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 
Abstract—Some invariant properties of incomplete information 

systems homomorphism are studied in this paper. Demand conditions 
of tolerance class, attribute reduction, indispensable attribute and 
dispensable attribute being invariant under homomorphism in 
incomplete information system are revealed and discussed. The 
existing condition of endohomomorphism on an incomplete 
information system is also explored. It establishes some theoretical 
foundations for further investigations on incomplete information 
systems in rough set theory, like in information systems. 
 

Keywords—Attribute reduction, homomorphism, incomplete 
information system, rough set, tolerance relation. 

I. INTRODUCTION 

OUGH set theory is a useful mathematics tool for 
analyzing data. It was first proposed by Pawlak in 1982 [7]. 

Because it can process inconsistent, imprecise and incomplete 
information, it is successively applied in many fields such as 
pattern recognition, machine learning, decision making and 
data mining [8]. It attracts wide interests by various national 
scholars from all over the world. But traditional rough set 
model is based on complete information systems, i.e. all 
attribute values of each object in the given study universe are 
known. However, due to the data measuring error or the 
limitation condition in acquiring data, incomplete information 
system (IIS) (i.e. possibly some attribute values of objects are 
unknown) is always in front of us. 

Recently there are two main approaches to deal with IIS. One 
is called direct approach in which related concepts in complete 
information system in rough set theory are appropriately 
extended to the case of IIS. The other is called indirect 
approach in which domain experts fill in missing data in IIS by 
some values such as mean value or frequent appearing value of 
the related attribute. Compared with the indirect, the direct one 
avoids the interference from expert subjective factor and is 
more objective. It has already attracted many experts’ interests 
from different study fields. There are two different semantic 
explanations about unknown attribute values in IIS. One is that 
the unknown attribute is missing but it really exists. The other is 
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absent and is not allowed to be compared with other values. 
In the direct approach area, such kind of researches has been 

done. Kryszkiewicz defines tolerance relation to process IIS 
based on the first semantic explanation. Based on the relation, 
knowledge reduction problem and etc. are deeply investigated 
by him [4]. Based on the second semantic explanation, 
Stefanowski suggests non-symmetric similarity relation [13]. 
Guoying proposes limited tolerant relation for the requiring 
condition of tolerance relation is relaxing [15]. With the 
granular points of view, Leung et al. introduce maximal 
consistent block technique for rule acquisition [5]. Wu et al. 
investigate information granules in general and complete 
covering [17]. Chen et al. discuss generalized model of rough 
set theory based on compatibility relation [1]. In order to deal 
with IIS under both semantic explanations for unknown 
attribute value simultaneously, Grzymala-Busse defines feature 
relation [2]. Many other scholars suggest some other methods. 
Anyway, building extended rough set models to study IIS has 
become a very important research topic. 

The concept of homomorphism of complete information 
system is a powerful tool to study the relationship of complete 
information systems and is first put forward by 
Grzymala-Busse et al. [3]. In [3], the authors give the 
conditions of making an information system be selective. The 
endohomomorphism of complete information system is studied 
in [6]. An endohomomorphism complete information system 
based on attribute redundancy is also built in. Several 
meaningful results such as reduction preservation, core 
preservation etc. are obtained. Reference [12] discusses 
invariant characters of information systems under some 
homomorphisms. It reveals interdependence among object 
mapping, attribute mapping and value domain mapping. It  also 
obtains some theorem results about invariant properties for 
upper and lower approximations in complete information 
system. Some other invariant properties are also explored in 
[14], [18]. Now experts even study multi-granular rough set 
models [9]-[11]. Acquiring knowledge from IIS from different 
granular views still remains as a hot topic [16], [19]. 

This paper studies some properties of IIS under the first 
semantic explanation, discusses conditions of invariant 
properties of tolerance class, attribute reduction, indispensable 
attribute and dispensable attribute in IIS under homomorphism. 
It also explores the condition of existing an 
endohomomorphism on an IIS. It lays a certain theoretical 
foundation of further studying IIS using rough set theory.  

II.  BASIC CONCEPTS 

Let S=(U,A,V,f) be an IIS [3], where U is a finite non-empty 
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set of objects, A is a finite non-empty set of condition attributes 
and decision attributes. For any aAT, a:VVa, where Va is 
called the value range of a. For each object, some attribute 
values are lost or missing, called null values. The set of all 
attribute values is denoted by V= Va(aAT). 
Definition 1. In IIS S=(U,A,V,f), for any attribute subset 
P  AT, the tolerance relation on U is defined as 

SIM(P)={(x,y)| aP(f(x,a)=f(y,a) f(x, a)=*  f(y,a)=*)}. 
If P is a singleton set, for example P={a}, then SIM(P)= 

SIM({a}) is abbreviated to be SIM(a). Obviously, SIM(P) is 
reflexive and symmetry on U. 
Definition 2. For any attribute subset P  AT, SP(x)= 
{y|(x,y)SIM(P)} is called a tolerance class generated by x as 
generator. If P is a singleton set, for example P={a}, then 
SP(x)=S{a}(x) is abbreviated by Sa(x). 
Definition 3. U/SIM(P) ={SP(x)|xU}, U/P for short, a cover 
on U, is called a knowledge system. 
Definition 4. For any X  U, P  AT, P_(X)={y|y  U, 

SP(y)  X} is called the lower approximation of X; 

P_(X)={y|yU, SP(y)  X  } is called the upper one. 

Definition 5. Let PAT, P  . If SIM(P)=SIM(P-{a}) for 

aP, then a is called dispensable or redundant in P, otherwise 
a is called indispensable. 

If each a  P is indispensable in P, then P is called 
independent, otherwise P is called dependent. 
Theorem 1. If aP is dispensable in P, bP and for any 
xU,Sa(x)= Sb(x), then a is also dispensable in P. 
Proof. Since a  P is dispensable in P, we have 
SIM(P)=SIM(P-{a}). For any x  U, SP-{a}(x)=SP(x). 
SP(x)=Sc(x)(c  P)=Sc(x) (c  P -{a})=Sc(x) (c  P-{b}) 
=SP-{b}(x). It follows that SIM(P)=SIM(P-{b}) .  So b is also 
dispensable in P. 
Definition 6. Let Q P. If Q is independent and SIM(Q)= 
SIM(P), then Q is called a reduction of P. 
Definition 7. The set consisted of all indispensable attribute in 
P is called the core of P, denoted by core(P).  

The relation of the core and reductions is core(P)= 
 Q(Q  red(P)), where red(P) is the collection of all 
reductions of P. 
Theorem 2. Let P  A. If a  P and for any x  U, 

Sa(x)=SP-{a}(y) (ySa(x)), then SIM(P-{a})=SIM(P), i.e. a is 
dispensable in P. 
Proof. Since a P, we must have SIM(P)  SIM(P-{a}). 

Therefore, we only need to prove SIM(P-{a}) SIM(P) under 
given conditions. Because for any (x,y) SIM(P-{a}) we have 
y  SP-{a}(y)   SP-{a}(y) (y  Sa(x))=Sa(x). Thus, (x,y) 

SIM(a). It follows that SIM(P-{a})  SIM(a). So SIM(P)= 

SIM(P-{a})   SIM(a)  SIM(P-{a}). That is SIM(P-{a}) 

 SIM(P). Thus, SIM(P-{a})= SIM(P). 

Theorem 3. Let P A. If aP is dispensable in P, that is 

SIM(P-{a})=SIM(P), Then  x  U, Sa(x)   SP-{a}(y) 
(ySa(x)).  
Proof. For any zSa(x), since z  SP-{a}(z), thus, zSP-{a}(y) 
(y  Sa(x)). Because z  Sa(x) is arbitrarily chosen, 

Sa(x) SP-{a}(y) (ySa(x)) holds. 

Theorem 4. Let PA. aP is dispensable in P if, and only if 

there exist x,yU such that ySa(x), ySP-{a}(x). 
Proof. Since aP is dispensable in P, SIM(P-{a})  SIM(P). 
Because P-{a}  P, SIM(P)   SIM(P-{a}). Therefore, we 

only have SIM(P)  SIM(P-{a}). Thus, there exists 
(x,y)SIM(P-{a}), (x,y)SIM(P). It must have (x,y)SIM(a), 
otherwise, (x,y)SIM(P). Furthermore, ySa(x), ySP-{a}(x). 
Since P-{a}P, SIM(P) SIM(P-{a}). If aP is dispensable 
in P, i.e. SIM(P -{a})=SIM(P), then for  (x,y)SIM(P-{a}) 
=SIM(P), we have (x,y)  SIM(a), (x,y)  SIM(P-{a}). 
Furthermore, ySa(x), ySP-{a}(x). It contradicts to the given 
condition. So aP is indispensable. 

Suppose S=(U,A,V,f) and S’=(U’,A’,V’,f’) are two IISs, 
hO:U  U’, hA: A  A’, hD: V  V’, then h=(hO, hA, 
hD):S S’ is called a mapping from S to S’. 
Definition 8. If for  xU,   aA, hD (f(x,a)=f’(hO (x), hA 
(a)), then h is called a homomorphism between S and S’. If 
S=S’, then h is called an endohomomorphism. 
Definition 9. Let f: UU be a mapping on U, DU be a 

subset of U. If f(D)=D, then D is called an invariant subset of f. 

III. INVARIANT PROPERTIES 

Lemma 1. Let S=(U,A,V,f) and S’=(U’,A’,V’, f’) be two IISs, 
h=(hO,hA, hD) be a homomorphism between IIS S and S’. If both 
S and S’ contain attribute value *, and hD(*)=*, then for any 
attribute subset PA and any object xU, we have hO(SP(x)) 

 S m(hO(x)), where m=hA(P). Especially, if hO is surjective, hD 

is 1-to-1 corresponding injection and hD(*)=*, then inverse 
conclusion also holds, i.e., hO(SP(x))=Sm(hO(x)). 
Proof. For  y’hO(SP(x)), there must have  ySP(x) such 
that   hO(y)=y’, and then  a  P, f(y,a)=f(x,a)  f(y, 
a)=*  f(x,a)=*. From the definition of homomorphism, we 
have y’=hO(y) Sm(hO(x)).So hO(SP(x))  Sm(hO(x)) for y’  
hO(SP(x)) is arbitrarily chosen. 

Now we prove that when hO is surjective, hD is one to one 
corresponding injection and hD(*)=*, hO(SP(x))=Sm(hO(x)). 
Before hO(SP(x)) Sm(hO(x)) is already proved, so now we need 

only to prove that hO(SP(x))Sm(hO(x)). 
Take y’Sm(hO(x)). Because hO is surjective, there exists 

yU such that hO(y)= y’. By the definition of homomorphism, 
for any aP, we have hD(f(y,a))=f’(hO (y), hA (a))=f’(y’, hA 
(a)).f’(hO (x), hA (a))= hD(f(x,a)).  

Since y’Sm(hO(x)), we have f’(y’, hA (a))= f’(hO (x), hA (a)) 
or f’(y’, hA (a))=* or f’(hO (x), hA (a))=*. Furthermore, we obtain 
y’  hO(SP(x)). So we always have Sm(hO(x))  hO(SP(x)). 

Therefore, under the condition that hO is surjective, hD is one to 
one corresponding injection and hD(*)=*,we have hO(SP(x))= 
Sm(hO(x)). 

From the proof of Lemma 1, we can obtain the following 
conclusion: if hO is surjective, hD is one to one corresponding 
injection and hD(*)=*, hA is surjective, the number of tolerance 
classes in S is equal to that in S’. 
Lemma 2. Let S and S’ be two IIS, hO: UU’, hA: AA’, 
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hD:VV’, h=(hO, hA, hD):S S’ is called a mapping from S to 
S’, and for h, hO be surjective, hD be 1- to-1 corresponding 
injection and hD(*)=* when both S and S’ contain *. If aA is 

redundant in A, A-{a}-h-1(hA(a)), then h-1(hA(a))  A is 

also redundant in A. 
Proof. Take q’ A' and q’=hA(a). For any xU and any b’h 

A
-1 (q’), from Lemma 1, hO (Sa(x))= Sq’(hO (x))= hO(Sb(x)). We 

assert that Sa(x)= Sb(x). Otherwise, there exists an element 
x0U such that Sa(x0)  Sb(x0). Then there exists x’Sa(x0), 
x’  Sb(x0) or x’’  Sa(x0), x’’  Sb(x0) In the first case, 
f(x’,b)  f(x0,b) f(x’,b)  * f(x0,b)  *,f(x’,a)=f(x0,a) f(x’,
a)=* f(x0,a)=*.  

Since hD is one to one corresponding injection and hD(*)=*, 
thus *  hD (f(x’,b))  hD (f(x0,b))  *. *  f’(hO(x’),q’)=hD 
(f(x’,b))  hD (f(x0,b))= f’(hO(x0),q’)  *. So, *  hD 
(f(x’,b))  f’(hO(x0),q’)  *. Therefore, from f(x’,a)=f(x0,a) 
 f(x’,a)=* f(x0,a)=*, we obtain  
1. If f(x’,a)=f(x0,a)  *, then we have *  hD(f(x’,a))= 

hD(f(x0,a))  *, since hD is an one-to-one corresponding 
injection and hD(*)=* when both S and S’ contain attribute 
value *. Therefore,  f’(hO(x’),q’) =hD (f(x’,a)) =hD (f(x0,a))= 
f’(hO(x0),q’)  *. This contradicts to 
f’(hO(x’),q’) f’(hO(x0),q’). 

2. When f(x’,a)=*, f(x0,a)  *, since hD is one-to-one  
corresponding injection and hD(*)=*, then f’(hO (x’), q’)= 
hD(f(x’,a))=hD(*)=*. This contradicts to f’(hO (x’), q’)  *. 

3. When f(x’,a)  *, f(x0,a)=*, since hD is one-to-one 
corresponding injection and hD(*)=*, then f’(hO (x0), q’)= 
hD (f(x0,a))=hD(*)=*. This contradicts to f’(hO (x0), q’)  *. 

4. When f(x’,a)=*, f(x0,a)=*, for hD is 1-to-1 corresponding 
injection, hD(*)=*, then f’(hO(x’),q’) =hD(f(x’,a))= hD(*)=*, 
f’(hO(x0), q’) =hD(f(x0,a))=hD(*)=*. These contradict to 
f’(hO(x’), q’)  * and f’(hO(x0),q’)  * respectively. 

That means Sa(x)= Sb(x). In the other case, a contradiction 
can be also deduced. So the above assertion is true. Therefore, 

a  is redundant in A, and if A-{a}-h-1(hA(a)) , b is also 

redundant in A. From that b  is arbitrarily chosen, we obtain all 
attributes in h-1(q’)=h-1(hA(a)) are redundant in A.  
Lemma 3. Let h=(hO,hA,hD) be a homomorphism between S 
and S’. If for h we have: both hO and hA are surjective, hD is an 
one to one corresponding injection and hD(*)=* when both S 
and S’ contain *, then for any attribute subset P  A, all 

attributes in P are redundant in A, then if hA (P) A’, all 
attributes in hA (P) are redundant in S’. 
Proof. From the definition of redundancy, we just only need to 
prove that SIM(A’)= SIM(A’-P’), where P’ =hA (P). Because 
A’-P’A’, SIM(A’) SIM(A’-P’). Now we are to prove the 

inverse inclusion is held, i.e. SIM(A’-P’)  SIM(A’). Let 

x’,y’U’, satisfy (x’,y’)SIM(A’-P’), i.e., y’SA’-P’(x’). Since 
hA is surjective, A’= hA(A). For hO is surjective, there exists 
x U such that hO (x) = x’. From Lemma 1, denote r= 
A-h-1

A(P’),t= hA(r), we have y’ SA'-P'(x')=St(x')= St(hO (x))= hO 
(Sr(x)). So, there exists y  Sr(x) such that hO(y)=y’ and 
(y,x)SIM(r).  

Because P is redundant in S, from Lemma 2, h-1
A(P’) is also 

redundant in A, then (x,y)  SIM(A). Thus, (hO(x), 
hO(y)) SIM(hA(A)), that is, (x’,y’) SIM(A’). This means 
SIM(A’-P’) SIM(A’). 
Proposition. Let h=(hO,hA,hD) be a homomorphism between S 
and S’. If for h, we have that both hO and hA are one to one 
corresponding injection and hD(*)=* when both S and S’ 
contain *. If P  A is redundant in S,  a  P, 

A-{a}-h-1
A(hA(a))   , hA(P)  A’, then hA(P) is also 

redundant in S’.  
Proof. Let A1=hA(A). Then S1=(U’,A1,V1,f1) is a subsystem of 
S  , where V1= Va’(a’ hA(A)), f1 is the restriction of f’ on 
U’ A1. Thus, h satisfies conditions given in Lemma 3 from S 
to S1. So hA(P) is redundant in S1. Since A1  A’, hA(P) is 

redundant in A’, that is, hA(P) is redundant in S’. 
Theorem 5. Let S=(U,A,V,f) be an IIS. Suppose P A, A-P is 

redundant in A and for each a  A-P there exists a’P such 
that SIM(a)  SIM(a’). Use S’ to denote IIS (U,A,V’,f’), where 
V’= Va(aP), f’ is the restriction of f on U P, then there exists 
a homomorphism h from S to S’ and it is an 
endohomomorphism on S. 
Proof. If P=A, then the theorem is obviously correct. So we 
assume that P A. Define a mapping h=(hO,hA,hD):S S’ as 
follows: hO=1U is the identity mapping on U. hA(a)=a, if aP; 
hA(a)=a’, if aA-P, SIM(a) =SIM(a’).  

For  x  U, let hD(f(x,a))=f(x,a), if a  P; hD(f(x,a)) 
=f(x,a’),if aA-P, a’= hA(a). Next, we explain the rationality of 
the definition of hD. For any fixed aA-P,if f(x,a)=f(y,a) or 
f(x,a))=* or f(y,a)=* (x,yU), then f(x,a’) = f(y,a’) or f(x,a’)=* 
or f(y,a’)=* (x, yU), here,a’= hA(a). In fact, notice that 
SIM(a)= SIM(a’) and f(x,a)=f(y,a) or f(x,a)=* or f(y,a) =*, then 
(x,y)  SIM(a) implies (x, y)   SIM(a’). This means 
f(x,a’)=f(y,a’) or f(x,a’) =* or f(y,a’)=*. At this time, hD(f(x,a)) 
=f(x,a’)= f(hO(x),hA(a)) (because hO(x)=x). Again for any xU 
and any aA, if aP, then hD(f(x,a))= f(x,a’)= f(hO(x),hA(a)). 
Therefore, for any xU and any aA, we have hD(f(x,a))= 
f(hO(x),hA(a)). Thus, the definition of hD is rational. h is a 
homomorphism from S to S’ and it is an endohomomorphism 
on S. 

Generally, note that an arbitrary reduction of an IIS may not 
be able to determine a homomorphism from the later to the 
former. See the following example. 
Example. An IIS S is given in Table I. 

 
TABLE I 

AN INCOMPLETE INFORMATION SYSTEM 

 a b c 

x1 0 1 0 

x2 1 * * 

x3 * 2 * 

x4 2 0 1 

 

Table II is IIS S’, a reduction of S. However, obviously, there 
does not exist a homomorphism from S to S’ or an 
endohomomorphism on S. This is because we cannot obtain an 
one-to-one corresponding mapping by specifying hA(0)=a or 
hA(0)=b  where  element 0 is in Vc, a, b are in Va or Vb.  
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TABLE II 
ANOTHER INCOMPLETE INFORMATION SYSTEM 

 a b 

x1 0 1 

x2 1 * 

x3 * 2 

x4 2 0 

 

Theorem 6. Let S be an IIS, h be an endohomomorphism on S, 
hD be one to one corresponding mapping and hD(*)=*, and for 
any xU and any aA, tolerance class Sa(x) generated by x 
under attribute a satisfies |f(Sa(x),a)-{*}|=1. If hA(A) is a hA 
-invariant subset, then A-hA(A) is redundant in A. 
Proof. For convenience, let us denote P= hA(A). Take aA-P, 
as an any attribute from A-P. We assert that for any xU we 
have Sa(x)= SP(y) (ySa(x)). 

If not, i.e.,  x0U, Sa(x0)   SP(y) (y Sa(x0)), then 

 y0  Sa(x0) such that SP(y0)  Sa(x0). In other words, 

 y1  SP(y0) but y1  Sa(x0). So, f(x0,a)  f(y1,a)  f(x0,a) 
 * f(y1,a) *. By the definition of endohomomorphism and 
hD is one to one corresponding mapping and hD(*)=*, we have 
*  hD(f(x0,a))  hD(f(y1,a))  *,i.e.,*  f(hO(x0), hA(a))   
f(hO(y1), hA(a)) *. On the other hand, by Lemma 1 and P is hA 
-invariant subset, i.e., hA(P)=P, we have hO (SP(y0))  SP(hO 
(y0)). Because y1SP(y0), thus y1, y0SP(y0). Therefore, hO (y0) 
and hO (y1) both are in SP(hO (y0)). Since for any aP hA(a)P, 
we have f(hO(y0), hA(a))=f(hO(y1), hA(a)) or f(hO(y0), hA(a))=* or 
f(hO(y1), hA(a))=*. If f(hO(y1),hA(a))=*, then it is contradict to 
the above assumption. Thus it must have f(hO(y1), hA(a)) *. At 
this time 
1. If f(hO(y0), hA(a)) *, then 
i. If f(hO(x0), hA(a))=*, then hD(f(x0,a)) =*, f(x0,a)=*. It 

contradicts to f(x0,a) *. 
ii. If f(hO(x0), hA(a))  *, then because y0 Sa(x0), f(x0,a)= 

f(y0,a)  f(x0,a)=*  f(y0,a)=*. But hD(f(x0,a))= 
f(hO(x0),hA(a))  *  implies f(x0,a)  *; hD(f(y0,a))= 
f(hO(y0),hA(a))  * f(y0,a) *. So it must have, f(hO(x0), 
hA(a))= f(hO(y0),hA(a))  *. Thus f(hO(y1),hA(a)) = 
f(hO(y0),hA(a))= f(hO(x0),hA(a)) *. It is a contradiction. 

2. If f(hO(y0),hA(a))=*, i.e., hD(f(y0,a))= f(hO(y0), hA(a))=* 
 f(y0,a)=*, then 

i. If f(hO(x0),hA(a))=*, then hD(f(x0,a))= f(hO(x0),hA(a)) 
=* f(x0,a)=*. This contradicts to the assumption f(x0,a) 
 * above. 

ii. If f(hO(x0),hA(a))  *, then hD(f(x0,a))= f(hO(x0),hA(a)) 
 * f(x0,a)  *. Since for any aA and any xU, 
|f(Sa(x),a)-{*}|=1, according to the condition and 
x0,y0 SP(x0)  Sa(x0),y0,y1  SP(y0)  Sa(y0),hA(a) P, 

therefore x0,y1  Sa(y0). Thus f(hO(y1), hA(a))= 
 f(hO(x0),hA(a))  *. This also contradicts to the above 
conclusion. So, Sa(x)= SP(y) (ySa(x)). 

By the former theorem, we know that each attribute in A-P is 
redundant in A. 

The essence of homomorphism is clustering. The condition 
that hD is a one to one corresponding mapping and hD(*)=* 
when both S and S’ contain * and |f(Sa(x),a)-{*}| =1 means that 

the classification grade of each attribute deduced by h does not 
decrease. In addition, if hA (A) is an hA -invariant subset, then 
Theorem 6 ensures that A-hA (A) is also redundant in A. 
Theorem 7. Let S and S’ be two IISs, h=(hO,hA,hD) be a 
homomorphism between IIS S and S’, satisfying that hO and hA 
are surjective, hD is one to one corresponding mapping, hD(*)=* 
when both S and S’ contain *, and for any xU and any aA, 
tolerance class Sa(x) generated by x under attribute a satisfies 
|f(Sa(x),a)-{*}|=1. If P  A is a reduction of A in S, then 

hA(P)A’ is also a reduction of A’ in S’. 

Proof. Denote hA(P) by P’. Firstly, we prove SIM(P’)= SIM(A’) 
It is obvious that we should only prove SIM(P’)  SIM(A’). 

Let (x’,y’)SIM(P’), i.e. y’SP’(x’). Since hO is surjective, 
There exists xU such that hO(x)=x’. Therefore according to 
Lemma 1, we have SP’(x’)= SP’(hO(x))= hO(SP(x)). Then there 
exists ySP(x) such that hO(y)=y’. So we have (x,y)SIM(P). 
Because P is a reduction of A in S, (x,y)SIM(P) implies 
(x,y)  SIM(A). Thus, (hO(x), hO(y))  SIM(hA(A)). For hA is 
surjective, we have (x’,y’)SIM(A’). Furthermore, we obtain 
SIM(P’) SIM(A’). So SIM(P’)=SIM(A’).  

By Lemma 2, the remainder work is to prove that P’ does not 
contain redundant attribute again. Conversely, we assume that 
a’P’ is redundant in P’. Let B is the set of reverse image of 
attribute a’, included in P, under mapping hA, i.e., B= 
h-1

A(a’) P. 
Since a’P’ is redundant in P’, for any x’,y’U’ in U’, if 

y’SA'-{a'}(x') then y’ Sa'(x').  
Because B is not redundant in P, SIM(P)  SIM(P-B). But 

for P-B P, SIM(P)  SIM(P-B). Thus, there exist x,yU 

such that (x,y) SIM(P-B), (x,y) SIM(P), i.e., y SP-B(x), 
y  SB(x). It follows that there exists b  B such that 
*  f(y,b)  f(x,b) *. hD is one to one corresponding mapping 
and hD(*)=*, so *  hD(f(y,b)) hD(f(x,b)) *. That is to say, 
*   f(hO(y),a’))   f(hO(x),a’))  *, i.e., hO(y)  Sa’(hO(x)). 
However, from y  SP-B(x) we have hO(y)  hO(SP-B(x))= 
SP’-{a’}(x), hO(SB(x))= Sa’(hO(x)). This contradicts to that a’P’ 
is redundant in P’ and for any x’,y’U’ in U’, if y’SP'-{a'}(x') 
then y’  Sa'(x'). This contradiction shows that there is no 
redundant attribute in hA(P).  
Theorem 8. Let S be an IIS, h=(hO,hA,hD) be an 
endohomomorphism from S to S’ satisfying: hO and hA be 
surjective, hD be one to one corresponding mapping and 
hD(*)=*, and for any xU and any aA, tolerance class Sa(x) 
generated by x under attribute a satisfies |f(Sa(x),a)-{*}|=1. 
Then core(S’)=hA (core(S).  
Proof. Let aA be indispensable in S. We are to prove hA(a) is 
indispensable in S’. Denote a’=hA(a). Because a is 
indispensable in S, there exist x,yU such that y Sa(x), 
ySA-{a}(x). However, for Sa(x)  SA-{a}(y) (ySa(x)) and if 
Sa(x)=  SA-{a}(y) (y  Sa(x)) then a is dispensable in S, 
therefore, it only follows that Sa(x)  SA-{a}(y)(ySa(x)). 
Because t=A-h-1

A(a’)  A-{a}, thus SA-{a}(x)  St(x). But 

ySA-{a}(x), so y St(x). Furthermore, f(y,t)=f(x,t)  f(y,t)=* 
 f(x,t)=*. Because ySa(x), * f(x,a) f(y,a) *. 

Since hD is a one-to-one corresponding mapping and 
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hD(*)=*, it infers that *  f(x,a)  f(y,a)  *, * hD(f(x,a))   
hD(f(y,a)) *, * f(hO(x), hA(a)) f(hO(y), hA(a)) *. 

 
f(x,t) = f(y,t) f(x,t)=* f(y,t) =* 

 hD(f(x,t))=hD(f(y,t)) hD(f(x,t))=* hD(f(y,t))=*  
 f’(hO(x), A’-{a’})=f’(hO(y), A’-{a’})   f’(hO(x), A’-{a’}) 
=* f’(hO(y), A’-{a’})=*. 
 
That is hO(y)St(hO(x)), hO(y) Sa’(hO(x)). Thus, a’=hO(a) is 
indispensable in S’. 

Because attribute in A’ can be divided into two types, one is 
the image of indispensable attribute of A, another is the image 
of redundant attributes of A. According to Lemma 3, under the 
condition of the theorem, the image of redundant attribute is 
also redundant, so the indispensable attributes of S’ are all 
images of indispensable attributes in S  and therefore 
core(S’)=hA (core(S). 

IV. CONCLUSIONS 

The present paper studies on some invariant properties in 
IISs. It finds out preserving invariance conditions respectively 
for tolerance classes in tolerance relation, attribute reduction, 
indispensable attribute and dispensable attribute under 
homomorphism in IISs. It also discusses the condition of 
endohomomorphism. It obtains several meaningful results. It 
lays a certain theoretic foundations for engaging researching 
IIS modeling under rough set theory. 

REFERENCES  
[1] Chen Wanli, Cheng J X, Zhang C J. “A Generalized Model of Rough Set 

Theory Based on Compatibility Relation”, Journal of computer 
engineering and applications, 16(4), 2004, page 26-28. 

[2] Grzymala-Busse J W. “Algebraic properties of knowledge representation 
systems”. In: Proc. of the ACM SIGART International Symposium on 
Methodologies for Intelligent Systems, Knoxville, 1986, page 432-440. 

[3] Grzymala-Busse J W, Sedelow W A Jr. “On rough sets, and information 
system homomorphisms”. Bulletin of the Polish Academy of Sciences 
Technical Sciences, 36(3-4) 1988, page 233-239. 

[4] Kryszkiewicz M. “Rough Set Approach to Incomplete Information 
Systems”, Information Sciences, 12(1-4), 1998, page 39-49. 

[5] Leung J Y, Li D Y. “Maximal consistent block technique for rule 
acquisition in incomplete information systems”, Information Sciences, 
153, 2003, page 86-106. 

[6] Li Deyu, Ma Yicheng. “Invariant characters of information systems under 
some homomorphism”. Information Sciences: An International Journal, 
129(1-4), 2000, page 211-220. 

[7] Pawlak Z. “Rough sets”. International Journal of Computer and 
Information Sciences, 11(5) 1982, page 341-356. 

[8] Pawlak Z. “Rough Sets-Theoretical Aspects of Reasoning about Data”. 
Dordecht: Kluwer Academic Publishers. 1991, page 67-86. 

[9] Qian Yu. Hua, Liang Jiye, Yao Yiyu. “MGRS: A multi-granulation rough 
set”, Information Sciences, 180(6), 2010, page 949–970. 

[10] Qian Yu. Hua, Liang Jiye. “Incomplete multi-granulation rough set”, 
IEEE Transactions on Systems, Man and Cybernetics, Part A, 40(2), 
2010, page 420-431. 

[11] Qian Yu. Hua, Liang Jiye. “Pessimistic rough decision”, in: Second 
International Workshop on Rough Sets Theory, Zhoushan, China, 2010, 
page 440–449. 

[12] Qu Kaishe, Zhai Yanhui, Li Deyu, Liang Jiye. “Some characters of 
information system homomorphism and invariance of upper and lower 
approximations”. Computer Sciences, 32(12), 2005, page 168-174. 

[13] Stefanowski J. “Incomplete Information Tables and Rough 
Classification”, Journal of Computational Intelligence, 17(3), 2001, page 
545-566. 

[14] Wang Changzhong, Chen Degang, Hu Qinghua. “Some invariant 

properties of ordered information systems under homomorphism”. 
Science China-Information Sciences, 53(9), 2010, page 1816-1825. 

[15] Wang G Y, Lu M Y. “Variable precision rough set based decision tree 
classifier”, Journal of Intelligent and Fuzzy Systems, 23(2-3), 2012, page 
61-70. 

[16] Wang Lijuan, Yang Xibei, Yang Jingyu, Wu Chen. “Incomplete Decision 
Rule Acquisition Based on Multi-granulation Theory”, Journal of 
Nanjing University of Science and Technology, 37(1), 2013, page 12-18. 

[17] Wu C, Yang X B. “Information Granules in General and Complete 
Covering”, Proceedings of the 2005 IEEE International Conference on 
Granular Computing, 2005, page 675-678. 

[18] Zhai Yanhui, Qu Kaishe. “On characteristics of information system 
homomorphism”. Theory of Computing Systems, 44(3), 2009, page 
414–431. 

[19] Zhang Wenxiu, Mi Jusheng, Wu Weizhi. “Knowledge Reductions in 
Inconsistent Information Systems”, Chinese Journal of Computers (in 
Chinese), 1(1), 2003, page 12-18. 

 


