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 
Abstract—This paper investigates successful sub-bands of wave 

atom transform via classification of mammograms, when the 
coefficients of sub-bands are used as features. A computer-aided 
diagnosis system is constructed by using wave atom transform, 
support vector machine and k-nearest neighbor classifiers. Two-class 
classification is studied in detail using two data sets, separately. The 
successful sub-bands are determined according to the accuracy rates, 
coefficient numbers, and sensitivity rates. 
 

Keywords—Breast cancer, wave atom transform, SVM, k-NN.  

I. INTRODUCTION 

REAST cancer, a type of cancer which is a frequent cause 
of death, commonly occurs among women. Thus, its 

detection in early phases is crucial to fight the disease [1]. 
Another important thing about breast cancer is the 
classification of breast cancer as benign or malignant [2], [3]. 
Mammograms are the best available tools to accomplish these 
important goals. However, the process of diagnosis is a very 
difficult task. So, 10–30% of cancer cases are missed by 
radiologists [4]. Furthermore, non-cancerous lesions are 
misinterpreted. To avoid the risks mentioned above, computer-
aided diagnosis (CAD) systems as a second opinion provider 
are aimed to aid the radiologists to reduce false positive and 
false negative rates [5]-[9].  

In the present study, a mammogram classification system is 
constructed to investigate wave atom transform. The scope of 
the system is to analyze wave atom transform to take 
advantage of its property that is capturing both the coherence 
of the pattern along the oscillations and the pattern across the 
oscillations.  Because of this property, wave atom transform 
generates coefficients that can be naturally arranged as two 
matrices (coefficients’ packets) for every scale. In order to 
explore the different aspects of this algorithm, the aim is to 
determine which packet will provide the maximum 
classification accuracy. The classification is performed in two 
successive stages: distinguishing between normal and 
abnormal regions, and classifying tumors as malignant or 
benign. To do so two different classifiers are employed (SVM, 
and k-NN). In summary; the investigation in this paper are 
explored in three: determination of the most successful packet 
and scale of the wave atom sub-bands, comparing the results 
using two different classifiers and test the results using two 
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different databases. 
The remainder of the paper is organized as follows: 

Sections II and III include related works and a brief 
introduction of wave atom transform respectively. Materials 
and methods are described in Section IV, and the results and 
discussion are presented in Section V. Sections VI and VII 
contain the experiment and the conclusions.  

II. RELATED WORKS 

The diagnostic performance of CAD systems, particularly, 
depends on the feature extraction step which performs a key 
function.   If the feature set has a high representational power, 
compactness and good discrimination ability, speed and 
classification accuracy of the CAD systems are greatly 
improved [10]. Therefore, in the literature, many studies have 
focused on this issue. Among the proposed feature extraction 
methods, multi-resolution analysis techniques such as 
contourlet, wavelet and curvelet transform draw attention. Liu 
et al. [11] propose a system that includes multi-resolution 
analysis to detect speculated lesions in digital mammograms. 
The system uses a linear phase non-separable two-dimensional 
wavelet transform to represent the mammograms. The feature 
set is composed using the coefficients of the wavelet pyramid 
at each resolution.  A binary tree classifier is used to detect 
abnormalities. The results show that the system is capable of 
detecting abnormalities in different sizes at low false positive 
rates. Ferreira et al. [12] construct a system to extract and 
select the best features from the images to solve the 
difficulties of classifying them as benign, malignant or normal 
ones. The feature extraction process is performed using special 
sets of the coefficients after transforming the images in a 
wavelet basis. The results of the system are very promising. 
Ergin et al. [13] use a combination consisting of the histogram 
of oriented gradients (HOG), dense scale-invariant feature 
transform (DSIFT) and local configuration pattern (LCP) 
methods to classify breast cancer cases. These methods are 
able to extract the rotation- and scale-invariant features for all 
tissue types. The classification is made using support vector 
machine (SVM), k-nearest neighbor (k-NN), decision tree, and 
Fisher linear discriminant analysis (FLDA). 

Moayedi et al. [14] use the contourlet transform which is a 
powerful and developed version of Discrete Wavelet 
Transform. From the system, initially, regions of interest are 
obtained using a preprocessing step to remove the pectoral 
muscles. The feature extraction is performed utilizing the 
contourlet transform, and then feature set is created using the 
contourlet coefficients. A genetic algorithm is employed as 
feature selection to get most distinctive features. The 
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classification is carried out using the feature set based on 
successive enhancement learning (SEL) weighted SVM, 
support vector-based fuzzy neural network (SVFNN) and 
kernel SVM. Jasmine et al. [15] represent a system combining 
non-subsampled contourlet transform (NSCT) and SVM to 
classify masses in digitized mammograms. The aim of mass 
classification is to extract the features from the contourlet 
coefficients by applying to the image and feeding the SVM 
classifier with the outcomes. Pak et al. [16] propose an 
algorithm for breast cancer detection and classification using 
NSCT. In their paper, the regions of interest (ROIs) are 
enhanced using NSCT, then, the super-resolution (SR) 
algorithm is used to increase the resolution of them, and a 
high-pass filter is also utilized to highlight the desired regions. 
Seven features based on regional, boundary and density 
descriptors are extracted to classify images as normal and 
abnormal. For malign or benign separation, each feature is 
analyzed by calculating skewness of itself. The classification 
is carried out using the AdaBoost algorithm. Eltoukhy et al. 
[17] investigate the curvelet transform comparing it with the 
wavelet transform on digital mammogram images. In that 
paper, a Euclidean distance classifier is employed to 
distinguish mammograms using a multi-scale curvelet 
transform coefficients. A set of the biggest coefficients 
extracted from each scale level of the curvelet transform is 
used as the feature vector. The result is 98.59% when normal-
abnormal classification is performed. Francis et al. [18] 
propose an algorithm using the curvelet transform for 
abnormality detection in breast thermograms. Thermograms 
are transformed the curvelet domain, then statistical and 
texture features are obtained from curvelet coefficients. The 
resulted set is used to feed the SVM classifier. Abnormal 
thermograms are detected with an accuracy of 90.91%. 

Recently, wave atom transform is presented as a multi-scale 
and multi-directional transform. The transform has been used 
in different areas with different goals [19]-[21].  Rajesh et al. 
[22] designed a CAD system to classify micro-calcification in 
mammograms. The feature vectors are created by the system 
calculating energy values of wave atom coefficients. SVM is 
used as a classifier. Elangeeran et al. [23] also proposed a 
system to classify cases of micro-calcifications using wave 
atom. Circular complex-valued extreme learning machine 
(CC-ELM) is employed to characterize the micro-
calcifications as benign or malignant. The features obtained 
from wave atom coefficients are reduced using principal 
component analysis (PCA). Gedik et al. [24] developed a 
CAD system that uses the wave atom transform including all 
abnormalities in mammograms. The system uses the features 
that are generated from wave atom coefficients. The SVM 
classifier is used to classify mammograms and PCA is 
employed to increase the classification success rate. The best 
success rates are obtained at scales 1, 2, and 3 with the 
combination of SVM and PCA. 

III. WAVE ATOM TRANSFORM 

The wave atom transform introduced by Demanet and Ying 
in [25] is a member of the family of oriented multi-scale 

transforms. The transform is a variant of 2-D wavelet packets 
obeying parabolic scaling relation, i.e.: the wavelength is 
taken proportional to the square of the diameter. Besides 
having better frequency localization, which is a problem for 
filter banks, wave atoms produce an expansion of oscillatory 
functions or oriented textures which are significantly sparser 
than any other multi-resolution representations. 

Two parameters, α and β are used to characterize the wave 
atom transform among the other existing transforms. These 
parameters can be used to classify most of the known 
architectures of wave packets. Using this description, the 
connections between various transforms have been clarified. α 
indicates whether the decomposition is multi-scale (α = 1) or 
not (α = 0). On the contrary, β indicates whether basis 
elements are localized and poorly directional (β = 1) or 
extended and fully directional (β = 0). Fig. 1 illustrates the 
classification of multi-resolution transforms according to α 
and β.  

 

 

Fig. 1 Illustration of the architectures of different wave packets 
according to (α, β) [25] 

 
Wave atoms are the elements of a frame of wave packets 

{φஜ}, indexed by an integer parameter M for all  M	 ൐ 	0, 
 

| ො߮ఓሺ߱ሻ| ൑ ெܥ ൉ 2ି௝ሺ1 ൅	2ି௝|	߱	 െ	߱ஜ|ሻିெ ൅
ெܥ ൉ 2ି௝ሺ1 ൅ 2ି௝|	߱	 ൅	߱ஜ|ሻିெ	  

(1) 

 

ห ߮ఓሺݔሻห ൑ ெܥ ൉ 2௝ሺ1 ൅	2௝หݔ	 െ	ݔஜ| ሻିெ , (2) 
 
As a formal definition of 2-D wave atom, φஜሺxሻ is a 

function indexed by a multiple subscript μ ൌ ሺj,m, nሻ ൌ
ሺj,mଵ,mଶ, nଵ, nଶሻ which in turn ሺxஜ, ωஜሻ  in phase space which 
is xஜ 	ൌ 	2ି୨n,  ωஜ ൌ π2୨m, Cଵ2୨ ൑ max୧ୀଵ,ଶ|m୧| ൑ 	Cଶ2୨ where 
Cଵ, Cଶ ൐ 0.  Therefore, xஜ  is the position vector and it is the 
center of φஜሺxሻ whereas the wave vector ωஜ determines the 
centers in the frequency space of both bumps of φෝஜሺωሻ  
(centered at ൅ωஜ and െωஜ) [25]. These representations belong 
to a qualitative description of wave atom with spatial 
frequency location restriction. In practice, Demanet [25] 
constructs wave atom via tensor products of adequately 
chosen 1D wave packets using the strategy of frequency 
localization. 

Firstly, a 1D family of real-valued wave packets ߰௠,௡
௝ 	ሺݔሻ 
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are constructed in frequency, providing ݆ ൒ 0, ݉ ൒ 0, ݊	 ∈ 	ܼ, 
around േ ௝߱,௠ 	ൌ 	േ2ߨ௝݉, with ܥଵ	2௝ 	൑ 	݉	 ൑  .2௝	ଶܥ	

 

߰௠,௡
௝ ሺݔሻ ൌ ߰௠

௝ ሺݔ െ 2ି௝݊ሻ ൌ 2௝ ଶ⁄ ߰௠଴ ሺ2௝ݔ െ ݊ሻ  (3) 
 

߰௠଴ ሺ߱ሻ ൌ 	݁ି௜ఠ ଶ⁄ ቈ݁௜ఈ೘݃ ቆሺെ1ሻ୫	 ൬߱ െ ߨ ቀ݉ ൅

ଵ

ଶ
ቁ൰ቇ൅݁ି௜ఈ೘݃ ቆሺെ1ሻ୫ାଵ	 ൬߱ ൅ ߨ ቀ݉ ൅

ଵ

ଶ
ቁ൰ቇ቉    

(4) 

 

where  α୫ ൌ
஠

ଶ
ሺm ൅

ଵ

ଶ
ሻ,  and ݃ is a Cஶ bump function. Calling 

H the Hilbert transform, ߰ܪ௠,௡
௝  is another orthonormal basis. 

In the frequency domain, Hilbert transformation expresses as: 
 

௠,௡߰ܪ
ఫ෣ 	ሺ߱ሻ 	ൌ 	െ݅ ෠߰௠,௡,ା

௝ 	ሺ߱ሻ 	൅ 	݅ ෠߰௠,௡,ି
௝ ሺ߱ሻ  (5) 

 
where ሺെ,൅ሻare the positive and negative frequencies whose 
components have ሺെ݅, ݅ሻ as their respective weights. Providing 
μ	 ൌ 	 ሺ݆,݉, ݊ሻ 	ൌ 	 ሺ݆,݉ଵ,݉ଶ, ݊ଵ, ݊ଶሻ, two orthonormal basis are 
defined dually as: 

 

φஜ
ା	ሺxଵ, xଶ	ሻ 	ൌ ߰୫భ

୨ 	ሺxଵ െ 2ି୨	nଵ ሻ	߰୫మ

୨ 		ሺxଶ െ 2ି୨ nଶ ሻ (6) 

 
φஜି	ሺxଵ, xଶ	ሻ 	ൌ H߰୫భ

୨ 	ሺxଵ െ 2ି୨	nଵ	 ሻ H߰୫మ

୨ 		൫xଶ െ 2ି୨	nଶ ൯ (7) 
 
The tight frame (8) for wave atom is formed by using (3) 

and (4): 
 

φஜ
ሺଵሻ 		ൌ 	

஦ಔ
శା஦ಔష

ଶ
  ,             φஜ

ሺଶሻ 		ൌ 	
஦ಔ
శି஦ಔష

ଶ
 (8) 

IV. MATERIALS AND METHODS 

Two data sets are used to investigate the wave atom sub-
bands, obtained from The Mammographic Image Analysis 
Society (MIAS) and The Digital Database for Screening 
Mammography (DDSM). Both databases have been classified 
by technically experienced radiologists, and their contents and 
the radiologists' classifications are publicly available [26], 
[27].  

Two sets of ROI are composed of 228 images that were 
obtained from these databases separately. ROIs are obtained 
by manual cropping operation in size of 128x128 pixels from 
the original mammograms. In cropping operation, the centers 
of the ROIs correspond to the centers of abnormality 
determined by expert radiologists. Selection of ROIs in normal 
mammograms is randomly made, including all tissue types 
(fatty, fatty glandular, dense glandular) with approximately 
same probability. The distribution of the ROI images used in 
this study is illustrated in Table I for both MIAS and DDSM. 
Both ROI sets include the same number of images with regard 
to abnormality and tissue type. The ROI set obtained from 
MIAS database includes all abnormalities in the database 
(except one that was not appropriate for cropping). The ROI 
set obtained from the DDSM database is constructed in the 
same way as for the MIAS ROI set. 

 

TABLE I 
DISTRIBUTION OF ROIS 

Class Benign Malignant Total 

Abnormal 64 50 114 
Normal – – 114 

Total 228 

 
Every ROI set is used by dividing into two sets: a training 

set, which is constructed with 70% of the ROIs, and a testing 
set made with the remaining 30%. The classification process is 
evaluated using two classifiers; SVM and k-NN. SVM 
optimization is performed using 10-fold cross-validation. k-
NN is applied for 31 different k values, from 3 to 63. The 
classification is carried out to solve two mammogram 
classification problems: The classification of normal versus 
abnormal cases and that of benign versus malignant. 

Once two separate ROI sets are constructed and divided 
into training and testing parts, wave atom transform is applied 
to ROI sets. Finally, the coefficients of the transform are 
obtained as features.  The coefficients are grouped in two 
packets (we call these as the first and second packet) for each 
scale, and the transform is applied at four scales. Hence, eight 
different feature vectors are constructed using the coefficients 
of each packet. These feature vectors are used to feed the 
classifiers. The system can be summarized as shown in Fig. 2. 

V. EXPERIMENT 

This section presents the classification task in two stages, 
normal-abnormal and benign-malignant classification. In the 
first place, the classification of normal versus abnormal cases 
is performed, and wave atom is applied to the dataset for 
feature extraction as in the illustration of Fig. 2. Then, the 
feature vectors are individually built using the coefficients of 
each packet, and those are used to feed SVM and k-NN 
classifiers. 

Table II illustrates the performance of the classifications to 
distinguish mammograms as either normal or abnormal using 
the ROIs obtained from the MIAS database. When the first 
packets of the scales are used, the best classification 
performances are 98.53% for the SVM classifier with scale 1 
and 82.35% for the k-NN classifier with scale 1. In terms of 
the second packets of the scales, the best classification 
performances are 100% for the SVM classifier with scale 1 
and 77.94% for the k-NN classifier with scale 1. 

The second stage of the classification is to distinguish 
mammograms as benign or malignant. Table III illustrates the 
performance of the SVM and k-NN classifiers during the 
benign-malignant separation by using the ROIs obtained from 
the MIAS database. The maximum accuracy rates obtained by 
using the first packets of the scales are 91.18% for SVM 
classifier with scale 2 and 88.24% for the k-NN classifier with 
scale 1. The results, according to the second packets, are 
91.18% for the SVM classifier with scale 1 and 88.24% for the 
k-NN classifier with scale 2. 
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Fig. 2 Illustration of the structure of the system in this paper 
 

TABLE II 
THE CLASSIFICATION RESULTS OF NORMAL-ABNORMAL CASES BY USING THE ROIS OBTAINED FROM MIAS DATABASE 

Packets 
Scale 

(number of coefficients) 
SVM k-NN 

Accuracy (%) Specificity Sensitivity Accuracy (%) Specificity Sensitivity k value

First 

1    (16) 98.53 1 0,97 82.35 1 0.65 3 

2    (560) 75 1 0.5 45.59 0.74 0.18 3 

3    (5824) 60.29 1 0.21 45.59 0.71 0.21 3 

4    (9984) 58.82 1 0.18 47.06 0.71 0.24 3 

Second 

1    (16) 100 1 1 77.94 0.56 1 27 

2    (560) 75 1 0.5 42.65 0.68 0.18 3 

3    (5824) 60.29 1 0.21 42.65 0.68 0.18 3 

4    (9984) 58.82 1 0.18 47.06 0.71 0.24 3 

 
TABLE III 

THE CLASSIFICATION RESULTS OF BENIGN-MALIGNANT CASES BY USING THE ROIS OBTAINED FROM MIAS DATABASE 

Packet 
Scale 

(number of coefficients) 
SVM k-NN 

Accuracy (%) Specificity Sensitivity Accuracy (%) Specificity Sensitivity k value

First 

1    (16) 64.71 0.53 0.74 88.24 1 0.79 19 

2    (560) 91.18 0.8 1 85.29 0.73 0.95 11 

3    (5824) 70.59 0.33 1 82.35 1 0.69 7 

4    (9984) 64.71 0.2 1 85.29 0.87 0.85 7 

Second 

1    (16) 91.17 0.8 1 82.35 1 0.68 3 

2    (560) 82.35 1 0.68 88.24 0.87 0.9 9 

3    (5824) 70.59 0.33 1 70.59 0.33 1 7 

4    (9984) 64.71 0.2 1 73.53 0.4 1 7 

 
TABLE IV 

THE CLASSIFICATION RESULTS OF NORMAL-ABNORMAL CASES BY USING THE ROIS OBTAINED FROM DDSM DATABASE 

Packet 
Scale (number of 

coefficients) 
SVM k-NN 

Accuracy (%) Specificity Sensitivity Accuracy (%) Specificity Sensitivity k value

First 

1    (16) 98.53 0.97 1 67.65 1 0.35 3 

2    (560) 83.82 0.74 0.94 66.18 1 0.32 3 

3    (5824) 72.06 0.71 0.74 64.71 1 0.29 3 

4    (9984) 83.82 1 0.68 67.65 1 0.35 3 

Second 

1    (16) 94.12 0.88 1 45.59 0.71 0.21 3 

2    (560) 80.88 0.68 0.94 61.77 1 0.24 3 

3    (5824) 72.06 0.68 0.77 63.24 1 0.27 3 

4    (9984) 83.82 1 0.68 67.65 1 0.35 3 

The processes applied above are performed in the same 
manner to the other dataset obtained from DDSM database. 
Table IV illustrates the classification results of the normal-
abnormal separation using the ROIs obtained from DDSM 
database. The maximum accuracy rates for the first packets of 
the scales are 98.53% for the SVM classifier with scale 1 and 
67.65% for the k-NN classifier with scale 1 and 4. For the 
second packets, the maximum accuracy rates are 94.12% for 
the SVM classifier with scale 1 and 67.65% for the k-NN 
classifier with scale 4. The results for benign-malignant 
classification by using the ROIs obtained from DDSM 

database are shown in Table V.  The maximum accuracy rates 
for the first packets of the scales are 85.3% for the SVM 
classifier with scale 1 and 2 and 67.65% for the k-NN 
classifier with all scales. For the second packets, those results 
are 91.18% for the SVM classifier with scale 1 and 88.24% for 
the k-NN classifier with scale 2. 

VI. RESULT AND DISCUSSION 

Considering the accuracy rates, the number of coefficients 
and sensitivity rates, scale 1 stands out among the others. 
When scale 1 solely taken into account, it is observed that the 

Classification	Wave	atom	transform

MIAS	
	

DDSM	

ROIs	

Scale	
Scale	
Scale	
Scale	
Second		packets

First		packets	

‐Normal‐Abnormal	

‐Benign‐Malignant
Feature	vectors

obtained	from	each	
packet	 ‐	SVM	

‐	k‐NN	

Features
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second packet of it outperforms the others. The results of the 
classification corresponding to the packets which provide the 
best performance are shown in Fig. 3. The values in the figure 
belong to SVM classifier. Regarding the maximum accuracy 
results, the comparison of the results of the other studies that 
use wave atom transform is represented in Table VI. It can be 
noticed that these studies use ROIs in different sizes and 
numbers and they use only one database and one classifier. In 
this study, two databases and two classifiers are employed. 

The previous studies [22]-[24] use all coefficients of wave 
atom transform or all coefficients of the scales (combining the 
packets). Additionally, to increase the classification 
performance, these studies are employed an additional 
method. In this work, good classification results are obtained 
using much fewer coefficients and without using any other 
additional methods. Furthermore, while this study and only 
one another study [24] use all abnormalities, the others in the 
table classify the micro-calcifications. 

 
 

TABLE V 
THE CLASSIFICATION RESULTS OF BENIGN-MALIGNANT CASES BY USING THE ROIS OBTAINED FROM DDSM DATABASE

Packet 
Scale (number of 

coefficients) 
SVM k-NN 

Accuracy (%) Specificity Sensitivity Accuracy (%) Specificity Sensitivity k value

First 

1    (16) 85.29 0.67 1 67.65 0.27 1 3 

2    (560) 85.28 0.67 1 67.65 0.27 1 3 

3    (5824) 67.65 0.27 1 67.65 0.27 1 3 

4    (9984) 58.82 1 0.26 67.65 0.27 1 3 

Second 

1    (16) 97.06 1 0.95 55.88 0 1 3 

2    (560) 85.29 0.67 1 67.65 0.27 1 3 

3    (5824) 67.65 0.27 1 67.65 0.27 1 3 

4    (9984) 58.82 1 0.26 67.65 0.27 1 3 

 
TABLE VI 

COMPARISON WITH THE RESULTS OF OTHER STUDIES

 ROIs  Features Accuracy Classifier 

Rajesh et al. 
[22] 

MIAS 
(207 ROI, 256x256 pixel, consists of normal and MC ) 

Energy of scale 1’s coefficients 
100% (N-A) 

SVM 
100% (B-M) 

Elangeeran et 
al. [23] 

DDSM 
(400 ROI, 512x512 pixel, consists of MC) 

PCA of all scale’s coefficients 96.19% (B-M) CC_ELM 

Gedik et al. 
[24] 

MIAS 
(200 ROI, 128x128 pixel, consists of normal and All) 

PCA of scale 2’s coefficients 100% (N-A) 
SVM 

All coefficients of scale 1 100% (B-M) 

Present study  
MIAS & DDSM 

(228 images, 128x128 pixel, consists of normal and All) 

Coefficients of the second packet of scale 1 100% (N-A) SVM 

Coefficients of the second packet of scale 1 97.06% (B-M) SVM 

N-A - Normal-Abnormal classification 
B-M - Benign-Malignant classification 
MC  - Micro-calcification 
All   - All abnormalities 
 

 

Fig. 3 The accuracy results for the packets which provide the best 
classification performance 

VII. CONCLUSION 

Considering a CAD system, feature extraction is a key step 
to achieve a more successful and faster system. An effective 

feature set can be determined with two distinguishing 
characteristics; having as many distinctive characteristics as 
possible, and having as small size as possible. This study 
investigates wave atom sub-bands to find out the most 
effective one or ones. Experimental results show that the 
coefficients belonging to the second packet of scale 1 have the 
best performance for both normal-abnormal and benign-
malignant classification according to accuracy rates, the 
number of coefficients and sensitivity rates. 
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