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 
Abstract—In this paper, following the study-case of an inclined 

plane gravitational machine, efficiency of a double-cone gravitational 
motor and generator is evaluated. Two types of efficiency ratios, called 
translational efficiency and rotational efficiency, are defined relative 
to the intended duty of the gravitational machine, which can be either 
the production of translational kinetic energy, or rotational kinetic 
energy. One proved that, for pure rolling movement of the double- 
cone, in the absence of rolling friction, the total mechanical energy is 
conserved. In such circumstances, as the motion of the double-cone 
progresses along rails, the translational efficiency decreases and the 
rotational efficiency increases, in such way that sum of the rotational 
and translational efficiencies remains unchanged and equal to 1. 
Results obtained allow a comparison of the gravitational machine with 
other types of motor-generators, in terms of the achievable efficiency. 
 

Keywords—Truncated double-cone, friction, rolling and sliding, 
efficiency, gravitational motor and generator. 

I. INTRODUCTION 

INCE the mechanism consisted of a double-cone, 
self-propelled on straight V-shaped horizontal rails [1]-[3], 

is able to convert the potential energy gained in the terrestrial 
gravitational field into mechanical work or kinetic energy of 
rotation and translation, it was regarded as a gravitational motor 
[4], [5]. Recently, a truncated double-cone rolling on divergent- 
convergent rails, materialized by using either straight V-rails or 
eccentric circular rails, was used in the construction of a wave- 
powered electrical generator [6]. From a practical point of view, 
efficiency evaluation of such gravitational motor and generator 
is mandatory in order to properly decide the possible range of 
applications and the feasibility of industrial production. 

In the present work, one firstly evaluates the efficiency of an 
inclined plane gravitational machine, in the case of the sliding 
of a flat body, and also in the case of the rolling of a revolution 
body, during their descending along the slope. Then, the 
efficiency of the double-cone motor and generator is defined 
according to the purpose of the mechanical system, and the 
influence of various geometrical parameters is clarified. 

II. GEOMETRICAL MODEL OF THE TRUNCATED DOUBLE-CONE 

MOTOR AND GENERATOR 

Two identical cones having a height ,H  a radius R  at the 

base circles, and a truncation radius *R  at the conical tips, are 
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fixedly joined together to achieve the so-called double-cone 
(see Fig. 1). Therefore, the apex angle can be calculated as [5]:  
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On the other hand, the moment of inertia can be written as [5]: 
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where m  is the mass of the truncated double-cone. Note that, 
for small truncation radii ( RR * ), the moment of inertia can 

be quite accurately calculated as: 23.0 mRI   [5]. 
Straight rails, having a length ,0L  an entrance span 2L  and 

an exit span ,1L  are disposed on a horizontal table to form a V 

letter (see Fig. 1). For divergent rails, as considered in this work, 
the exit span exceeds the entrance span ( 21 LL  ). Degree of 

divergence can be quantified by defining an opening angle of 
the rails, as [5]: 
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Start position of the double-cone on the rails is set at the 

distance ,SL  measured from the entrance point. Static and 

dynamic sliding friction coefficients between the double-cone 
and the rails are denoted as S  and ,  respectively [7]. 

 

 

Fig. 1 Geometry of the truncated double-cone, self-propelling on 
V-shaped straight divergent rails, disposed on a horizontal table 
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III. INCLINED PLANE GRAVITATIONAL MACHINE: CASE OF 

THE SLIDING OF A FLAT BODY 

Fig. 2 shows the descending of a flat body of mass m  on an 
inclined plane of angle ,  regarded here as a gravitational 

motor able to transform the potential energy of the block into 
the kinetic energy of translation. In one possible approach to 
find the efficiency of such gravitational motor, this mechanical 
system can be considered as a black-box, in which an amount of 

potential energy pE  is inputted, as follows [8]-[10]: 

 

)(,, fifpipp HHmgEEEINPUT             (4) 

 
where ipE ,  and fpE ,  are the potential energies at the initial and 

final positions of the block, corresponding to the heights iH  

and fH  measured relative to the reference horizontal plane, 

and g  is the gravitational acceleration. Initially halted block 

( 0iV ) is accelerated during the descending, up to the final 

velocity .VV f  

 

 

Fig. 2 Model for sliding of a flat body on an inclined plane 
 
Since the useful output or the duty of the motor is to gain a 

certain amount of translational kinetic energy: 
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the translational efficiency trip ,  of the incline, concerning the 

sliding movement of the flat block, can be defined as: 
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For such translation movement at constant acceleration ,a  

the term 2V  of (6) can be written as: 
 

aSV 22                                       (7) 
 

where the distance S  traveled by the block along the inclined 
plane can be expressed as (see Fig. 2): 
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Thus, by substituting (8) in (7), and then, the obtained result 

in (6), the translational efficiency can be rewritten as: 
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Next, in order to determine the acceleration ,a  Newton’s 2nd 

Law of Dynamics, for the translation motion of the mass center 
O of the flat block, can be written as: 
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which leads to the following scalar equations along the parallel 
and perpendicular axes attached to the inclined plane (Fig. 2): 
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where N  is the normal force, and NFf   is the frictional 

force, in which   is the dynamic sliding friction coefficient at 

the contact of the block with the inclined plane. From (11) one 
firstly finds the acceleration, as follows: 
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and then, by substituting (12) in (9), the translational efficiency: 
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One notes that the acceleration in sliding, in the presence of 

friction, given by (12), is always smaller than the acceleration 
in sliding without friction ,sing  which can be obtained from 

(12) for nil friction coefficient ( 0 ). Thus, friction is able to 

dissipate a part of the inputted potential energy into heat, which 
is un-recoverable to do useful work, i.e. to accelerate the block 
during the descending movement. As expected, for nil friction 

0  between the block and the inclined plane, the efficiency 

maximizes to .1, trip  On the other hand, when the angle   

equals the friction angle ,tan 1   the efficiency minimizes to 

.0, trip  

Obviously, the gravitational motor can operate only if the 
angle   exceeds the friction angle (  1tan  ), which is a 

condition well-known in the literature [7]-[11]. 

IV.  INCLINED PLANE GRAVITATIONAL MACHINE: CASE OF 

THE ROLLING OF A REVOLUTION BODY 

Fig. 3 shows the descending, on an inclined plane of angle 
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,  of a revolution body, e.g. a cylinder, a sphere, or a double- 
cone, having a mass ,m  a radius ,R  and a moment of inertia 
I  at rotation versus its axis of symmetry. This mechanical 
system can be also regarded as a gravitational machine able to 
transform the potential energy of the revolution body into the 
kinetic energy of rotation and translation. Since it has been 
previously proven that the truncated double-cone gravitational 
motor rolls without slip [5], one assumes here that the 
revolution body of Fig. 3 rolls also without slipping, down the 
slope. Such condition is easily satisfied for gentle slopes, but it 
may be violated for steep slopes, depending, of course, on the 
magnitude of the dynamic sliding friction coefficient [7]. 

 

 

Fig. 3 Model for rolling of a revolution body on an inclined plane 
 
Newton’s 2nd Law of Dynamics, for the translation motion of 

the mass center O of the revolution body, displays the same 
vectorial form (10) and scalar form (11). However, the 
equivalent sliding friction coefficient, which can be attached to 
this ideal rolling movement, is unknown at this time. Therefore, 
instead of considering that the friction force is obtained by 
multiplying the normal force with a friction coefficient, the 
problem is solved by applying the Law of Dynamics for the 
rotation movement of the revolution body. 

Note that the weight gm


 and the normal force N


 are 

vectors passing through the mass center O (see Fig. 3). Hence, 
they are unable to cause revolution of the body around its axis 

of symmetry. Only the friction force fF


 is able to produce 

spinning of the revolution body, due to the clockwise traction 
torque RFf  (see Fig. 3). Thus, equation describing the rolling 

movement on the inclined plan can be written as: 
 

RFI f                                    (14) 

 
where   is the angular acceleration, which in the case of pure 
rolling can be expressed as [5], [11]: 

 

ra /                                     (15) 
 
By substituting (15) in (14), and then the resulting friction 

force into the upper equation of (11), one obtains the 
acceleration, as: 

)1/(sin Iga                            (16) 
 

where I  is the dimensionless moment of inertia, given by: 
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Note that I  decreases from 1 for a cylinder shell, to 2/3 for a 
spherical shell, to 0.5 for a cylinder, to 0.4 for a sphere, and up 
to 0.3 for a cone or a double-cone. However, it is important to 
note that although for the majority of the revolution bodies, e.g. 
cylinders and spheres, the radius of the body equals the radius 
of contact, in the case of a double-cone, the radius R  at the 
base circle is larger than the actual contact radius r  (see Fig. 4). 
In fact, the double-cone has a variable contact radius, which 
decreases from a maximal value, at the initial position [5]: 
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to a minimal value, at the final position [5]: 
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Here   is the angle between the rectilinear trajectory of the 

mass center and the horizontal line (see Fig. 4), given by [5]: 
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For these reasons, dimensionless moment of inertia of a 

double- cone should be regarded as a function of the contact 
radius: 
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Fig. 4 Change in the contact radius, producing a continuous variation 
of the sliding acceleration of the double-cone rolling on straight rails 

 
From (16), one concludes that the constant acceleration of a 

revolution body, rolling without slipping ( sing ), is smaller 

than the value obtained when the same body slides down the 
same slope without friction. Largest reduction of acceleration 
( sin5.0 g ) is obtained for the cylindrical shell, and the 

smallest reduction of acceleration ( sin714.0 g ) for the solid 

sphere. However, as it will be discussed in detail in the next 
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section, for the particular case of a double-cone, the sliding 
acceleration appears as variable (see (16), (21), and Fig. 4). 

It is also useful to observe that an equivalent sliding friction 
coefficient e  can be defined, as follows (see (11), (16)): 
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which, in order to satisfy the condition of pure rolling, should 
be smaller than the dynamic sliding friction coefficient .  

In such conditions, (13) can be directly used to determine the 
translational efficiency trip ,  of the inclined plane gravitational 

motor, in the case of a rolling body, relative to the translational 
kinetic output, as follows: 
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Thus, (23) shows that during the rolling movement of the 

revolution body, only a part ( )1/(1 I ) of the potential energy 

is converted into the translational kinetic energy, the rest 
( )1/( II  ) of the potential energy being transformed into the 

rotational kinetic energy. This can be verified by observing that 
the total kinetic energy ftotalkE ,,  of the revolution body at the 

final position on the inclined plane, can be written as the sum of 

the translational kinetic energy 2
,, 5.0 mVE ftrk   and the 

rotational kinetic energy :5.0 2
,, IE frotk   
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Since during the pure rolling motion, the spinning speed   

varies directly proportionally to the sliding velocity of the mass 
center and inversely proportionally to the contact radius [11]: 
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the total kinetic energy (24) can be rewritten as: 
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In conclusion, the machine efficiency defined relative to the 

rotational kinetic output can be written as: 
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Consequently, the efficiency defined relative to the total 

kinetic output becomes equal to 1: 
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Result (28) appears to be correct since the rolling friction of 

the revolution body, i.e. the small eccentricity of the normal 
force in relation with the center of mass, was neglected. If 
rolling friction is considered, a friction moment equal to the 
normal force multiplied by the above-mentioned eccentricity, 
opposes the clockwise traction torque RFf  produced by the 

sliding friction force [7], [11]. 
Since for a revolution body, whose radius equals the contact 

radius, the dimensionless moment of inertia cannot exceed the 
unity ( 1I ), from (27) it appears that the rotational efficiency 
cannot exceed the translational efficiency: 
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However, as it will be proven in the next section, in the case 

of a double-cone gravitational machine, the inequality (29) can 
be easily violated. 

From (16) and (23), one concludes that the solid cylinder 
reaches the bottom of the slope faster than the hollow cylinder, 

since it has a smaller dimensionless moment of inertia ,I  i.e. it 

has a larger acceleration and translational efficiency .,trip  In 

fact, the most compact object, i.e. the object with the smallest 

,I  will achieve the fastest descending speed and the highest 

translational efficiency ,,trip  but the lowest efficiency of 

rotation .,rotip  Thus, depending on the prescribed duty of the 

gravitational machine, a solid sphere can be selected to achieve 
a high translational efficiency of 71.4 %, but a hollow cylinder 
might be preferred to gain the highest rotational efficiency of 
50 %. 

V.  TRUNCATED DOUBLE-CONE GRAVITATIONAL MACHINE: 
CASE OF THE PERFECT HORIZONTAL RAILS 

Fig. 1 shows the no-slip or pure rolling movement of a 
truncated double-cone along perfect horizontal rails. Condition 
of pure rolling has been previously checked, by demonstrating 
that the equivalent sliding friction coefficient e  is smaller 

than the traction coefficient ,t  and further, by observing that 

the traction coefficient t  is about 10 to 100 times smaller than 

the dynamic sliding friction coefficient   [5]: 
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As reported by [1]-[5], the mass center of the double-cone 

moves on a descending straight line that displays an inclination 
or contact angle   relative to the horizontal line (see Fig. 4). 

Descending speed V


 and acceleration a


 are vectors normal to 
the instantaneous contact radius, and consequently, they move 
on the same straight line as the mass center of the revolution 
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body (see Fig. 4). Double-cone, which is initially halted ( ,0iV  

0i ) is then accelerated during the rolling along the straight 

divergent rails, up to the final translational velocity ,VV f  

and up to the final rotational velocity . f  

Substituting (21) in (16), and taking into account that the 
angle   of the inclined plane should be replaced by the contact 
angle   (see Figs. 3 and 4), the variable acceleration of the 
mass center of the double-cone is obtained as a function of the 
contact radius, as follows: 
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Note that (31) displays the same expression as that derived in 

[5], following a quite different approach for the kinematical 
analysis of the double-cone movement on the rails. 

Fig. 4 shows that the gradual reduction of the contact radius 
leads to height decrease of the mass center of the double-cone, 
and hence the inputted potential energy can be calculated as: 
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Translational kinetic energy output can be evaluated as the 

work of the inertial force am


 along the descending straight 
line of length ,S  on which the mass center is moving: 
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By performing a change of variables from the length s  to 

the contact radius :r  
tan/drds                                 (34) 

 
and by substituting the acceleration (31) in (33), one arrives to 
the following translational output: 
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where the initial iI  and final fI  dimensionless moments of 

inertia of the double-cone can be calculated as: 
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Based on (32) and (35), one determines the translational 

efficiency tr  of the double-cone gravitational machine, as: 
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On the other hand, rotational kinetic energy output can be 

calculated as the work of the inertial moment I  around the 
mass center, as follows: 
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where the instantaneous number n  of rotations of the double- 
cone is given by [5]: 
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Based on (39), one performs a change of variables from the 

angular coordinate   to the contact radius :r  
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Then, by substituting the acceleration (31) in the expression 

(15) of the angular acceleration for pure rolling, and the result 
in (38), one finds the following rotational kinetic energy output: 
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Thus, based on (32) and (41), one obtains the rotational 

efficiency rot  of the double-cone gravitational machine, as: 
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Similar to (28), one achieves the efficiency defined relative 

to the total kinetic output of the double-cone, as equal to 1: 
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which appears as a correct result under the fair assumption that 
the rolling friction of the double-cone can be neglected, i.e. the 
total mechanical energy is conserved. 

VI.  TRUNCATED DOUBLE-CONE GRAVITATIONAL MACHINE: 
CASE OF THE SLIGHTLY INCLINED RAILS 

In this section, the double-cone is supposed to roll on straight 
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divergent rails, when they are slightly inclined. For instance, 
Fig. 5 shows the movement of the double-cone on descending 
rails of inclination angle .  

 

 

Fig. 5 Lateral view of the truncated double-cone, rolling on V-shaped 
straight divergent rails, disposed on a slightly descending table 

 
In the case of inclined rails, according to Fig. 5, the inputted 

potential energy (32) of the double-cone gravitational machine 
should be rewritten as: 

 

)cos()(

)sin()(









fi

fip

rrmg

mgSHHmgE
             (44) 

 
where the plus sign is related to descending rails (Fig. 5), and 
the minus sign is taken for ascending rails [2], of inclination 
angle .  Here, slightly inclined rails means that the angle   
for ascending rails cannot exceed the contact angle ,  i.e. 

.   In the other words, if    the double-cone is unable 
to self- propel on the ascending rails, and in such circumstances, 
the gravitational machine is unable to perform its prescribed 
duty. 

Additionally, acceleration (31) of the mass center of the 
double-cone should be revised as: 

 

22

2

3.0
)sin()(

Rr

r
gra


                        (45) 

 
In such circumstances, the change of variables (34) can be 

rewritten as: 
)tan(/   drds                            (46) 

 
and hence, the translational kinetic energy output (35) can be 
recalculated as: 

 

]
1

tan3.0))[(cos( 1

,

if
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trk

II

II
Rrrmg

E




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     (47) 

 
On the other hand, since the change of variables (40) can be 

reconsidered as: 
 

r

dr
d

)tan(

1





                            (48) 

 
the rotational kinetic energy output (41) can be recalculated as: 

 

if

if

rotk
II

II
mgRE




 

1
tan)cos(3.0 1

,            (49) 

 
Based on (44), (47), and (49), one regains the translational, 

rotational, and total efficiencies, as follows: 
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                (50) 

 
which are identical with (37), (42), and (43). Thus, efficiency 
ratios (50), associated to the double-cone gravitational machine 
are not explicitly depending on the inclination angle of the rails. 

VII. RESULTS AND DISCUSSIONS 

From (50), one observes that the translational and rotational 
efficiencies vary during the movement of the double-cone on 
the rails, in such way that sum of the rotational and translational 
efficiencies remains invariant and equal to unity. 

Concerning the efficiency at the initial position in Figs. 4-5, 

or at the start position in Fig. 1, by imposing if II   in (50), 

one gains the initial translational and rotational efficiencies as: 
 

i

i
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i
itr I

I

I 
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

1
;

1

1
,,                          (51) 

 
which are similar to (23) and (27), found for the inclined plane 
gravitational machine. Moreover, similar to (29) of the inclined 

plane, itrirot ,,    if ,1iI  i.e. if .3.0 Rri   However, by 

selecting the distance ,SL i.e. the start position of the 

double-cone on the rails (see Fig. 1), in such a manner that 

,1iI  i.e., ,3.0 Rri   the initial rotational efficiency can be 

altered to exceed the translational efficiency ( itrirot ,,   ). 

As the movement of the double-cone progresses on the rails, 
the final contact radius fr  decreases, and depending on the 

actual geometry of the mechanism, it might approach zero. In 
such conditions, the corresponding dimensionless moment of 

inertia fI (see (36)) tends to infinity. For this reason, by 

imposing fI  in (50), one obtains the corresponding 

translational and rotational efficiencies, as: 
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i
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i

itr
I
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I

I
1

tan;
1

tan1 1
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



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Based on (50)-(52), one presents in Fig. 6 the variation of the 

translational ,tr  rotational ,rot  and total total  efficiency of 

the double-cone gravitational machine versus the square root of 

the final dimensionless moment of inertia ),,[  if II  for 

various values of the initial dimensionless moment of inertia 

548.03.0 iI  (red lines), 0.7 (violet lines), 0.8 (green 

lines), 1 (brown lines), 1.2 (blue lines), and 2 (black lines). 
From Fig. 6, one observes that the translational efficiency tr  

monotonically decreases from the initial value of )1/(1 iI  

(see (51)) to the value of )/1(tan1 1
ii II   (see (52). 

Moreover, the rotational efficiency rot  monotonically 

increases from the initial value of )1/( ii II   (see (51)) to the 

value of )/1(tan 1
ii II   (see (52). However, the total 

efficiency, i.e. the sum of rotational and translational 
efficiencies, invariably maintains the value of one. At 
augmentation of the square root of the initial dimensionless 

inertia moment iI  (see Fig. 6), the translational efficiency 

decreases, but the rotational efficiency increases. 
 

 

Fig. 6 Variation of the translational, rotational and total efficiency of 
the double-cone gravitational machine versus the square root of the 

final dimensionless moment of inertia, for various values of the square 
root of the initial dimensionless inertia moment 

 

For ,1iI  the graph of translational efficiency intersects the 

graph of rotational efficiency for a certain value of ,fI  

denoted as ,,eqfI  and in such conditions 5.0 rottr   (see 

the yellow circular symbols on Fig. 6). 

Accordingly, Fig. 7 shows the monotonical decreasing of the 

square root of the final dimensionless inertia moment ,,eqfI  

at which equality of the rotational and translational efficiencies 
is achieved, versus the square root of the initial dimensionless 

inertia moment .iI  On the other hand, one notes that, for 

,1iI  regardless the value of ,fI rotational efficiency 

exceeds the translational efficiency ( trrot   ), and this is a 

distinctive feature of the double-cone gravitational motor and 
generator, which cannot be achieved by the inclined plane 
gravitational machine. 
 

 

Fig. 7 Variation of the square root of the final dimensionless inertia 
moment, at which equality of the rotational and translational 
efficiencies is achieved, versus the square root of the initial 

dimensionless inertia moment 

VIII. CONCLUSIONS 

In this work, the efficiency of a double-cone gravitational 
motor and generator was theoretically investigated. Following 
conclusions can be drawn from the performed analysis: 
1) According to the prescribed purpose of the double-cone 

gravitational machine, two types of efficiency ratios were 
defined, the translational and rotational efficiencies, in 
order to account for the production of kinetic energy, both 
at the movement of translation and rotation. 

2) Efficiency ratios of the double-cone gravitational machine 
are not explicitly depending on the inclination angle of the 
straight divergent rails, but they appear to be functions of 
two geometrical parameters: the square roots of the initial 
and final dimensionless inertia moments. 

3) Translational efficiency monotonically decreases, and the 
rotational efficiency monotonically increases against the 
square roots of the initial and final dimensionless inertia 
moments. 

4) For an initial dimensionless inertia moment smaller than 
one, the rotational efficiency appears to be smaller than the 
translational efficiency, up to a certain value of the final 
dimensionless inertia moment, at which equality of the 
rotational and translational efficiency is obtained. Further 
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augmentation of the final dimensionless inertia moment 
leads to the reversed inequality between the rotational and 
translational efficiencies, and such effect is easier to be 
achieved for larger initial dimensionless inertia moments. 

5) On the other hand, for an initial dimensionless inertia 
moment larger than one, the rotational efficiency exceeds 
translational efficiency, and such peculiar characteristic 
cannot be achieved in the case of the classical inclined 
plane gravitational machines. 
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