 
unchanged but extend the equivalence relation to 
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non-equivalence relation to process it. This method is called 
direct method. Unlike the indirect method, the direct method 
preserves the originality of the system and develops many new 
approaches to mine knowledge from the system. It has attracted 
interests from many scientists and obtained many meaningful 
research results. Unknown attribute value or null value has two 
different semantic meanings in IIS. One is that unknown 
attribute value is missing right now but it really exists. The 
other is that the value is absent and is prohibited to be compared 
with others. 

Under the first semantic explanation, scientists have already 
suggested many approaches. The mainly processing ways are to 
expand the relation among objects. For example, in [4], a 
tolerance relation is put forward and according to tolerance 
relation, the tolerance class and generalized decision function 
are also formed to replace equivalence class and discernibility 
function respectively to acquire generalized decision rules. In 
[5], [6], non-symmetric similarity relation is suggested. In [7], 
limited tolerant relation is proposed for exerting stricter 
condition on tolerance relation. In [8], maximal consistent 
block technique for rule acquisition is explored. In [9], different 
approximations are discussed from information granules view 
and based on different coverings. In [10], a generalized rough 
set model with compatibility kernels is discussed. In [11], a 
variable precision rough set model is proposed. In [12], [13], 
algorithms to solve different upper and lower approximations 
are designed. In [14]-[16], multi- granular rough set models in 
IIS are suggested. In [17]-[19], some expanded rough set 
models are introduced and studied. In [20], an application of 
expanded rough set models to radar detection is researched.  

Based on the first semantic explanation about missing data 
and compared to complete information system, the present 
paper mainly studies some special properties of 
dispensable/indispensable attribute, knowledge dependency, 
and knowledge dependency degree and etc. in IIS. It discusses 
relations between tolerance class and indispensable attribute, 
dispensable attribute, knowledge dependency in IIS. 
Depending on different situations, it newly defines the concepts 
of knowledge dependency degree for IIS [21]. It proves 
reflexivity, transitivity, augmentation, decomposition and 
merges laws about knowledge dependency in IIS. It also gives 
and proves that knowledge dependency degree for transferring, 
augmenting, decomposing satisfies some laws. An algorithm, 
based on knowledge dependency in IIS, to find attribute 
reduction is designed. The work is a contribution to 
discriminate some characters in IIS from complete information 
system in rough set model.  

Studies on Properties of Knowledge Dependency and 
Reduction Algorithm in Tolerance Rough Set Model 

Chen Wu, Lijuan Wang 

R 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:3, 2017

415

 

 

II. DEFINITIONS AND CONCEPTS 

Let IIS=(U,AT=A {d},V,f) be an IIS or decision table [4], 
where U is a finite non-empty set of objects, A is the finite 
non-empty set of condition attributes d is a decision attribute. 
AT is the entire attribute set. For  aAT, a:V Va, where 
Va is the value set of a. For an object, any attribute value may be 
missed. The missed value can be called null value (denoted by 
*). That is, for   a  AT, we may have *  Va. 
V= Va(aAT) is the set of all attribute values. 
Definition 1. For  B  AT in IIS, T(B)={(x,y)|  a B 
(f(x,a)=f(y,a) f(x, a)=*   f(y,a)=*)} is called the tolerance 
relation on U. T(a) is used to be as the short form of T(B)= 
T({a}),i.e., B={a}is a singleton set. Obviously, T(B) is of 
reflexivity and symmetry on U. SB(x)={y|(x,y)T(B)} is called 
the tolerance class referred to x as generator. Sa(x) is used to be 
a short form of SB(x)= S{a}(x), if B={a} is a singleton set. 
U/T(B) ={SB(x)|xU}, U/B for short, is called a knowledge 
system or a complete cover on U. 
Definition 2. For   X  U,  B  AT, B_(X)={y|y U, 

SB(y)X} is the lower approximation of X; B_(X)={y|yU, 

SB(y)  X  } is the upper approximation of X. 

Definition 3. Let BAT, B  . If T(B)=T(B-{a}) for aB, 

then a is redundant or dispensable in B, otherwise a is 
indispensable. B is independent, if  aB is indispensable in 
B, otherwise B is dependent. 
Theorem 1. If aB is redundant in B, bB and for   xU 
Sa(x)= Sb(x), then a is also redundant in B. 
Proof. Since a B is redundant in B, i.e., T(B)=T(B-{a}), 
 x U, SB-{a}(x)=SB(x). SB(x)=  Se(x) (e B)=  Se(x) 
(e B-{a})=  Se(x)(e B-{b})=SB-{b}(x). Therefore, T(B)= 
T(B-{b}).  So b is also redundant in B. 
Definition 4. Let N BAT. If T(N) =T(B) and for any M 

N T(M)  T(B), then N is called a reduction of B. 
Theorem 2. Let B  AT, a  B. If for   x  U, 
Sa(x)=SB-{a}(y) (y Sa(x)), then a is redundant in B, i.e., 
T(B-{a})=T(B). 
Proof. Since aB, T(B) T(B-{a}). Hence, the next thing is 

only to prove T(B-{a}) T(B). Because   (x,y) T(B-{a}) , 

y SB-{a}(y)  SB-{a}(y) (y Sa(x))=Sa(x). Therefore, (x,y) 

T(a). It means that T(B-{a})  T(a) . So T(B)= T(B-{a}) 

T(a)  T(B-{a}). It follows that T(B-{a})  T(B). So, 
T(B-{a})= T(B). 

Theorem 3. Let BAT. If T(B-{a})=T(B), then for  xU, 

Sa(x) SB-{a}(y) (ySa(x)).  
Proof. Take any z  Sa(x). Since z   SB-{a}(z), thus, 
zSB-{a}(y) (ySa(x)). So, Sa(x) SB-{a}(y) (ySa(x)) . 

Theorem 4. Let B A, aB is indispensable in B if, and only 

if  x,yU, y SB-{a}(x), y Sa(x). 

Proof. " " : It is clear that B-{a}B, T(B)  T(B-{a}). a is 

indispensable in B, so T(B-{a})  T(B) . It follows that 
T(B)  T(B-{a}). Furthermore,  x,y U, (x,y) T(B-{a}), 
(x,y)  T(B) . It follows that (x,y)  T(a), otherwise, 

(x,y)T(B). Thus, ySB-{a}(x), ySa(x) .  

" " : It is clear again that B-{a}B, T(B) T(B-{a}). If 

aB is redundant in B, i.e. T(B -{a})=T(B), then for  x,yU, 
(x,y)  T(B-{a}) =T(B) means that (x,y)  T(a), 
(x,y)  T(B-{a}). Therefore, y  SB-{a}(x), y  Sa(x). It 
contradicts to the given condition. So aB is indispensable in 
B. 
Definition 5. Attribute set N is functionally dependent on 
attribute set B in IIS, denoted by B  N, if and only if 
T(B) T(N). If attribute set N is functionally dependent on 
attribute set B, attribute set N is also called a derived one by 
attribute set B. 
Theorem 5. If T(B-{a}) T(B) for aB, then a is redundant in 

B. 
Proof. It is clear that B-{a}  B, T(B)  T(B-{a}). Now 

T(B-{a})T(B), so T(B-{a})=T(B), i.e. a is redundant in B. 

Theorem 6. If B-{a}B for aB, then a is redundant in B.  
Proof. B-{a}B means that T(B-{a}) T(B) according to 

Definition 5. It is clear B-{a}B, T(B) T(B-{a}). Hence, 

T(B-{a})=T(B), i.e. a is redundant in B. 
Theorem 7. If T(B-{a})=T(a) for aB, then a is redundant in 
B. 
Proof. If T(B-{a})=T(a), then T(B)= T(B-{a}) T(a)=T(a). 
Hence, T(B-{a})= T(B), i.e. a is redundant in B. 
Theorem 8. If B-{a} a and aB-{a} for aB, then a is 
redundant in B. 
Proof. B-{a} a and aB-{a} mean T(B-{a}) T(a) and 
T(a) T(B-{a}), that is T(B-{a})=T(a). According to the above 

theorem, a is redundant in B. In complete information system, it 
holds that B  N, T(B  N)= T(B) and POSB(N)=U are 
equivalent for B,N AT. But in IIS, this relationship might be 
always true. We only have the following results. 
Theorem 9. For IIS, let B,N  AT, the following two 
expression are equivalent: 
1. BN;  
2. T(B  N)= T(B).  
Proof. (1)(2): BN means that T(B) T(N). Hence, T(B 

 N) = T(B)  T( N) = T(B). So, T(B  N)= T(B). 
(2)(1): T(B  N)=T(B) means that T(B  N)=T(B) 
 T(N)=T(B) . It follows that T(B)  T(N). That is. B N. 

Therefore, (1) and (2) are equivalent. 
Theorem 10. Let B  AT, aAT. If B a, then Sa(x)   

 SB(y)( ySa(x)) for  xU.     

Proof. Take  zSa(x). zSB(z)  SB(y)( ySa(x)). So 

Sa(x)  SB(y)( ySa(x)) for z is arbitrarily taken from Sa(x). 

Theorem 11. Let B AT. If for  xU, Sa(x)= SB(y)( y 

Sa(x)), then B a. 
Proof. Since B a iff T(B) T(a), T(B)  T(a) is only the 

target to be proved. For   (x,y) T(B), y SB(x). Since 
xSa(x), ySB(x)  SB(y) (ySa(x)) =Sa(x),ySa(x). Lt 

follows that (x,y)  T(a).Therefore, T(B) T(a).  

Whether aB or aB, the conclusion in the above theorem 
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is always valid. 
Theorem 12. Let aBAT. If Sa(x)= SB-{a}(y)( ySa(x)) 

for  xU, then a is redundant in B. 
Proof. According to Theorem 11, B-{a} a. It follows that 
T(B-{a})  T(a). It is clear that T(B)   T(B -{a}). Take 
(x,y) T(B-{a}). y SB-{a}(x). Since x Sa(x), y SB-{a}(x) 
  SB-{a}(y)(y Sa(x))=Sa(x), i.e., y Sa(x).So,(x,y) T(a). 
Hence, (x,y)  T(B-{a}) and (x,y)  T(a).Thus, (x,y)   
T(B-{a})  T(a) =T(B ). It follows that T(B-{a}) T(B). So, 

T(B-{a}) =T(B) . That is, a is redundant in B. B N does not 
mean that for any X U/T(N), B_(X)=X . B a and aB do 
not imply that a is redundant in B. That is, B a, aB do not 
imply that T(B-{a})=T(B). That is why only two equivalent 
expressions are obtained in Theorem 9. 
Example 1. An IDT about cars is shown in Table I, where P, M, 
S, X represent Price, Mileage, Size and Max-Speed 
respectively. d =D is the decision attribute [4]. 

 
TABLE I 

AN IDT DESCRIBED CARS 

U P M S X D 

1 high low full low good 

2 low * full low good 

3 * * compact low poor 

4 high * full high good 

5 * * full high excellent 

6 low high full * good 

 
Let A={P,M,S,X},B={P,S,X}. T(A)=T(B). SA(1)= SB(1)={1} , 

SA(2)=SB(2)={2,6}, SA(3)=SB(3)={3}, SA(4)= SB(4)={4,5}, 
SA(5) = SB(5)={4,5,6}, SA(6)= SB(6)={2,5,6}. A is dependent on 
B. It can be verified that B is a reduction of A. But for any X 
 U/B, B_(X)=X does not always hold. For instance, 
B_({2,6})={2}  {2,6}, B_({4,5}) ={4} {4,5}, B_({4,5,6}) 
= {4,5} {4,5,6}, B_({2,5,6})={2,6} {2,5,6}. So POSA(B)= 
U may not be always true. Because B is a reduction of A, M is 
dispensable in A, AM. 

In Table I, SM(1)={1,2,3,4,5}, SA-{M}(1)={1},SA-{M}(2)= 
{2,6}, SA-{M}(3)={3}, SA-{M}(4)= {4,5}, SA-{M}(5)={4,5,6}, 
SM(1)={1,2, 3,4,5}   SA-{M}(y)(y SM(1)) ={1,2,3,4,5,6}. 
We only have SM(1)={1,2,3,4,5}  SA-{M}(y)(ySM(1)).  

III. ATTRIBUTE DEPENDENCY 

Theorem 13. If BN and BN , then POSB(N)=  B_(X) 
(XU/T(N))=U. 
Proof. It is clear that POSB(N)U. So it is needed only prove 

UPOSB(N). Since BN and BN, hence, T(N) T(B), 

T(B) T(N). Thus, T(B)=T(N). So, SB(y)=SN(y) for any yU. 

Take  yU and SN(y)U/T(N). ySN(y)   {yU|SM(y) 

=SN(y)  SN(y)}(SN(y)  U/T(N))=POSB(N). That is, y   

POSB(N). So, U POSB(N). Therefore, POSB(N)=  B_(X)(X 

U/T(N))=U. POSB(N)=  B_(X)(XU/T(N))=U does not 
imply BN. 
Theorem 14. Let B, N, R, Q AT. Then the following laws of 

reflexivity, transitivity, left merge, decomposition, pseudo 

transitivity, merge and augmentation hold: 
1. if N B AT, then B N. 

2. if B N and N R, then B R. 
3. if B N and N R, then B  NR. 
4. if B N R, then B N and B R. 
5. if B N and N  RN, then B  RN. 
6. if B N and RN, then B  RN N. 
7. if B N and B R, then RN. 

Proof.  
1. Since N B, T(B) T(N) . Thus B N. 

2. T(B)T(N) and T(N) T(R) imply that T(B)T(R).  

3. From T(B)  T(N) and T(N)  T(R), T(B  N)= 
T(B) T(N) T(N) T(R).  

4. T(B) T(N R)=T(N) T(R) means that T(B) T(N), 

T(B) T(R). 

5. T(B)T(N) and T(N  R)= T(Q) mean that T(N) T(R) 

 T(N), T(B)  T(R)  T(N)  T(R)  T(N), i.e., T(B 

 R) T(N). 

6. T(B)  T(N) and T(R)  T(N) imply that T(B)  T(R) 

 T(N) T(N),i.e., T(B  R) T(N  N). 

7. T(B)T(N) and T(R) T(B) imply that T(R) T(N). That 

is, RN. 
The decomposition law (4) can be equivalently rewritten as: 

(4’) if B N and RN, then B R. 

Proof. T(B) T(N) and T(N) T(R) imply that T(B)T(R). 

The augmentation law (7) can be equivalently rewritten as: 
(7’) if BN, RAT , then B R N R. 

Example 2. In Table I, let N=P  M, then P N, MN, 
SN(1)=SN(4)={1,3,4,5},SN(2)=SN(6)={2,3,5,6}, SN(3)=SN(5)= 
{1, 2,…,6}. So we know for  x U, SN (x) SP (x), SN (x) 

 SM (x). So, N P, NM. 

Theorem 15. BN if, and only if for   m B and  n 
N, m n. 

Theorem 16. Let m, n AT. m n if, and only if for  x1,x2 

 U, x1  x2, f(x1,m)=f(x2,m)∨f(x1,m)=* ∨f(x2,m)=* then 
f(x1,n)=f(x2,n)∨f(x1,n) =*∨f(x2,n) =*. 
Proof. m n iff T({m}) T({n}). Hence, if m n, f(x1,m)= 

m(x2)∨f(x1,m)=*∨f(x2,m)=*, i.e., (x1,x2 )  T({m}), then 
f(x1,n)=f(x2,n)∨f(x1,n)=*∨f(x2,n)=*,i.e.,(x1,x2)  T({n}). So, 
m  n implies T({m})  T({n}). Conversely, if 

f(x1,m)=f(x2,m)∨f(x1,m)=*∨f(x2,m)=*, i.e., (x1, x2) T({m}), 
from T({m})  T({n}), (x1, x2)  T({n}), i.e., 

f(x1,n)=f(x2,n)∨f(x1,n)=* ∨f(x2,n) =*, that is m n. 
In complete information system, mn iff f(x1,m)=f(x2,m) 

means f(x1,n)=f(x1n). But here it is different. This is because 
there exist null values in IIS. 

In complete information system, the definition of knowledge 
dependency degree in rough set model is given by using 
positive set. In IIS, if POSB(N) is defined by tolerance class 
instead of equivalence class, it will be as:  
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POSB (N)= / ( ) / ( ) { | }X U T N K U T B K K X     

 

If the knowledge dependence degree k in B k N is still 
defined by k=rB (N)=|POSB(N)|/|U|, after analyzing that as long 
as there is an attribute a N in attribute subset N and for x 

U, f(x,a)=*, Sa(x)=U, it may have POSB (N)=U, therefore 
k=1. N is completely dependent on B. This might be the wrong 
result. For example, because f(P,1)=f(P,4)=high, and 
f(X,1)=low, f (X,4)=high, i.e., f(X,1) f (X,4) for attribute P and 
attribute X in Table I, thus P is obviously not dependent on X. 
But according to the formula, it is obtained that POSB (X)=U, 
therefore k=rB(X)=1, P is completely dependent on X. That is 
not true. So knowledge dependency degree in IIS has to be 
newly defined. In the following, we are trying to give some 
definitions of it in two cases. 
Case 1. B, N AT, no attribute in N contains null value *. In 

this case, knowledge dependency degree k in B k N can 
be given by equivalence classes of N and tolerance classes of B. 
Definition 6. For  B, NAT, the extended dependence set of 
N on B is as: 
 

POSB (N)= / ( ) / ( ) { | }X U IND N K U T B K K X     

 

If N =  , then let POSB (N)=  . In B k N, the 
dependency degree k is calculated by k=rB (N)= k(B,N)=POSB 

(N)/|U|. Obviously, 0 k 1. If k=0, N is not dependent on B; If 
k=1, N is completely dependent on B, denoted by BN. 
Case 2. There exists at least one attribute in both attribute 
subsets B and N contains null attribute value *.  

Definition 7. In B k N, the knowledge dependency 
degree is computed by 
 

k=k(B,N)=
1 | ( ) ( ) |

| | | ( ) |
B N

x U B

S x S x

U S x

  

 

It is obvious that 0 k 1. Because for any B, NAT, we 

have x  SB(x)   , and x  SN(x)   , and x  SB(x) 

 SN(x)   , therefore, 0<k  1 in general, k=0 only if N 

= . 
If N is dependent on B, i.e., B N then the dependency 

degree k=1 in B k N by the computation formula. 

Theorem 17. For  B, NAT, BN if, and only if for x 

U, SB(x) SN(x). 

Proof. If for  x U, SB(x) SN(x), then SB(x) SN(x) =SB(x). 

Hence, k=1 and B N. Conversely, if B k N, k=1, then 

| ( ) ( ) |B N
x U

S x S x


  / | ( ) | | | .BS x U  Hence, SB(x)  SN(x). 

Example 3. In Table I, for  x U, SM(x) SM(x). So, M 

M. 
Example 4. In Table I, SP(1)= SP(4)={1,3,4,5},SP(2)= 

SP(6)={2,3,5,6},SP(3)=SP(5)={1,2,3,4,5,6}; SM(1)={1,2,3,4,5}, 
SM(2)=SM(3)=SM(4)=SM(5)={1,2,3,4,5,6} SM(6)={2,3,4,5,6}. In 
order to avoid confusion, temporarily use Z to represent S(Size), 
then SZ(1)=SZ(2)=SZ(4)=SZ(5)=SZ(6) ={1,2,4,5,6}, SZ(3)={3}; 
SX(1)=SX(2)=SX(3)={1,2,3,6},SX(4)=SX(5)={4,5,6},SX(6)={1, 2, 

3,4,5,6}.So P M. P,S,X M. P 1k S, P 2k X, 

X 3k P, S 4k X, X 5k S, where k1=121/180 
≈0.67, k2=53/72≈0.74, k3=55/72≈0.93, k4=11/15 ≈0.73, k5= 
55/144≈0.76. 

IV. PROPERTIES OF KNOWLEDGE DEPENDENCY AND 

KNOWLEDGE DEPENDENCY DEGREE  

Knowledge dependency and knowledge dependency degree 
satisfy some properties. 
Theorem 18. Let (U,AT,V,f) be an IIS. For  B,N, LAT, we 

obtain following results. 

1. Let BN, N 1k L, B 2k L. If for x U, 
|SB(x)  SL(x)|/|SB(x)|  |SN(x)   SL(x)|/|SN(x)|, then 

2k  1k . 

2. If B 1kN, N L, B 2kL, then 2k  1k . 

Proof.  
1. B  N means that for  x U, SB(x)  SN(x). Hence 

SL(x)  SB(x)  SL(x)  SN(x). Thus, SB(x)  SL(x) 

 SN(x) SL(x). |SB(x) SL(x)|  |SN(x) SL(x)|, |SB(x)| 

 |SN(x)|. If for x U, |SB(x) SL(x)|/|SP(x)|  |SN(x)  
SL(x)|/|SN(x)|, then 2k  1k . 

2. N   L means that for  x U, SN(x)  SL(x). Hence, 

SB(x)  SN(x)  SB(x)  SL(x), |SB(x)  SN(x)|/|SB(x)| 

 |SB(x) SL(x)|/ |SB(x)|. Thus, 2k  1k . 

Example 5. 

1. In Table I, X 1k P, P  M, X 2kM, where 
k1=55/72≈0.93,k2=55/72 ≈0.93, and 2k  1k .  

2. PM, M 1kX, P 2k X, where k1=59/90 ≈0.66, 
k2=19/24≈0.79, but 2k  1k  because of the condition of 

the theorem is not satisfied. For example, |SP(2)   
SL(2)|/|SP(2)|=3/4, |SN(2) SL(2)|/ |SN(2)|=4/6, and 3/4 is 
not less or equal to 4/6. 

In Theorem 18, the transitivity of knowledge dependency 
and knowledge dependency degree are studied. The 
dependency degrees before and after transferring are compared. 
Theorem 18(i) shows that in certain case knowledge 
dependency degree may increase or not. Theorem 18(ii) shows 
that in the case the dependency degree increases after 
transferring.  
Theorem 19. Let (U,AT,V,f) be an IIS. For  B,N,LAT, we 

obtain following results. 

1. Let B 1kN and B  L 2kN. If for x U, 
|SB∪L(x)  SN(x)|/|SB∪L(x)|  |SB(x)  SN(x)|/|SB(x)|, then 
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2k  1k .  

2. If B 1kN and B 2kN L, then 2k  1k . 

Proof. (i) B  B  L,  x  U, SB∪L(x)  SB(x). Hence, 

SB∪L(x)  SN(x)  SB(x)  SN(x). |SB∪L(x)|   |SB(x)|, 

|SB∪L(x)  SN(x)|  |SB(x)  SN(x)|. Thus, if for  x  U, 
|SB∪L(x)  SN(x)|/|SB∪L(x)|  |SB(x)  SN(x)|/|SB(x)|, then 

2k  1k .  

(ii) N  N  L,  x  U, SN∪L(x)  SN(x). Hence, 

SB(x)  SN∪L(x)  SB(x)  SN(x). |SB(x)   SN∪L(x)|/|SB(x)| 

 |SB(x) SN(x)|/|SB(x)|. Thus, 2k  1k . 

Example 6. (i) In Table I, let B={X } {S}. SB(1)={1,2,6}, 
SB(2)={1,2,6}, SB(3)={3}, SB(4)= SB(5)={4,5,6}, SB(6)={1,2, 

4,5,6}, P 1kX, k1= 19/24≈0.79. P 2kB={X}  {S}, 
k2=4/9≈0.44. 2k  1k . 

(ii) Let L={P}  {S}. From Table I, SL(1)={1,4,5}, SL(2)= 
SL(6)={2,5,6}, SL(3)={3},SL(4)={1,4,5}, SL(5) ={1,2,4, 5,6}. In 

P 1kX and L 2kX, k1=19/24 ≈0.79, k2=32/45≈0.71, 

2k  1k . But it is not hold for  x  U, 

|SP∪L(x)  SN(x)|/|SP∪L(x)|   |SP(x)  SN(x)|/|SP(x)|. For 
example, |SP∪L(3) SN(3)|/|SP∪L(3)| =1, |SP(3)  SN(3)| /|SP(3)| 
=2/3, but 1>2/3. 

Theorem 19 (i) shows that dependency degree of the same 
knowledge to be dependent on much knowledge becomes 
lesser if satisfying certain conditions. Theorem 19 (ii) shows 
that for the same dependent knowledge, the much the 
knowledge, the less the dependency degree. 

Theorem 20. Let B, N, LAT, NB, L 1kB, L 2kN. 

Then 2k  1k . 

Proof. N  B means T(B)  T(N). It follows that B  N. 

Hence, for x U, SB(x) SN(x), SL(x) SB(x)  SL(x) SN 

(x), |SL(x)  SB(x)|  |SL (x)  SN (x)|,|SL(x)  SB(x)|/|SL(x)| 
 |SL(x) SN (x)|/|SL(x)|. Thus, 2k  1k . 

Example 7. In Table I, let B={X}  {S}, then X  B, 

P 1k B, k1=4/9≈0.44; P 2k X, k2=19/24≈0.79, 

2k  1k .  

Theorem 20 expresses if attribute subset N  B, then the 

finer attribute subset N has a bigger knowledge dependency 
degree than B has on the same attribute subset L. 

Theorem 21. Let B,N,L AT, B L 1kN, B 2kN, 

L 3k N. If for  x  U, |SB∪L(x)  SN 

(x)|/|SB∪L(x)  |SB(x)  SN(x)|/|SB(x)|,|SB∪L(x)  SN(x)|/|SB∪L(x)| 
 |SL(x) SN(x)|/|SL(x)|. Thus min{ 2k ,k3}  1k . 

Proof. B  B  L, L  B  L, so SB∪L(x)  SB(x), 

SB∪L(x)  SL(x). Hence SB∪L(x)  SN (x)   SB(x)  SN(x), 

SB∪L(x)  SN(x)  SL(x)  SN(x), |SB∪L(x)  SN (x)|   |SB(x) 

 SN(x)|, |SB∪L(x)  SN(x)|  |SL(x)  SN(x)|, |SB∪L(x)| 

 |SB(x)|,|SB∪L(x)|  |SL(x)|. If for  x U, |SB∪L(x) SN(x)| 

/|SB∪L(x)|  |SB(x)  SN(x)|/|SB(x)|, |SB∪L(x)   SN(x)|/|SB∪L(x)| 
  |SL(x)  SN(x)|/|SL(x)| , then 1k  2k , 1k  k3, i.e., 

min{ 2k ,k3} 1k . 

Example 8. In Table I, let L={P} {S}, we obtain L 1kX, 

where k1≈0.711. Before we have already obtained P 2kX, 

S 3k X, where k2≈ 0.736, k3≈0.733. It is clear that 
min{ 2k ,k3} 1k .  

Theorem 21 shows that knowledge dependency degree on 
partial knowledge is bigger than on entire knowledge. This 
means decomposition rule in IIS is still effective.  

Theorem 22. Let B, N, L  AT, B  N, L 1k N, 

L 2kB. Then 2k  1k . 

Proof. BN implies that for  x U, SB(x) SN(x). Hence, 

SL(x)  SB(x)  SL(x)  SN(x). Thus, |SL(x)  SB(x)| 

 |SL(x)  SN(x)|, |SL(x)  SB(x)| /|SL(x)|  |SL(x)   
SN(x)|/|SL(x)|. Therefore, 2k  1k . 

Theorem 23. Let B, N, L  AT, B  N, B 1k L, 

N 2kL. If for  x U, | SB(x) SL(x)| /|SB(x)| | SN(x) 
 SL(x)|/|SN(x)|, then 2k  1k . 

Proof. BN means that for x U, SB(x) SN(x). Hence, 
SL(x)  SB(x)  SL(x)  SN(x), i.e., SB(x)  SL(x)  SN(x) 

 SL(x). Thus, |SB(x)  SL(x)|  |SN(x)  SL(x)|, |SB(x)| 
 |SN(x)|. Furthermore, if for  x U,|SB(x)  SL(x)|/|SB(x)| 
 |SN(x) SL(x)|/|SN(x)| , then 2k  1k . 

V.  A REDUCTION ALGORITHM 

For an IDT, if T (A-{a} { }d )  T (A { }d ), i.e., 

A-{a} { }d  A { }d , then a is redundant in A { }d . 

IfA-{a}  A, i.e. T(A-{a})  T (A) , then 

A-{a} { }d A { }d or T (A-{a} { }d )  T (A { }d ). 

That means k(A-{a},A)=1 implies k(A-{a} { }d , A { }d ) 

=1. Based on such a fact, a new attribute reduction algorithm 
under the guidance of knowledge dependency degree about 
IDT can be designed as follows. 
 
Algorithm. A reduction algorithm of IDT 

Step 1. B<=A. 

Step 2. For   a B, calculate k(B-{a},B). 
Step 3. Find a such that k(B-{a}, B)=max{k(B-{b}, B)|b B}. If 

k(B -{a} ,B)=1, then a is redundant in B. Set BB-{a}. If there are 
many attributes satisfying k(B-{a},B)=1 simultaneously, take any one 
of them as a redundant attribute and delete it from B. Go to Step 2. 

Step 4. B is a reduction of A, output B, end the algorithm. 
 
Example 9. For the IDT shown in Table I, according to the 
reduction algorithm, let B=A at first, we find that attribute M 
satisfies k(B-{M},B)=1, so M is a redundant attribute and can be 
erased from the attribute set B. Any other attribute b B-{M} 
have not such a degree k(B-{b},B)=1, i,e., all other attributes 
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are indispensable. So the unique reduction {P, S, X} is finally 
found, see Table II. 

 
TABLE II 

A REDUCTION OF TABLE I  

U P S X D 

1 high full low good 

2 low full low good 

3 * compact low poor 

4 high full high good 

5 * full high excellent 

6 low full * good 

VI. CONCLUSIONS 

Using tolerance rough set model, the present paper first 
studies the characters of indispensable attribute and dispensable 
attribute in attribute set. Then it discusses the relationships 
between tolerance class and indispensable attribute and 
dispensable attribute and knowledge dependency, obtains 
several necessary and/or sufficient theorems. Next we 
discussed how to define knowledge dependence degree in two 
cases –one is that no decision attribute takes missing value; the 
another is that at least one decision attribute takes a missing 
value. We define a knowledge dependence degree computation 
form for the latter case.  We prove that knowledge dependency 
satisfies reflexivity, transitivity, augmentation, and 
decomposition law in IIS. But that knowledge dependence 
degree satisfies laws of transitivity, augmentation, and 
decomposition should satisfies some special conditions. 
According to the research results in the present paper, an 
algorithm solving attribute reduction of IDT by using 
dependency degree is designed. Through an example, the 
correctness of the reduction algorithm is consolidated.  
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