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A Study of Hamilton-Jacobi-Bellman Equation
Systems Arising in Differential Game Models of

Changing Society
Weihua Ruan, Kuan-Chou Chen

Abstract—This paper is concerned with a system of
Hamilton-Jacobi-Bellman equations coupled with an autonomous
dynamical system. The mathematical system arises in the differential
game formulation of political economy models as an infinite-horizon
continuous-time differential game with discounted instantaneous
payoff rates and continuously and discretely varying state variables.
The existence of a weak solution of the PDE system is proven and
a computational scheme of approximate solution is developed for a
class of such systems. A model of democratization is mathematically
analyzed as an illustration of application.
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I. INTRODUCTION

IN this paper we study a system of semilinear first order

partial differential equations in the form

λwji (x) = F (x) · ∇xwji (x) + gji (x, φ
∗)

+

m∑
μ=1

qjμ (x, φ
∗)wμi

(1)

for j = 1, . . . ,m, i = 1, . . . , n, where

x ≡ (x1 (t) , . . . , xd (t)) ∈ R
d

is subjected to the dynamical system

dxk/dt = Fk (x1, . . . , xd) , k = 1, . . . , d, (2)

and φ∗ ≡ (
φ∗
ji

)
is a solution of the maximization problem

φ∗
i = argmax

φji∈Xji(φ∗
jı̂)

{
gji

(
x, φji, φ

∗
jı̂

)
+
∑m

μ=1 qjμ
(
x, φji, φ

∗
jı̂

)
wμi

}
.

(3)

Here, for each j, i, φji is a (possibly mixed) strategy in

a set of strategies Xji

(
φjı̂

)
which may depend on other

players’ strategies φjı̂ ≡ (
φj1, . . . , φji−1, φji+1, . . . , φjn

)
.

The main assumptions are that the autonomous dynamic

system (2) has a global attractor x̄ in a bounded domain

Ω ⊂ R
d, and that the maximization problem (3) has a solution

φ∗ ≡ φ∗ (x,w) which is piecewise continuously differentiable

in (x,w). The goal of this paper is to prove the existence of a

solution (x (t) , w∗ (t) , φ∗ (t)) for any x (0) ∈ Ω under certain
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general conditions, and to develop a computation scheme for

approximating solutions.

This system arises in infinite-horizon differential games

with continuously varying state variables and discretely

varying modes, where i ∈ {1, . . . , n} represents the players,

j ∈ {1, . . . ,m} represents the modes of the system, x =
(x1, . . . , xd) ∈ R

d represents the continuously varying state

variables, φ = (φ1, . . . , φn) is the strategy profile of the

players, qjμ is the transition rate between two modes, gji is

the instantaneous payoff rate for player i in mode j, λ is

the discount rate in the infinite-horizon accumulated payoff,

and wji is related to the value function for player i in mode

j. In the game-theoretic framework there is a set of players,

each possessing a set of available strategies and uses them

to gain the best benefit. In the meantime there is a number

of state variables governed by a dynamical system defined by

a system of differential equations, and the system switches

among modes according to the rule of game. For example, in

modeling the political changes in a society, players are major

social groups, continuously-varying quantities are those that

characterize the quantitative features of the society, such as

the size and wealth of the population, rates of production, and

incomes of social groups, and modes specify who is in power

and whether the state is peaceful. Changes of these quantities

are caused by the players’ strategies. In an infinite-horizon

game, players are concerned not only with their immediate

benefits but also with their accumulated benefits in the entire

future. A popular form is the discounted total payoff in the

form

Ui (t) = E
t
i

∫ ∞

t

e−λ(τ−t)Πi (τ , x (τ) , σ (τ) , φ (τ)) dτ,

where λ > 0 is a constant, Πi is the instantaneous rate

of change of payoff, and E
t
i is the expectation operator

conditional to the players’ available information at time t. The

expectation operator acts through the probability of the mode.

Let pj (t) = Pr (σ (t) = σj) be the projected probability of

the system in mode σj at time t for j = 1, . . . ,m, and

let gji (t, x, φ) denote Πi (t, x, σj , φ) for i = 1, . . . , n and

j = 1, . . . ,m. Then the expectation of the instantaneous

payoff rate is the sum

E
t
iΠi (t, x, σ, φ) =

m∑
j=1

pj (t) gji (t, x, φ)

≡ 〈p (t) , gi (t, x, φ)〉 ,
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where

p (t) = (p1 (t) , . . . , pm (t)) ,

gi (t, x, φ) = (gji (t, x, φ) , . . . , gmi (t, x, φ)) ,

and 〈·, ·〉 is the dot product in R
m. In terms of these functions

we can write the expected accumulated total discounted payoff

for player i as

Ui (t, φ) =

∫ ∞

t

e−λ(τ−t) 〈p (τ) , gi (τ , x (τ) , φ (τ))〉 dτ. (4)

Typically, the continuously-varying dynamic state variable

x (t) = (x1 (t) , . . . , xd (t)) is governed by a system of

differential equations in the form

dxk/dt = ϕk (t, x (t) , σ (t) , φ (t)) , k = 1, . . . , d. (5)

Let

fjk (t, x, φ) = ϕk (t, x, σj , φ) .

The equations can be written in the matrix form

dx/dt = p (t)F (t, x (t) , φ (t)) (6)

where F (t, x, u) = (fjk (t, x, u)) is an m × d matrix.

The change of modes are characterized by the varying of

probabilities p1 (t), . . . , pj (t). Suppose the mode σ (t)
evolves as a continuous-time stochastic process

Pr (σ (t+Δt) = σν |σ (t) = σμ, x (τ) , u (τ) , τ ≤ t)

= δμν + qμνΔt+ o (Δt) ,
(7)

where δμν is the Kronecker delta, and qμν , μ, ν ∈ {1, . . . ,m},

is the transition rate from state σμ to state σν . These quantities

satisfy qμν ≥ 0 for μ 
= ν and
∑m

ν=1 qμν = 0 for each μ.

In general qμν depends on t, x and u. Thus p (t) evolves

according to the differential equation

dp/dt = p (t)Q (t, x (t) , u (t)) (8)

where Q = (qμν)m×m is the transition matrix.

At any moment, t, each player chooses its strategy

{φi (τ) , τ ≥ t} to maximize its accumulated payoff Ui (t;φ)
defined by (4). The result is an equilibrium at which the

inequality

Ui (t;φ
∗) ≥ Ui

(
t;
(
φji, φ

∗
jı̂

))
(9)

hold for all i = 1, . . . , n, φji ∈ Xji

(
t, φ∗

jı̂

)
and j = 1, . . . ,m,

where Xji

(
t, φ∗

jı̂

)
is the set of available strategies of player i

given that other players follow the strategy

φ∗
jı̂ =

(
φ∗
j1, . . . , φ

∗
ji−1, φ

∗
ji+1, . . . , φ

∗
jn

)
.

Depending on the rule of game the equilibrium φ∗ may be a

Nash equilibrium, Stackelberg equilibrium, or of other types.

The key to solve a differential game model is to determine the

maximizing strategies φ∗
ji. Once the strategies are chosen by

all the players, the variables x (τ) and p (τ) are completely

determined for τ ≥ t by (6), (8) and their initial values x (t),
p (t), respectively.

Equations (1) and (3) are derived from the

Hamilton-Jacobi-Bellman equations formulation of the

differential game. Define the value function Vi (t, x, y) by

Vi (t, x, y) =

∫ ∞

t

e−λτ 〈p (τ) , gi (τ , x (τ) , φ∗ (τ))〉 dτ

where x (τ), p (τ) are solutions of (6) and (8) with the

initial values x (t) = x, p (t) = y, and φ∗ =
(
φ∗
ji

)
m×d

is the maximizing strategy profile that satisfies (9). The

Hamilton-Jacobi-Bellman equations for Vi (t, x, y) is

−∂tVi (t, x, y)

= max
φji∈Xji(φ∗

jı̂),
j=1,...,m

m∑
j=1

yj
{
e−λtgji

(
t, x, φji, φ

∗
jı̂

)
+ Fj

(
t, x, φji, φ

∗
jı̂

)
∂xVi +Qj

(
t, x, φji, φ

∗
jı̂

)
∂yVi

}
(10)

where

∂xVi = (∂x1
Vi, . . . , ∂xd

Vi)
T
,

∂yVi = (∂y1
Vi, . . . , ∂ym

Vi)
T

are both column vectors, Fj and Qj are the jth rows

of matrices F and Q, respectively. If the value function

Vi (t, x, y) can be solved together with the strategy profile φ∗,

the dynamical system (6)–(8) can be solved for any initial

values. However, in general, the partial differential equation

(10) is difficult to solve because it is highly nonlinear. The

system (1)-(3) is a special case where the functions ϕk,

k = 1, . . . , d in (5) are independent of the mode σ. In this

case the variable y can be eliminated from (10) since x (τ) is

independent of p (τ) and the matrix F (t, x, φ) has identical

rows. Furthermore, since System (8) is linear, its solution p (τ)
is linear with respect to its initial value, y. Thus the value

function Vi (t, x, y) is also linear in y and can be written in

the form Vi (t, x, y) = 〈y,Wi (t, x)〉 where Wi = ∂yVi. Note

that the components of y are nonnegative since they are the

probability distributions, (10) can be written in the form

−∂tWji (t, x) = max
φji∈Xji(φ∗

jı̂)

{
e−λtgji

(
t, x, φji, φ

∗
jı̂

)
+F

(
t, x, φji, φ

∗
jı̂

)
∂xWji (t, x)

+ Qj

(
t, x, φji, φ

∗
jı̂

)
Wi (t, x)

}
(11)

for j = 1, . . . ,m, i = 1, . . . , n. We next observe that in

the autonomous case where functions gji, F , and Q are

independent of t, Ui (t;φ
∗) defined in (4) is also independent

of t. This means eλtWi (t, x) is independent of t. We denote

it as wi (x). If, in addition, F is independent of φ, then by

(11), the components of wi (x) satisfy the equations

λwji (x) = F (x) · ∂xwji (x)

+ max
φji∈Xji(φ∗

jı̂)

{
gji

(
x, φji, φ

∗
jı̂

)
+Qj

(
x, φji, φ

∗
jı̂

)
wi (x)

}
,

(12)

for j = 1, . . . ,m, i = 1, . . . , n, where “·” is the dot product

in R
d. This is the same as (1) and (3), while (5) with ϕk

independent of σ and φ is the same as (2).

Problem (1)–(3) is semilinear and therefore is easier

to analyze then the general problem (6), (8) and (10).

However, there is no results on the existence of solution

and computation of the solution in the current literature.

The Hamilton-Jacobi-Bellman equations for two-player zero

sum games have been widely used in early works on

differential games [6], [8], [9], [20]-[22]. However, the general

n equation system cannot be treated using the ordinary
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method of characteristics. There are two obstacles. One is that

the boundary condition is not given on a non-characteristic

manifold, but at an equilibrium point x̄ which is a zero of F .

This is because the values of wji are unknown for x ∈ Ω, and

in the general case its value can be determined by solving (12)

only at the equilibrium point x̄ together with the maximization

problem

maximize
φi∈Xi(φ∗

−i)
gji

(
x, φi, φ

∗
−i

)
+Qj

(
x, φi, φ

∗
−i

)
wi (x) , (13)

for i = 1, . . . , n. Another obstacle is that the solution

(x,wi) �→ φ∗ of (13) is generally discontinuous. Thus the

right-hand side of (12) is generally discontinuous on (x,wi).
To overcome these difficulties, we use the Stable Manifold

Theorem to obtain a unique solution in a small neighborhood

of the equilibrium (x̄, w̄), and then use a fixed point approach

to obtain the existence of the weak solution. This approach

also leads to an approximation scheme for the solution.

The paper is organized as follows. In Section II, we prove

the existence of a weak solution and develop a computation

scheme for constructing approximate solutions for problem

(1)–(3) under Hypothesis (H) below. In Section III, we use

the results to analyze a democratization model proposed in

[12] as an illustration of application. A numerical example is

also given at the end of Section III to explain the general

computation scheme. In Appendix, we give a proof of a

technical lemma used in Section III.

II. EXISTENCE AND COMPUTATION OF SOLUTION

In this section, we prove the existence of solution to (1)-(3)

and develop a computation scheme of the solution under the

following conditions.

Hypothesis (H):
1) Functions Fk for k = 1, . . . , d and gji, qjμ for i =

1, . . . , n and j, μ = 1, . . . ,m are C1 functions of their

arguments.

2) Ω ⊂ R
d is a bounded domain, with a C1 boundary ∂Ω.

Also there is x̄ ∈ Ω such that it is the only solution to

the equation F (x) = 0 and all the eigenvalues of the

Jacobi matrix DxF (x̄) are negative or complex with

negative real part. Furthermore x̄ is the global attractor

of the differential equation (2) in Ω.

3) The solution φ∗ of problem (3) exists and is piecewise

constant in D = Ω × R
m. Specifically, for each i =

1, . . . , n there are subdomains {Di1, . . . , DiNi} such

that each Dil is open and connected, Dil ∩ Dil′ = ∅

whenever l 
= l′, D =
N⋃
l=1

Dil, where the upper bar

indicates the closure, and φ∗
i is constant in each Dil for

l = 1, . . . , Ni.

4) Problem

λw̄ji = gji (x̄, φ
∗ (x̄, w̄i)) +

m∑
μ=1

qjμ (x̄, φ
∗ (x̄, w̄i)) w̄μi,

(14)

for j = 1, . . . ,m, i = 1, . . . , n, has a solution (w̄ji)
such that (x̄, w̄i) ∈ Dil for some Dil.

Since the system involves discontinuous functions, we solve

it in the weak sense. A weak solution {w, φ∗} of (1)-(3) is

defined by

Definition 1: We say {w, φ} is a weak solution of (1)–(3)

if for each i = 1, . . . , n, wi ∈ L2 (Ω;Rm), F (x) ∂xwi ∈
L2 (Ω;Rm), and the equation∫

Ω

〈v, gi (x, φ∗ (x,wi)) + F (x) ∂xwi

−λwi +Q (x, φ∗ (x,wi))wi〉 dx = 0

holds true for any v ∈ L2 (Ω;Rm), and wi (x̄) = w̄i.

A. Existence of Solution

The following theorem ensures the existence of a weak

solution.

Theorem 1: Suppose (H) holds. Then Problem (1)–(3) has

a solution {w∗
i (x) , φ

∗ (x)} for any x ∈ Ω, i = 1, . . . , n.
Proof: We fix an i ∈ {1, . . . , n}. Since φ∗ (x, z) is

piecewise constant in Ω×R
m, for any ε > 0, we can construct

a smooth approximation φ∗
ε of φ∗ such that φ∗

ε is a C1 function

in Ω × R
m for each ε > 0, φ∗

ε (x, z) = φ∗ (x, z) in Dε
il for

any Dil, where

Dε
il = {(x,wi) ∈ Dil, dist ((x,wi) , ∂Dil) > ε} ,

and φ∗
ε is uniformly bounded. Let g∗ji,ε and q∗ji,ε denote the

functions

g∗ji,ε (x, z) = gji (x, φ
∗
ε (x, z)) , q∗ji,ε (x, z) = qji (x, φ

∗
ε (x, z))

for (x, z) ∈ Ω× R
m. Then the equation

λzji = g∗ji,ε (x̄, zi) +
m∑

μ=1

q∗jμ,ε (x̄, zi) zμi

has the same solution w̄ji if ε is sufficiently small such that

(x̄, w̄i) ∈ Dε
il for each i. Let x0 ∈ Ω and let x (s) be the

solution of (2) with the initial value x (0) = x0 ∈ Ω. The

characteristic equations for (1) with gji (x, φ
∗ (x,wi)) and

qjμ (x, φ
∗ (x,wi)) replaced by g∗ji,ε (x,wi) and q∗ji,ε (x,wi),

respectively, are

dx/ds = F (x) , x (0) = x0;

dzji/ds = λzji − g∗ji,ε (x (s) , zi)
−∑m

μ=1 q
∗
jμ,ε (x (s) , zi) zμi,

lims→∞ zji (s) = w̄ji.

(15)

We show that this problem has a unique solution.

We first observe that the equation for x is independent of

zji. Since F ∈ C1 (Ω), there is a unique solution for any

x0 ∈ Ω. Also, since x̄ is the global attractor of (2) in Ω,

it follows that lims→∞ x (s) = x̄. We show that (15) has a

solution in a neighborhood of (x̄, w̄). Note that system (15) is

autonomous and has (x̄, w̄i) as an isolated equilibrium. Since

φ∗
ε is constant in Dε

il, the Jacobian matrix Ji,ε (x̄, w̄i) = (Akl)
of the functions on the right-hand sides of the differential

equations in (15) at the equilibrium (x̄, w̄i) has the entries

A11 = DxF (x̄) , A12 = 0,

A21 = −Dxg
∗
i,ε (x̄, w̄i)−DxQ

∗
ε (x̄, w̄i) w̄i,

A22 = λI −Q∗
ε (x̄, w̄i) ,
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where g∗i,ε (x,wi) =
(
g∗ji,ε (x,wi)

)m
j=1

, Q∗
ε (x,wi) =(

q∗jμ,ε (x,wi)
)
m×m

, and I is the m × m identity matrix.

Clearly the eigenvalues of Ji,ε (x̄, w̄i) are the eigenvalues of

DxF (x̄) and the eigenvalues of λI − Q∗
ε (x̄, w̄i) combined.

Note that the off-diagonal entries of Q∗
ε (x̄, w̄i) are all

nonnegative, and the sum of each row of Q∗
ε (x̄, w̄i) is

zero. Therefore by the Perron–Frobenius Theorem the largest

eigenvalue of Q∗
ε (x̄, w̄i) is zero and all other eigenvalues

are either negative or complex with negative real part. So,

since λ > 0, the eigenvalues of λI − Q∗
ε (x̄, w̄i) are all

positive. On the other hand, by assumption the eigenvalues

of DxF (x̄) are all negative or complex with negative real

part. Therefore, none of the eigenvalues of J (x̄, x̄i) is zero,

and by the Stable Manifold Theorem (cf. e.g. [19, Section

2.7]), the stable manifold near (x̄, w̄i) has the dimension d.

This means that there is a d-dimensional stable manifold such

that any trajectory on the manifold remains on the manifold

and converges to (x̄, w̄i). By the uniqueness of solution, there

is exactly one trajectory whose x-components reaches x0. Let

{(x (s) , zi,ε (s)) : s ≥ 0} denote this trajectory. Then there is

T > 0 such that (x (s) , zi,ε (s)) ∈ Dε
il for s > T . In particular,

we can find a neighborhood in the form Nδ (x̄) × Nδ (w̄i)
where

Nδ (x̄) = {x ∈ Ω : |x− x̄|
Rd < δ} ,

Nδ (w̄i) = {wi ∈ R
m : |wi − w̄i|Rm < δ}

such that N̄δ (x̄) × N̄δ (w̄i) ⊂ Dε
i,l and choose T so that

x (T ) ∈ ∂Nδ (x̄). Since φ∗
i,ε = φ∗

i in Dε
il, if ε is sufficiently

small, zi,ε (s) is independent of ε for s ≥ T . We denote the

trajectory by (x (s) , zi (s)) for s > T .

We next extend the solution of (15) for s < T . Consider

the terminal value problem

dzji,ε/ds = λzji,ε − g∗ji,ε (x, zi)
−∑m

μ=1 q
∗
jμ,ε (x (s) , zi,ε) zμi,ε, s ∈ [0, T );

zji,ε (T ) = zji (T ) , j = 1, . . . ,m, i = 1, . . . , n.
(16)

Since the right-hand side of (16) is continuously

differentiable in (x, z), the solution exists and is unique

on the interval [0, T ]. We denote the solution by zji,ε (s).
We show that the functions zji,ε is uniformly bounded and

equicontinuous on [0, T ]. Using a change of variable τ = T−s
and Zi,ε (τ) = (zji,ε (T − τ))

m
j=1, Problem (16) is equivalent

to the integral equation

Zi,ε (τ) = zi (T ) +

∫ τ

0

Hi,ε (ξ, Zi,ε (ξ)) dξ for τ ∈ [0, T ]

where

Hi,ε (ξ, Zi,ε) = −λZi,ε + g∗i,ε (x (ξ) , Zi,ε)

+Q∗
ε (x (ξ) , Zi,ε)Zi,ε.

Since the functions gi (x, φ) and Q (x, φ) are bounded, there

is a constant M > 0 such that |Hi,ε (ξ, Zi,ε)| ≤ M |Zi,ε| for

ξ ∈ [0, T ]. Let S ⊂ C [0, T ] be the set of continuous function

such that f ∈ S if

|f (τ)| ≤ Mwe
Mτ for τ ∈ [0, T ] ,

where Mw = maxi=1,...,n {|w̄i|+ δ}, and define mapping K :
S �→ C [0, T ] by

(Kf) (τ) = zi (T ) +

∫ τ

0

Hi,ε (ξ, f (ξ)) dξ.

Then for any f ∈ S we have

|(Kf) (τ)| ≤ |zi (T )|+M

∫ τ

0

|f (ξ)| dξ

≤ Mw +MMw

∫ τ

0

eMξdξ = Mwe
Mτ

for any τ ∈ [0, T ]. This proves that KS ⊂ S. Thus {zi,ε} is

uniformly bounded on [0, T ].
We next show that zi,ε (s) is equicontinuous. Let τ1, τ2 ∈

[0, T ]. Then

|(Kf) (τ1)− (Kf) (τ2)| =
∣∣∣∫ τ2

τ1
Hi,ε (ξ, f (ξ)) dξ

∣∣∣
≤
∣∣∣∫ τ2

τ1
M |f (ξ)| dξ

∣∣∣ ≤ M |wi (T )| eMT |τ1 − τ2| .
This proves that KS is equi-continuous.

Thus, by the Ascoli-Arzera Theorem, there is a sequence

εk → 0 such that zi,εk converges to a continuous function

zi on [0, T ]. By the construction of φ∗
ε , it follows that

φ∗
εk

(x, zi,εk) → φ∗ (x, zi) pointwise in each Dil. Thus

φ∗
εk

(x, zi,εk) → φ∗ (x, zi) a.e. in Ω × S. Let wi,εk and

wi be the function such that wi,εk (x (s)) = zi,εk (s) and

wi (x (s)) = zi (s), where x (s) is the solution of the first

equation of (15). Since the first equation of (15) has a unique

solution for any initial value x0 ∈ Ω, wi,εk (x) is defined on

Ω and satisfy the partial differential equation

λwi,εk = g∗i,εk (x,wi,εk)+F (x) ∂xwi,εk+Q∗
εk

(x,wi,εk)wi,εk

(17)

classically in Ω. So for any v ∈ L2 (Ω;Rm) by the dominated

convergence theorem we haves∫
Ω

〈
v, g∗i,εk (x,wi,εk) + F (x) ∂xwi,εk

−λwi,εk +Q∗
εk

(x,wi,εk)wi,εk

〉
dx = 0.

(18)

Since wi,εk → wi in C (Ω) and g∗i,εk (x,wi,εk (x))
and Q∗

εk
(x,wi,εk (x)) converge to gi (x, φ

∗ (x,wi (x))) and

Q (x, φ∗ (x,wi (x))) a.e. in Ω, respectively, it follows that

lim
k→∞

[∫
Ω

〈
v, g∗i,εk (x,wi,εk)− λwi,εk

〉
dx

+

∫
Ω

〈
v,Q∗

εk
(x,wi,εk)wi,εk

〉
dx

]

=

∫
Ω

〈v, g∗i (x,wi)− λwi +Q∗ (x,wi)wi〉 dx

for any v ∈ L2 (Ω;Rm). It remains to show that

lim
k′→∞

∫
Ω

〈
v, F (x) ∂xwi,εk′

〉
dx =

∫
Ω

〈v, F (x) ∂xwi〉 dx
(19)

for a subsequence
(
wi,εk′

)
of (wi,εk). For this purpose

we show that (wi,εk) is bounded in H1 (Ω\Nδ (x̄)). The

boundedness of wi,εk in L2 (Ω\Nδ (x̄)) follows directly from

the boundedness of S. To see that ∂xwi,εk is bounded, we use

(17), which leads to

F (x) ∂xwi,εk = λwi,εk−g∗i,εk (x,wi,εk)−Q∗
εk

(x,wi,εk)wi,εk
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to conclude that F (x) ∂xwi,εk is bounded on Ω\Nδ (x̄) since

wi,εk , g∗i,εk and Q∗
εk

are bounded. Observe that since F (x) 
=
0 if x 
= x̄ in Ω, there is a constant ρ > 0 such that

|F (x)| > ρ in Ω\Nδ (x̄). Hence, the above equation implies

that |∂xwi,εk |L∞ is bounded in Ω\Nδ (x̄). Since Ω is bounded,

it follows that ∂xwi,ε is bounded in L2 (Ω\Nδ (x̄)).

By the weak compactness of bounded sets in

H1 (Ω\Nδ (x̄)), there is a subsequence
(
wi,εk′

)
that is

weakly convergent. Thus, since in Nδ (x̄) all wi,εk = wi for

all k, we have

lim
k′→∞

∫
Ω

〈
v, F (x) ∂xwi,εk′

〉
dx

=

∫
Nδ(x̄)

〈v, F (x) ∂xwi〉 dx

+ lim
k′→∞

∫
Ω\Nδ(x̄)

〈
v, F (x) ∂xwi,εk′

〉
dx

=

∫
Nδ(x̄)

〈v, F (x) ∂xwi〉 dx

+

∫
Ω\Nδ(x̄)

〈v, F (x) ∂xwi〉 dx

=

∫
Ω

〈v, F (x) ∂xwi〉 dx.

This proves (19).

As we have shown that

lim
k′→∞

∫
Ω

〈
v, g∗i,εk′

(
x,wi,εk′

)
+ F (x) ∂xwi,εk′

−λwi,k′ +Q∗
εk′

(
x,wi,εk′

)
wi,εk′

〉
dx

=

∫
Ω

〈v, g∗i (x,wi) + F (x) ∂xwi − λwi〉 dx

+

∫
Ω

〈v,Q∗ (x,wi)wi〉 dx

as k → ∞, by (18), {w, φ} is a weak solution of (1)–(3). This

completes the proof of the theorem.

B. Computation of Solution

Based on the idea of the proof of Theorem 1, we propose

the following method of computing approximate solution of

(1)-(3).

1) For any i = 1, . . . , n, we first find an approximate

solution near the equilibrium point (x̄, w̄i). Since (x̄, w̄i)
is in the interior of a subdomain Dil in which φ∗ of (3)

is constant, one can construct an approximate solution

using the Taylor expansion. To do so, differentiate (1)

to obtain equations for the derivatives of wji at x̄,

λ (wji)xμ
(x̄)

=

d∑
k=1

(Fk)xμ
(x̄) (wji)xk

(x̄)

+
d∑

k=1

(gji)xμ
(x̄, φ∗ (x̄))

+
m∑
l=1

(qjl)xμ (x̄, φ
∗ (x̄)) w̄li

+
m∑
l=1

qjl (x̄, φ
∗ (x̄)) (wli)xμ

(x̄) ,

λ (wji)xμxν
(x̄)

=

d∑
k=1

(Fk)xμxν
(x̄) (wji)xk

(x̄)

+
d∑

k=1

2 (Fk)xμ
(x̄) (wji)xkxν

(x̄)

+
d∑

k=1

(gji)xμxν
(x̄, φ∗ (x̄))

+
m∑
l=1

(gjl)xμxν
(x̄, φ∗ (x̄)) w̄li

+2
m∑
l=1

(gjl)xμ
(x̄, φ∗ (x̄)) (wli)xν

(x̄)

+
m∑
l=1

gjl (x̄, φ
∗ (x̄)) (wli)xμxν

(x̄) , . . .

The derivatives can be solved from each equation

because the eigenvalues of DxF (x̄) and (qjl (x̄, φ
∗))

are negative or complex with a negative real part. Thus,

we can use a Taylor polynomial

wji (x) ≈ wji (x̄) +∇xwji (x̄) · (x− x̄)

+
1

2
(x− x̄)

T
D2

xwji (x̄) (x− x̄) + · · ·

to approximate wji (x) for x near x̄. The function

φ (x,w) can then be approximated by solving (3).

2) We then use an iterative scheme to construct an

approximate solution. The first step is to assumes a

function φ(0) (x) and substitute it for φ∗ in (1) to obtain

a numerical solution w
(1)
i (x). We then solve (3) to

obtain φ(1) from w
(1)
i . In general, if φ(k) has been

obtained, we use it to substitute for φ∗ in (1) and solve

the equations for w
(k+1)
i , and then solve (3) to obtain

φ(k+1). In general, since there are finite many possible

values of φ, the two sequences
{
w

(k)
i

}
and

{
φ(k)

}
are

likely to converge to a cyclic limits. Pressumably, the

smaller the stepsize in the numerical approximation of

the solution w
(k)
i to the differential equations (1), the

smaller the diviation of the solutions
{
w

(k)
i , φ(k)

}
in

the cyclic limits, and thus the better approximation.
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3) After solving the function φ∗ (x), the last step is to solve

the dynamical system (6), (8) with u = φ∗ (x) and with

any given initial conditions x (0) and p (0). This is an

initial-value problem of a system of ordinary differential

equations, whose solution is easy to obtain.

This general approach is illustrated in Section III by a

two-player democratization model.

III. A MODEL OF DEMOCRATIZATION

In this section we apply the method developed in

Section II to a differential game model of democratization

as an illustration. Mathematical modeling of changing

societies using game theories has been an active research

area for decades. Various game theories have been used

in the study of politico-economic phenomena. Major

societal transformations such as institutional changes in

non-democracy and democratization processes have been

extensively investigated (cf. [1]-[5], [10]-[12], [14]-[18] and

references therein). In particular, there is a large body of

literature on the co-evolution of the economic and political

development of the society ([2], [7], [10], [12], [13], [18],

[23]). On the other hand, many models are formulated as

discrete time dynamic games rather than continuous time

differential games. Since in many cases there are continuously

varying state variables involved in the transition of a society,

it is often more convenient to formulate differential game

models. We formulate a two-player democratization model

below as an example.

A. Model Description

In [12] a model of democratization in a society is

proposed that consists of four social groups, the monarch,

landowners, capitalists, and labors. The underlying concept

of the modelling is that democratization is considered as a

transition process of the political power from being highly

concentrated in the hands of a small number of people

to being widely shared by the general population. As the

history exhibits, this process takes multiple stages. Different

social groups enter into the political arena at different times.

Typically a social group’s quest for political power begins

with the group becoming economically powerful, capable

of challenging the ruler. Eventually confrontations break out

resulting in either the challenging group being adopted into the

ruling class peacefully, or the challenging group overtakes the

ruling group in a revolt and becomes the new ruler. The model

in [12] divides this process into two steps, (1) from monarchy

to oligarchy, during which period capitalists, with or without

help of landowners, gain political power from the monarch;

and (2) from oligarchy to democracy, during which period

labors and the general population gain political power. As each

stage involves confrontations between only two parties, the

model is a game of two players, the ruler and a challenging

group. The original model is formulated as an infinite-horizon

discrete-time repeated game. To incorporate the continuous

growth of the state variable, which is the total physical capital

in the state, we reformulate the model as a continuous-time

differential game. Specifically, we focus on the first stage, from

monarchy to oligarchy, with the monarch and capitalists as

players, and use i = m, c to denote the monarch and the

capitalists, respectively.

The elements of the model include the payoff rates of the

players, the strategies of the players, the continuously-varying

state variables, the modes of the society and their transition

rates.

The payoff rates of the players are their after-tax incomes.

Each social group in the society has certain gross (before-tax)

income Ii which depends on the total amount of physical

capital, K, and the total amount of human capital, H , available

in the society at the time. Following [12] we assume that H
is a constant during the transition period from monarchy to

oligarchy. Hence only K = K (t) varies with time. Let Im,

Ic, Il, and Iw represent the before-tax income of the monarch,

the capitalists, the landowners, and the labors, respectively.

As shown by Proposition 1 in Appendix, the gross incomes

depend on K in the form

Im = Cm (L+K)
−α

, Il = Cl (L+K)
−α

,

Ic = CcK (L+K)
−α

, Iw = Cw (L+K)
1−α

,
(20)

where Cm, Cl, Cc, Cw and L are positive constants. The

after-tax income of a social group is its before-tax income

plus or minus an amount of tax revenue. Tax is collected at a

fixed rate rT ∈ (0, 1) from all individuals who are not in the

ruling body. So an individual having the before-tax income I
pays tax rT I . There is a tax collecting cost so that the ruler

receives r̂T I from the individual for some constant r̂T < rT .

The tax revenue is shared among members of the ruling group

in proportion to their economic power. The after-tax income

also depends on the mode of the society. The society can be

either in a peaceful mode or in the aftermath of a revolt. The

former is a time when there has not been a revolt recently.

In this mode a non-ruler only pays the tax, so his after-tax

income is Π = (1− rT ) I . The latter is a time when the

society just endured a revolt and needs to be recovered. During

this period individuals on the defeated side pays reparation in

proportion to his before-tax income. Thus we assume that there

is a constant θ ∈ (0, 1) such that Π = θ (1− rT ) I . In the case

where both players are rulers, the recovery cost is paid by an

extra tax collected from non-rulers.

Hence there are six modes of the society, depending on who

is the ruler and whether the society is in peaceful mode or in

the aftermath of a revolt. Let σj , j = 1, . . . , 6 denote the states

σ1 = (m, p) , σ2 = (m, a) , σ3 = (c, p) ,

σ4 = (c, a) , σ5 = (b, p) , σ6 = (b, a)

where the first component m, c, or b indicates the ruler being

the monarch, the capitalists, or both players, and the second

component p or a indicates whether the society is in a peaceful

mode or in the aftermath of a revolt. Let gji be the after-tax

income for i = m, c in states σj , j = 1, . . . , 6. Then the above
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rules lead to the after-tax income of both players,

g1m = g2m = Im + r̂T (Ic + Il + Iw) ,

g3m = (1− rT ) Im, g4m = θ (1− rT ) Im,

g5m = Im + Im
Im+Ic

r̂T (Il + Iw) ,

g6m = Im + Im
Im+Ic

θr̂T (Il + Iw) ,

g1c = (1− rT ) Ic, g2c = θ (1− rT ) Ic,

g3c = g4c = Ic + r̂T (Im + Il + Iw)

g5c = Ic +
Ic

Im+Ic
r̂T (Il + Iw) ,

g6c = Ic +
Ic

Im+Ic
θr̂T (Il + Iw) .

(21)

Each player’s objective is to maximize its total discounted

payoff

Ui (t) = E
t
i

∫ ∞

t

e−λ(τ−t)Πi (τ) dτ

=

∫ ∞

t

e−λ(τ−t) 〈p (τ) , gi (K (τ))〉 dτ

using its available actions, where p (τ) = (p1 (τ) , . . . , p6 (τ))
is the probability distribution of the modes of the state

σ1, . . . , σ6.

The available actions for the non-ruling player at any time

are to challenge and not to challenge the ruler, and the

available actions for the ruler are to repress and to compromise

with the challenger. The actions cause the society to change

from one mode to another. If the non-ruling player does not

challenge the ruler and if the society is in a peaceful mode, the

mode will not be changed. If the society is in the aftermath

of a revolt, it transfers to a peaceful mode at a fixed transition

rate. We choose a time scale so that this transition rate is

1. If the non-ruling group challenges the ruler and the ruler

compromises with the challenger, the challenger’s status will

be transferred to a ruler at the transition rate 1. In this case

if previously the society is in the aftermath of a revolt, it will

be transferred to a peaceful mode. If the ruler represses the

challenger, then either the ruler remains in power or the power

changes hands, according to the relative coercive capacities of

the players, and the society transfers to the mode of aftermath

of a revolt at rate 1 if it was previously in a peaceful mode.

The coercive capacity of a player is the strength of the player

in a confrontation against the other player. It depends on

the player’s resources and skill of using the resources. Let

πm (t) and πc (t) be the coercive capacities of the monarch

and capitalists, respectively. Following [12], we assume that

πi (τ) = eiIi (τ) , i = m, c (22)

where ei is the player’s organizing effectiveness. We choose

a scale so that em = 1. In addition, the ruler enjoys an

“incumbency advantegy” represented by a factor χ > 1. So if

a confrontation occurs, the transition rate for the challenging

group to overtake the ruler is

q =
πc

πc + πr

where πc and πr are the coercive capacities of the challenging

group and the ruler, respectively.

We write the transition matrix (qjμ) as follows. Let(
φμm, φμc

) ∈ {(0, 0) , (0, 1) , (1, 0) , (1, 1)} represent the

actions of the monarch and capitalists, where 0 means no

challenge for the non-ruler and compromise for the ruler, and 1

means revolt for the non-ruler and repress for the ruler. Not all

elements of the set are available strategies in any mode of the

state. For example in σ5 and σ6, no action is available for any

player. If the current state is σ1 or σ2, then the available pure

strategies are (0, 0), (0, 1) and (1, 1). The mixed strategies are(
1− φjc

)
(0, 0) +

(
1− φjm

)
φjc (0, 1) + φjmφjc (1, 1)

with φjm, φjc ∈ [0, 1] for j = 1, 2. Based on the rule of game

described above, we have

q11 = −φ1c, q12 = φ1mφ1c

χπm

χπm + πc
,

q14 = φ1mφ1c

πc

χπm + πc
, q15 = (1− φ1m)φ1c,

q21 = 1− φ2c, q22 = −1 + φ2mφ2c

χπm

χπm + πc
,

q24 = φ2mφ2c

πc

χπm + πc
, q26 = (1− φ2m)φ2c.

Similarly, if the current state is σ3 or σ4, then the total

mixed strategies are(
1− φjm

)
(0, 0) +

(
1− φjc

)
φjm (1, 0) + φjmφjc (1, 1)

with φjm, φjc ∈ [0, 1] for j = 3, 4. One can show that the

transition rates are

q32 = φ3mφ3c

πm

πm + χπc
, q33 = −φ3m,

q34 = φ3mφ3c

χπc

πm + χπc
, q35 = (1− φ3c)φ3m,

q42 = φ4mφ4c

πm

πm + χπc
, q43 = 1− φ4m,

q44 = −1 + φ4mφ4c

χπc

πm + χπc
, q46 = (1− φ4c)φ4m.

By (22), we denote

χπm

χπm + πc
=

χIm
χIm + ecIc

≡ η (K) ,

πc

χπm + πc
=

ecIc
χIm + ecIc

= 1− η (K) ,

πm

πm + χπc
=

Im
Im + χecIc

≡ 1− δ (K) ,

χπc

πm + χπc
=

χecIc
Im + χecIc

≡ δ (K) .

Then the transition matrix, Q (φm, φc) ≡ (qkl)6×6, with the

mixed strategy, (φm, φc) ∈ [0, 1]
8
, has the entries

q12 = φ1mφ1cη, q14 = φ1mφ1c (1− η) ,

q15 = (1− φ1m)φ1c, q21 = 1− φ2c,

q24 = φ2mφ2c (1− η) , q16 = (1− φ2m)φ2c,

q32 = φ3mφ3c (1− δ) , q34 = φ3mφ3cδ,

q35 = φ3m (1− φ3c) , q42 = φ4mφ4c (1− δ) ,

q43 = 1− φ4m, q46 = φ4m (1− φ4c) ,

q65 = 1, qkk = −∑
l �=k qkl, k = 1, . . . , 6,

(23)
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and all other entries are zero. It follows that the probability

distribution p (t) is governed by (8), which has the component

form

dp1/dt = −φ1cp1 + (1− φ2c) p2,

dp2/dt = φ1mφ1cηp1 + (−1 + φ2mφ2cη) p2

+φ3mφ3c (1− δ) p3 + φ4mφ4c (1− δ) p4,

dp3/dt = −φ3mp3 + (1− φ4m) p4,

dp4/dt = φ1mφ1c (1− η) p1 + φ2mφ2c (1− η) p2

+φ3mφ3cδp3 + (−1 + φ4mφ4cδ) p4,

dp5/dt = (1− φ1m)φ1cp1 + φ3m (1− φ3c) p3 + p6,

dp6/dt = (1− φ2m)φ2cp2 + φ4m (1− φ4c) p4 − p6.
(24)

There is only one dynamical state variable during the first

stage of democratization, which is the total physical capital

K (t). The capital grows with the investment made by all

individuals in the society. It is shown in [12] assuming a

log-linear utility function that an individual having an income

I would make an investment by the amount

b (K) = β [I (K)− Z]+ (25)

for the future, where β and Z are positive constants. (See

Appendix for details.) Let Nm, Nc, Nl, and Nw be the

populations of the capitalists, landowners and the labors.

We may assume that an individual has the average income

I = Im/Nm, Ic/Nc, Il/Nl or Iw/Nw depending on whether

the individual is the monarch, a capitalist, a landowner, or a

labor, respectively. Hence the investments made by the social

groups are

bm = β

[
Im
Nm

− Z

]
+

= β [Im −NmZ]+ ,

and similarly

bl = β [Il −NlZ]+ , bc = β [Ic −NcZ]+ ,

bw = β [Iw −NwZ]+ ,

where [a]+ = max {a, 0} for any a ∈ R. If we further assume

that Nm is negligible, then bm = βIm. As there is no other

form of investment, we propose that all the investments goes

to the physical capital. Thus K (t) is governed by the initial

value problem

dK/dτ = −aK +B (K) , K (t) = x, (26)

where

B = β
{
Im + [Il −NlZ]+ + [Ic −NcZ]+ + [Iw −NwZ]+

}
(27)

is the total investment and a > 0 is the capital depreciation

rate. This concludes the description of the elements of the

model.

B. Existence of Solution

Note that the function on the right-hand side of (26) is

independent of the mode σ, and quantities gji and qμν are

independent of time t. Thus (12) is valid and can be used to

find the strategies. We use Theorem 1 to prove the existence

of solution φ∗ (t), K (τ) and p (τ) given the initial conditions

K (t) = x and p (t) = y if the equilibrium x̄ of the equation

dx/ds = −ax+B (x) (28)

is either sufficiently large or sufficiently small. We first observe

that by (20) and (27), B (x) is continuous in x ∈ R
+, B (0) ≥

βIm (0) = βCmL−α > 0, and B (x) ≤ M (L+ x)
1−α

in R

for some constant M . Thus B (x) < ax if x is sufficiently

large. Hence by the Intermediate Value Theorem, (28) has at

least one positive equilibrium. In addition, an equilibrium is

asymptotically stable if the derivative f ′ (x) = −a+B′ (x) is

negative at the equilibrium.

We next show that the maximization problem (13) has a

solution for any x ∈ (x, x̄] and wi ∈ R
m, i = m, c. Note

that since gm and gc are independent of φ, (12) has the vector

form

λwm (x) = gm (x) + (−ax+B (x))w′
m (x)

+Q (φ∗
m, φ∗

c)wm (x) ,

λwc (x) = gc (x) + (−ax+B (x))w′
c (x)

+Q (φ∗
m, φ∗

c)wc (x) .

(29)

Thus (13) takes the form

maximize
φi∈Xi(φ∗

−i)
Qj

(
x, φi, φ

∗
−i

)
wi, i = m, c.

Recall that by the rule of game, at any moment t the

non-ruler first chooses its strategy as to whether or not to

revolt, anticipating that the ruler will choose whether to

represses the revolt or to compromises with the challenger

according to its best interest.

For j = 1, 2 the monarch is the ruler. So the capitalists first

choose their (mixed) strategy φ∗
jc and the monarch responds

with a (possibly mixed) strategy φ∗
jm so that

φ∗
jm = argmax

φjm∈[0,1]

Qj

(
φjm, φ∗

jc

)
wm (x) .

Note that Qj is bilinear in φjm and φjc. Thus

Qj

(
φjm, φ∗

jc

)
wm = φjmQj

(
1, φ∗

jc

)
wm

+
(
1− φjm

)
Qj

(
0, φ∗

jc

)
wm.

In case φ∗
jc = 0, there is no choice for the monarch except

φ∗
jm = 0. If φ∗

jc = 1 then either φ∗
jm = 0 if

Qj (0, 1)wm ≥ Qj (1, 1)wm (30)

or φ∗
jm = 1 if the reversed inequality holds. With this

knowledge the capitalists would choose φ∗
jc = 0 if (30) holds

and

Qj (0, 0)wc ≥ Qj (0, 1)wc; (31)

or if the reversed inequality of (30) holds and

Qj (0, 0)wc ≥ Qj (1, 1)wc.
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mjmj wQwQ 1,11,0

Yes

No cjcj wQwQ 1,10,0

Yes

No

cjcj wQwQ 1,00,0

Yes

No

)0,0(

)1,0(

)1,1(

Fig. 1 Decision making when the monarch is in power (j = 1, 2)

cjcj wQwQ 1,10,1

Yes

No mjmj wQwQ 1,10,0

Yes

No

mjmj wQwQ 0,10,0

Yes

No

)0,0(

)0,1(

)1,1(

Fig. 2 Decision making when the capitalists are in power (j = 3, 4)

Hence,
(
φ∗
jm, φ∗

jc

)
= (0, 1) if

Qj (0, 1)wm ≥ Qj (1, 1)wm, Qj (0, 0)wc < Qj (0, 1)wc;(
φ∗
jm, φ∗

jc

)
= (1, 1) if

Qj (0, 1)wm < Qj (1, 1)wm, Qj (0, 0)wc < Qj (1, 1)wc;

and
(
φ∗
jm, φ∗

jc

)
= (0, 0) in the remaining cases (See Fig.

1).

Specifically,
(
φ∗
jm, φ∗

jc

)
= (0, 1) if

w5m ≥ ηw2m + (1− η)w4m, w1c < w5c; (32)

(φ∗
1m, φ∗

1c) = (1, 1) if

w5m < ηw2m + (1− η)w4m, w1c < ηw2c + (1− η)w4c;

and (φ∗
1m, φ∗

1c) = (0, 0) in the remaining cases. Similarly,

(φ∗
2m, φ∗

2c) = (0, 1) if

w6m ≥ ηw2m + (1− η)w4m, w1c < w6c; (33)

(φ∗
2m, φ∗

2c) = (1, 1) if

w6m < ηw2m + (1− η)w4m, w1c < ηw2c + (1− η)w4c;

and (φ∗
2m, φ∗

2c) = (0, 0) in the remaining cases.

For j = 3, 4 the capitalists are the ruler. A similar reasoning

shows that
(
φ∗
jm, φ∗

jc

)
= (1, 0) if

Qj (1, 0)wc ≥ Qj (1, 1)wc, Qj (0, 0)wm < Qj (1, 0)wm;(
φ∗
jm, φ∗

jc

)
= (1, 1) if

Qj (1, 0)wc < Qj (1, 1)wc, Qj (0, 0)wm < Qj (1, 1)wm;

and
(
φ∗
jm, φ∗

jc

)
= (0, 0) in the remaining cases (See Fig. 2).

In terms of components of wm and wc, (φ∗
3m, φ∗

3c) = (1, 0)
if

w5c ≥ (1− δ)w2c + δw4c, w3m < w5m;

(φ∗
3m, φ∗

3c) = (1, 1) if

w5c < (1− δ)w2c + δw4c, w3m < (1− δ)w2m + δw4m;

and (φ∗
3m, φ∗

3c) = (0, 0) in the remaining cases. Similarly,

(φ∗
4m, φ∗

4c) = (1, 0) if

w6c ≥ (1− δ)w2c + δw4c, w3m < w6m;

(φ∗
4m, φ∗

4c) = (1, 1) if

w6c < (1− δ)w2c + δw4c, w3m < (1− δ)w2m + δw4m;

and (φ∗
4m, φ∗

4c) = (0, 0) in the remaining cases.

Hence, the rule of game completely determines pure

strategies φ∗
m (x,wi) and φ∗

c (x,wi) for any x and wi.

Let x̄ be an equilibrium of (28). We next show that the

equations for the steady states, (14), has a solution if x̄ is

sufficiently large or sufficiently small. Note that equations in

(14) have the form

λwm (x̄) = gm (x̄) +Q (φ∗
m, φ∗

c)wm (x̄) ,

λwc (x̄) = gc (x̄) +Q (φ∗
m, φ∗

c)wc (x̄) .
(34)

Lemma 2: If x̄ is sufficiently large then there is a steady

state solution (w̄m, w̄c) that satisfies

w̄1i =
λḡ1i + ḡ5i
λ (λ+ 1)

, w̄2i =
ḡ2i

λ+ 1
+

ḡ5i + λḡ6i

λ (λ+ 1)
2 , w̄3i =

ḡ3i
λ

,

w̄4i =
ḡ3i + λḡ4i
λ (λ+ 1)

, w̄5i =
ḡ5i
λ

, w̄6i =
ḡ5i + λḡ6i
λ (λ+ 1)

for i = m, c corresponding to
(
φ∗
jm, φ∗

jc

)
= (0, 1) for j = 1, 2

and
(
φ∗
jm, φ∗

jc

)
= (0, 0) for j = 3, 4, where ḡji = gji (x̄).

Similarly, if x̄ is sufficiently small then there is a steady

state solution with
(
φ∗
jm, φ∗

jc

)
= (0, 0) for j = 1, 2 and(

φ∗
jm, φ∗

jc

)
= (1, 0) for j = 3, 4.

Proof: For
(
φ∗
jm, φ∗

jc

)
= (0, 1) for j = 1, 2 and(

φ∗
jm, φ∗

jc

)
= (0, 0) for j = 3, 4 we compute

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0 1 0

0 −1 0 0 0 1

0 0 0 0 0 0

0 0 1 −1 0 0

0 0 0 0 0 0

0 0 0 0 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (35)

Thus

Qwi = (−w1i + w5i,−w2i + w6i, 0, w3i − w4i, 0, w5i − w6i)

for i = m, c. Equations in (34) have the form

λw1i = g1i − w1i + w5i, λw2i = g2i − w2i + w6i,

λw3i = g3i, λw4i = g4i + w3i − w4i,

λw5i = g5i, λw6i = g6i + w5i − w6i.

We verify that (32), (33) hold if x̄ is sufficiently large. This

will imply that
(
φ∗
jm, φ∗

jc

)
= (0, 1) for j = 1, 2. The first

inequality in (32) has the form

g5m
λ

≥ η

(
g2m
λ+ 1

+
g5m + λg6m

λ (λ+ 1)
2

)
+ (1− η)

g3m + λg4m
λ (λ+ 1)

.

(36)

If x̄ � 1 then η � 1. By (21)

g4m < g3m < g6m < g5m. (37)
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Thus the right-hand side of (36) is close to

g3m + λg4m
λ (λ+ 1)

<
g5m
λ

.

The second inequality in (32) has the form

λg1c + g5c
λ (λ+ 1)

<
g5c
λ

which is equivalent to g1c < g5c. This is true by (21). The

first inequality in (33) has the form

g5m + λg6m
λ (λ+ 1)

≥ η

(
g2m
λ+ 1

+
g5m + λg6m

λ (λ+ 1)
2

)

+(1− η)
g3m + λg4m
λ (λ+ 1)

.

For η � 1 the right-hand side is close to

(g3m + λg4m) /λ (λ+ 1). It is less than the left-hand

side due to (37). The second inequality in (33) has the form

λg1c + g5c
λ (λ+ 1)

<
g5c + λg6c
λ (λ+ 1)

.

In view of (21) which implies g1c < g6c, the above

inequality holds. We next show that

w5c < (1− δ)w2c + δw4c, w3m < w5m, (38)

w3m ≥ (1− δ)w2m + δw4m (39)

if x̄ � 1. By the definition of δ, x̄ � 1 implies δ is close to

1. Thus by (21) the right-hand side of the first inequality is

close to

w4c =
g3c + λg4c
λ (λ+ 1)

=
g3c
λ

>
g5c
λ

= w5c.

By (37)

w3m =
g3m
λ

<
g5m
λ

= w5m,

the second inequality of (38) holds. For δ close to 1 the

right-hand side of the third inequality in (38) is close to

w4m =
g3m + λg4m
λ (λ+ 1)

.

By (37)
g3m + λg4m
λ (λ+ 1)

<
g3m
λ

= w3m.

This completes the proof of (38). Hence (φ∗
3m, φ∗

3c) =
(0, 0). Finally, we can show that

w6c < (1− δ)w2c + δw4c, w3m < w6m, (40)

if x̄ � 1. By the definition of δ, δ is close to 1. Thus by (21)

the right-hand side of the first inequality is close to

w4c =
g3c + λg4c
λ (λ+ 1)

>
g5c + λg6c
λ (λ+ 1)

= w6c.

By (37)

w3m =
g3m
λ

<
g5m + λg6m
λ (λ+ 1)

= w6m,

the second inequality of (40) holds. This completes the proof

of (40). This implies that (φ∗
4m, φ∗

4c) = (0, 0).
With these preparation we have

Theorem 3: Let x̄ be an equilibrium of (28) which is

asymptotically stable and B′ (x̄) < a. Suppose x̄ is sufficiently

large such that the conclusion of Lemma 2 holds, and

φ∗ (x,wi) = φ∗ (x̄, w̄i) in a neighborhood of (x̄, w̄i). Let

x be either 0 or the largest equilibrium of (28) less than x̄.

Then Problem (29) has a solution (wm (x) , wc (x)) at any

x ∈ (x, x̄].

Proof.: Hypothesis (H)–(1) and (2) are obviously

satisfied. Note that the φ∗ (x,wi) is uniquely determined by

the rules described in Figs. 1 and 2, and is piecewise constant.

The boundaries of the subdomains in which φ∗ is constant are

given by one of the equations

Qj (0, 1)wm (x) = Qj (1, 1)wm (x) ,

Qj (0, 0)wc (x) = Qj (0, 1)wc (x) ,

Qj (0, 0)wc (x) = Qj (1, 1)wc (x) for j = 1, 2,

and

Qj (1, 0)wc (x) = Qj (1, 1)wc (x) ,

Qj (0, 0)wm (x) = Qj (1, 1)wm (x) ,

Qj (0, 0)wm (x) = Qj (1, 0)wm (x) for j = 3, 4.

In component form, the equations are

w5m − ηw2m − (1− η)w4m = 0, w1c − w5c = 0,

w1c − ηw2c − (1− η)w4c = 0,

w6m − ηw2m − (1− η)w4m = 0, w1c − w6c = 0,

w5c − (1− δ)w2c − δw4c = 0,

w3m − (1− δ)w2m − δw4m = 0, w3m − w5m = 0,

w6c − (1− δ)w6c − δw4c = 0, w3m − w5m = 0.

The functions γl,μ that define the boundaries ∂Dl are the

left-hand sides of the above equations. The conclusion then

follows from Theorem 1.

We present an example to show how the solution can be

computed.

C. A Numerical Example

Let us choose the parameters

α = β = 1/2, AHα = 3/2, Lm = 0.4, Ll = 0.6,

Nc = 0.1, Nl = 0.4, Nw = 0.5, Z = 15/
√
8

and

a =
39

1100

√
11− 3

160

√
2

Then by (61)

Cm = 3/10, Cl = 9/20, Cc = Cw = 3/4, L = Lm+Ll = 1,

and by (20)

Im (x) =
3

10
√
1 + x

, Il (x) =
9

20
√
1 + x

,

Ic (x) =
3x

4
√
1 + x

, Iw (x) =
3

4

√
1 + x.

(41)
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Hence, by (27),

B (x) =
1

2

{
3

10
√
1 + x

+

[
3x

4
√
1 + x

− 3

4
√
2

]
+

+

[
3

4
√
1 + x

− 3√
2

]
+

+

[
3

4

√
1 + x− 15

8

√
2

]
+

}
.

It can be seen that −ax̄+B (x̄) = 0 at x̄ = 10. Since

3

4
√
1 + x

<
3√
2
,

3

4

√
1 + x ≤ 3

√
11

4
<

15
√
2

8

for x ∈ [0, 10], it follows that

B (x) =
3

20

{
1√
1 + x

+ 5

[
x√
1 + x

− 1√
2

]
+

}

=

{ 3
20

√
1+x

if x ≤ 1,

3
20

[
1+5x√
1+x

− 1√
2

]
if 1 < x ≤ 10.

It can be seen that the only positive solution of the equation

−ax+B (x) = 0

is x = 10.

We next choose the values

rT = 0.2, r̂T = 0.15, θ = 0.5,

λ = 0.6, χ = 1.5, ec = 0.7

and computer gji (x̄) by (21).

Terminal values.: Using (41) with x = x̄ = 10, we find

Im (x̄) =
3

10
√
11

, Il (x̄) =
9

20
√
11

,

Ic (x̄) =
15

2
√
11

, Iw (x̄) =
3

4

√
11.

Hence, by (21)

gm (x̄) = (0.823, 0.823, 0.072, 0.036, 0.106, 0.098) ,

gc (x̄) = (1.809, 0.905, 2.668, 2.668, 2.640, 2.451) .

By Lemma 2,

wm (x̄) = (0.624, 0.621, 0.121, 0.098, 0.176, 0.171) ,

wc (x̄) = (3.880, 3.241, 4.447, 4.447, 4.399, 4.281) .

It remains to verify that
(
φ∗
jm, φ∗

jc

)
(x̄, w̄i) = (0, 1) for j =

1, 2 and
(
φ∗
jm, φ∗

jc

)
(x̄, w̄i) = (0, 0) for j = 3, 4. For j = 1, 2,

we verify the relations

Qj (0, 1) w̄m ≥ Qj (1, 1) w̄m, Qj (0, 0) w̄c < Qj (0, 1) w̄c

(42)

(See Fig. 1). By (23),

Q1 (0, 1) = (−1, 0, 0, 0, 1, 0) ,

Q1 (1, 1) = (−1, η, 0, (1− η) , 0, 0) ,

Q1 (0, 0) = (0, 0, 0, 0, 0, 0) ,

where

η =
χIm (x̄)

χIm (x̄) + ecIc (x̄)
≈ 0.07895.

The first inequality in (42) has the forms

−w̄1m + w̄5m ≥ −w̄1m + ηw̄2m + (1− η) w̄4m. (43)

The inequality is true using the values of w̄jm. The second

inequality in (42) has the form

0 < −w̄1c + w̄5c. (44)

It is also true in view of the values of w̄jc. Similarly, for

j = 2, by (23)

Q2 (0, 1) = (0,−1, 0, 0, 0, 1) ,

Q2 (1, 1) = (0,−1 + η, 0, 1− η, 0, 0) ,

Q2 (0, 0) = (1,−1, 0, 0, 0, 0) .

The first inequality in (42) has the form

−w̄2m + w̄6m ≥ (−1 + η) w̄2m + (1− η) w̄4m. (45)

It is true. The second inequality in (42) has the form

w̄1c − w̄2c < −w̄2c + w̄6c. (46)

It again is true. This proves that
(
φ∗
jm, φ∗

jc

)
(x̄, w̄i) = (0, 1)

for j = 1, 2.

For j = 3, 4 we verify the relations

Qj (1, 0) w̄c < Qj (1, 1) w̄c, Qj (0, 0) w̄m ≥ Qj (1, 1) w̄m.
(47)

(See Fig. 2.) For j = 3

Q3 (1, 0) = (0, 0,−1, 0, 1, 0) ,

Q3 (1, 1) = (0, 1− δ,−1, δ, 0, 0) ,

Q3 (0, 0) = (0, 0, 0, 0, 0) .

The first inequality has the form

−w̄3c + w̄5c < (1− δ) w̄2c − w̄3c + δw̄4c (48)

where

δ =
χecIc (x̄)

Im (x̄) + χecIc (x̄)
≈ 0.96330.

The inequality is true. The second inequality in (47) has the

form

0 ≥ (1− δ) w̄2m − w̄3m + δw̄4m (49)

which is true. For j = 4, we have

Q4 (1, 0) = (0, 0, 0,−1, 0, 1) ,

Q4 (1, 1) = (0, 1− δ, 0,−1 + δ, 0, 0) ,

Q4 (0, 0) = (0, 0, 1,−1, 0, 0) .

The first inequality is

−w̄4c + w̄6c < (1− δ) w̄2c + (−1 + δ)w4c. (50)

It is true. The second inequality is

w̄3m − w̄4m ≥ (1− δ)w2m + (−1 + δ)w4m, (51)

which is also true. This verifies the conditions of Theorem 3.
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We now compute the solution of (29) with the terminal

condition

wjm (10) = w̄jm, wjc (10) = w̄jc,(
φ∗
jm, φ∗

jc

)
(10) = (0, 1) for j = 1, 2,(

φ∗
jm, φ∗

jc

)
(10) = (0, 0) for j = 3, 4.

The system (29) has the component form

λw1i = g1i + Fw′
1i − w1i + w5i,

λw2i = g2i + Fw′
2i − w2i + w6i,

λw3i = g3i + Fw′
3i,

λw4i = g4i + Fw′
4i + w3i − w4i,

λw5i = g5i + Fw′
5i,

λw6i = g6i + Fw′
6i + w5i − w6i,

for i = m, c, where gji are given by (21) and F (x) = −ax+
B (x).

Initial step–out of singularity.: The equations are singular

at the x̄ = 10. We use a Taylor expansion

wi (x) ≈ wi (x̄) + (x− x̄)w′
i (x̄) +

1

2
(x− x̄)

2
w′′

i (x̄) + . . .

(52)

for i = m, c to find an approximate solution near x̄.

Differentiating the equations in (29) with respect to x, and

evaluate the expressions at x̄ we find

λw′
i (x̄) = g′i (x̄) + F ′ (x̄)w′

i (x̄) +Qw′
i (x̄) ,

λw′′
i (x̄) = g′′i (x̄) + 2F ′ (x̄)w′′

i (x̄)

+Qw′′
i (x̄) + F ′′ (x̄)w′

i (x̄) , . . .

for i = m, c. Using terms up to (x− x̄)
2

we obtain

approximate solution given by (52).

Computations show that inequalities

Qj (0, 1)wm (x) ≥ Qj (1, 1)wm (x) ,

Qj (0, 0)wc (x) < Qj (0, 1)wc (x) , j = 1, 2,

Qj (1, 0)wc (x) < Qj (1, 1)wc (x) ,

Qj (0, 0)wm (x) ≥ Qj (1, 1)wm (x) , j = 3, 4

all satisfied for x ∈ [9.5, 10]. In component form, these

equations are

w5m, w6m ≥ ηw2m + (1− η)w4m, w1c < w5c, w6c,

w5c, w6c < (1− δ)w2c + δw4c,

w3m ≥ (1− δ)w2m + δw4m.

Thus we use this approximate solution for [9.5, 10].
The differential-algebraic equations.: We continue the

computation of the solution for x ∈ [0, 9.5) using the terminal

data as the value of the approximate solution at x = 9.5,

wm (9.5) = (0.618, 0.614, 0.123, 0.100, 0.180, 0.175) ,

wc (9.5) = (3.781, 3.158, 4.336, 4.336, 4.287, 4.171) .

Note that on this interval the system (29) is not singular.

The computation is carried out using an iteration scheme. In

the initial step Problem (29) is solved with functions φ∗
m (x)

and φ∗
c (x) subsituted by the functions

φ(0)
m (x) = (0, 0, 0, 0) , φ(0)

c (x) = (1, 1, 0, 0)

for 0 ≤ x ≤ 9.5, respectively. The solution is denoted as(
w

(1)
m (x) , w

(1)
c (x)

)
. Using this solution we find functions

φ(1)
m (x) and φ(1)

c (x) that satisfy

φ
(1)
jm (x) = argmax

φjm∈[0,1]

Qj

(
φjm, φ

(1)
jc (x)

)
w

(1)
m (x) ,

φ
(1)
jc (x) = argmax

φjc∈[0,1]

Qj

(
φ
(1)
jm (x) , φjc

)
w

(1)
c (x) ,

(53)

as described by Figs. 1 and 2. In general, if φ(k)
m (x)

and φ(k)
c (x) have been obtained, we solve Problem

(29) with φ∗
m (x) and φ∗

c (x) substituted by φ(k)
m (x)

and φ(k)
c (x), respectively, and denote the solution as(

w
(k+1)
m (x) , w

(k+1)
c (x)

)
. We then find

(
φ(k+1)
m , φ(k+1)

c

)
using (53) with the superscript “(1)” changed to “(k + 1).”
The process can repeated to generate two sequences of

functions
(
φ(k)
m (x)

)
,
(
φ(k)
c (x)

)
on [0, 9.5]. If the sequences

converge, the limits are the maximizing strategies φ∗
m (x) and

φ∗
c (x).
The iteration scheme is implemented as follows. The

interval [0, 9.5] is partitioned by n points

0 < x1 < x2 < · · · < xn < 9.5.

A numerical differential equation solver is used to compute

the solution
(
w

(k+1)
m , w

(k+1)
c

)
at points x1, . . . , xn given(

φ(k)
m , φ(k)

c

)
at these points. Then

(
φ(k+1)
m , φ(k+1)

c

)
is

computed at x1, . . . , xn. This process continues. Since given

the points x1,..., xn the there are only finitely many

possible values of
(
φ(k)
m , φ(k)

c

)
, the process will lead to a

finite sequence of solutions
{(

φ(k)
m , φ(k)

c

)
,
(
w

(k)
m , w

(k)
c

)}
,

k = k1, k1 + 1, . . . , k2 such that
(
w

(k+1)
m , w

(k+1)
c

)
satisfies

Problem (29) with (φ∗
m, φ∗

c) replaced by
(
φ(k)
m , φ(k)

c

)
for

k = k1, . . . , k2 − 1, and
(
w

(k1)
m , w

(k1)
c

)
satisfies (29) with

(φ∗
m, φ∗

c) replaced by
(
φ(k2)
m , φ(k2)

c

)
. Among these solutions

we choose k∗ such that∥∥∥(w(k∗)
m , w(k∗)

c

)
−
(
w(k∗+1)

m , w(k∗+1)
c

)∥∥∥
L2[0,9.5]

= min
k=k1,...,,k2

∥∥∥(w(k)
m , w(k)

c

)
−
(
w(k+1)

m , w(k+1)
c

)∥∥∥
L2[0,9.5]

where k2+1 is identified as k1. It is expected that the smaller

the stepsize maxi |xi+1 − xi|, the smaller the error

εk∗ =
∥∥∥(w(k∗)

m , w(k∗)
c

)
−
(
w(k∗+1)

m , w(k∗+1)
c

)∥∥∥
L2[0,9.5]

.

Computation using equal stepsize xi+1 − xi = 0.01 is

carried out using matlab solver ode15s. The cyclic solutions(
w

(k)
m , w

(k)
c

)
are obtained for k = 129, . . . , 133. The

approximation solution
(
w

(129)
m , w

(129)
c

)
is chosen with the

error ε129 ≈ 0.119. Then the initial value problem (6) and (8)

are solved using the initial conditions

x (0) = 0, p (0) = (1, 0, 0, 0, 0, 0) .

These initial data represents the situation that at the

beginning of social transformation, there is no capital in the
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TABLE I
CHANGES OF STRATEGIES OF PLAYERS OVER TIME

time periods φ∗
im, φ∗

2m, φ∗
3m, φ∗

4m φ∗
1c, φ

∗
2c, φ

∗
3c, φ

∗
4c

(0, 0.8) (0, 0, 1, 1) (0, 0, 0, 0)

(0.8, 20.5) (1, 1, 1, 1) (1, 1, 0, 0)

(20.5, 70.3) (0, 0, 1, 0) (1, 1, 0, 0)

t > 70.3 (0, 0, 0, 0) (1, 1, 0, 0)

0 2 4 6 8 10 12 14 16
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(m,p)
(m,a)
(c,p)
(c,a)
(b,p)
(b,a)

Fig. 3 Changes of probabilities of modes with time

society and the monarch is the ruler. Table 1 shows the

approximations of (φ∗
m, φ∗

c):
The probabilities of the modes are graphed in Fig. 3.

As can be seen from Table 1 and Fig. 3, the monarch

initially dominates the political power and the state is in the

mode (m, p) for a short period of time 0 < t < 0.8. During

this period the capitalists do not challenge the monarch since

their strength is weak. As capital increases the capitalists

become stronger. So, in the next period of time, 0.8 < t <
20.5 the capitalists challenge the monarch and the monarch

responds the challenge by repression if the monarch is in

power, or the monarch challenges the capitalists and the latter

repress the revolt if the capitalists are in power. During this

period the state is found in 5 modes of (m, p), (m, a), (c, a),
(b, p) and (b, a), with the probability of (m, p) decreasing, and

the probability of the other the probability of (b, p) increasing.

As the capital continues to increasing, for 20.5 < t < 70.3,

the capitalists greatly over power the monarch. So whenever

the monarch is in power the capitalists will revolt and the

monarch will compromises with the challengers, and whenever

the capitalists are in power, the monarch only revolts when the

state is not in the aftermath of a revolt. During this period

of time the probability of (b, p) continues to rise, and the

probabilities of the other three first rise then fall. Eventually,

for t > 70.3, the capitalists always challenge the ruler and

the monarch never represses if the monarch is in power, and

the monarch nevery challenges the capitalists if the latter are

in power. During this period the state (b, p) prevails, and all

other modes fade away.

IV. CONCLUSION

The democratization model studied above can be extended

to include multiple players. In this case, with the possibility

of more than one social groups challenging the ruler

simultaneously, the solution of the maximization problem (13)

may involve Nash equilibria.

For the general case we have established the existence of

solution and developed numerical scheme for the case where

the continuously-varying state variables evolve independently

of discretely-varying state variables and independently

of strategies of the player. This is done because the

Hamilton-Jacobi-Bellman equation is semilinear. The more

general case where there is no such independence is much

more difficult, because the Hamilton-Jacobi-Bellman equation

is highly nonlinear.

APPENDIX

We show in this appendix that Im, Ic, Il and Iw are

functions of K as in (20). Following [12] we assume that

the land, together with physical capital and human capital,

produce one single good that can be used for consumption

and investment. The monarch and landowners own lands.

Capitalists own the physical capital, and the workers own the

human capital. Each social group earns income from the means

of production that it owns. The land yield of an individual

landowner is

Yl,i = A (Ll,i +Kl,i)
1−α

Hα
l,i

where α ∈ (0, 1) is a constant, A is the knowledge stock, Ll,i,

Kl,i and Hl,i are the land, the physical capital, and the human

capital that the landowner i utilizes. The earning of a capitalist

is from renting the physical capital that he possesses, and that

of a worker is from wage he received by offering his human

capital. Let rK and rH be the rental rates of physical capital

and the wage of a unit human capital, respectively. Then the

before-tax incomes of capitalists and workers are

Ic,i = rKKc,i, Iw,i = rHHw,i (54)

where Kc,i is the capital that capitalist i possesses, and Hw,i

is the human capital that worker i possesses. The before-tax

income of the landowners, including the monarch, is their land

yield minus cost of renting physical capital and wages for

hiring workers. Thus the monarch and a landowner have the

before-tax income

Im = A (Lm +Km)
1−α

Hα
m − rKKm − rHHm,

Il,i = A (Li +Kl,i)
1−α

Hα
i − rKKl,i − rHHl,i,

(55)

respectively, where Lm, Km and Hm are the land, the physical

capital, and the human capital that the monarch utilizes.

The next proposition shows that the rates rK and rH are

determined endogeneously by the market assuming the market

clearing condition.

Proposition 1: Suppose rK and rH are market clearing

prices of the physical capital and human capital, respectively.

Then

rK = (1− α)A

(
H

L+K

)α

,

rH (t) = αA

(
L+K

H

)1−α (56)
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where L = Lm+
∑

i∈landowners Li is the total land in the state.

Furthermore, Im, Il,i defined in (55) have the form

Im = (1− α)A
(

H
L+K

)α

Lm,

Il,i = (1− α)A
(

H
L+K

)α

Ll,i,

Ic,i = (1− α)A
(

H
L+K

)α

Kc,i,

Iw,i = αA
(
L+K
H

)1−α
Hw,i.

(57)

Proof.: By (55), the optimal demands for physical and

human capitals are determined by

rK = (1− α)A (Lm +Km)
−α

Hα
m,

rH = αA (Lm +Km)
1−α

Hα−1
m .

(58)

Similar identities hold if the subscript “m” is replaced by

“i.” Hence

Lm +Km = Hm

[
(1− α)A

rK

]1/α
= Hm

[
αA

rH

]1/(α−1)

.

(59)

Similar identities hold for Li, Ki and Hi. Using the

identities

Lm +
∑

Li = L, Km +
∑

Ki = K,

Hm +
∑

Hi = H

we find

L+K = H

[
(1− α)A

rK

]1/α
= H

[
αA

rH

]1/(α−1)

. (60)

These identities lead to (56).

To prove (57), we substitute (58) into (55) to obtain

Im = A (Lm +Km)
1−α

Hα
m

− (1− α)A (Lm +Km)
−α

Hα
mKm

−αA (Lm +Km)
1−α

Hα
m

= (1− α)A (Lm +Km)
−α

Hα
mLm.

Since by (59) and (60)

Lm +Km

Hm
=

L+K

H

the first identity in (57) follows. The second identity is proved

similarly. The other two identities follow directly from 56.

Since

Il = NlIl,i, Ic = NcIc,i, Iw = NwIw,i,

Ll = NlLl,i, K = NcKc,i, H = NwHw,i,

(20) follows from (57) with constants Cm, Cl, Cc and Cw

defined by

Cm = (1− α)AHαLm, Cl = (1− α)AHαLl,

Cc = (1− α)AHα, Cw = αAHα.
(61)

We next give a justification of (25). Assuming as in [12]

each individual in the society are identical in preference, which

is represented by the utility function

vi = (1− β) ln ci + β ln (z + bi)

where ci is the rate of consumption of individual i and bi is

the rate of the individual’s bequest for offspring, β ∈ (0, 1)
indicates the relative weight of bequest in utility, and z > 0
is a constant. The budget constraint 0 ≤ ci + bi ≤ Ii applies

where Ii is the individual’s instantaneous rate of income. It is

easy to see that the utility vi is maximized at

c∗i = Ii − β [Ii − Z]+ , b∗i = β [Ii − Z]+

where Z = (1− β) z/β. This proves (25).
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