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 
Abstract—Spatial, Temporal, and Spectral Resolution (STSR) are 

three key characteristics of Earth observation satellite sensors; 
however, any single satellite sensor cannot provide Earth observations 
with high STSR simultaneously because of the hardware technology 
limitations of satellite sensors. On the other hand, a conflicting 
circumstance is that the demand for high STSR has been growing with 
the remote sensing application development. Although image fusion 
technology provides a feasible means to overcome the limitations of 
the current Earth observation data, the current fusion technologies 
cannot enhance all STSR simultaneously and provide high enough 
resolution improvement level. This study proposes a Hybrid 
Spatial-Temporal-Spectral image Fusion Model (HSTSFM) to 
generate synthetic satellite data with high STSR simultaneously, 
which blends the high spatial resolution from the panchromatic image 
of Landsat-8 Operational Land Imager (OLI), the high temporal 
resolution from the multi-spectral image of Moderate Resolution 
Imaging Spectroradiometer (MODIS), and the high spectral resolution 
from the hyper-spectral image of Hyperion to produce high STSR 
images. The proposed HSTSFM contains three fusion modules: (1) 
spatial-spectral image fusion; (2) spatial-temporal image fusion; (3) 
temporal-spectral image fusion. A set of test data with both 
phenological and land cover type changes in Beijing suburb area, 
China is adopted to demonstrate the performance of the proposed 
method. The experimental results indicate that HSTSFM can produce 
fused image that has good spatial and spectral fidelity to the reference 
image, which means it has the potential to generate synthetic data to 
support the studies that require high STSR satellite imagery. 
 

Keywords—Hybrid spatial-temporal-spectral fusion, high 
resolution synthetic imagery, least square regression, sparse 
representation, spectral transformation. 

I. INTRODUCTION 

OWADAYS, a large number of Earth observation 
satellites have been launching, with various STSR [1], [2], 

which contribute significantly to Earth surface or atmosphere 
environment monitoring ability. It seems that there is a boom in 
Earth observation field, nevertheless, because of the limitations 
of satellite sensor’s hardware technology and budget 
constraints, there exist compromises between STSR of satellite 
sensors. That is to say, even though so many satellites have 
been launched, none of them can obtain high STSR data 
simultaneously. These compromises limit the application of 
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existing remotely sensed data significantly, especially for the 
remote sensing applications that require fine spatial details, 
long-term and frequent coverage, and hyper-spectral (HS) 
satellite imagery, such as precise global or regional change 
detection, urban dynamic monitoring, natural disaster 
monitoring, real-time air quality monitoring, etc.  

As a low-cost and flexible solution to overcome the 
compromises between different types of resolution of Earth 
observation satellites, image fusion can produce synthetic 
high-resolution satellite images [3], [4]. However, most of the 
existing image fusion methods mainly focus on part types of the 
resolution enhancement issues, e.g. spatial and spectral fusion 
[5]-[7], spatial and temporal fusion [8]-[10], which cannot 
generate synthetic images with high STSR simultaneously. 
Although some image fusion methods took the three types of 
resolution into consideration simultaneously [11], [12], they 
just adopted MODIS image as both high spectral and temporal 
resolution data source. Nevertheless, the spectral resolution of 
MODIS is still too limited to be called as HS image. The 
SPATS method proposed in [13] blended high spectral 
resolution from HS image, like Hyperion, but the spatial 
resolution of the final fused image was also limited (which did 
not consider the high spatial resolution of Landsat 
panchromatic image). Meanwhile, its temporal change 
prediction ability is also limited to phenological change. Hence, 
a comprehensive image fusion algorithm that can blend STSR 
from different satellite sensors together is still a big challenge 
for the current image fusion algorithms. 

This study presents a HSTSFM to achieve STSR 
enhancement together. The hybrid image fusion model contains 
spatial-spectral image fusion, spatial-temporal image fusion, 
and temporal-spectral image fusion, which are conducted based 
on different fusion schemes. It can blend high-spatial, 
high-temporal, and high-spectral resolution from multi-sensors 
together to produce high STSR satellite images, which aims to 
satisfy the growing demand of high STSR satellite images in 
various remote sensing applications. The remainder of this 
paper is organized as follows. The multi-source experimental 
data description is given in Section II. The image fusion 
sub-modules of HSTSFM is introduced in Section III. The 
experimental results, the fusion precision assessment criteria, 
and the fusion result analysis are shown in Section IV. Finally, 
the conclusions are presented in Section V. 

II. EXPERIMENTAL DATASET 

Three data sources are adopted as desired STSR sources, 
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which are the Landsat-8 OLI, MODIS, and Hyperion images. 
The fused synthetic high STSR image obtains high spatial 
resolution from OLI panchromatic (PAN) image, i.e. 15 m, 
high temporal resolution from MODIS, i.e. daily observations, 
and high spectral resolution from Hyperion, i.e. hundreds of 
spectral bands. The fusion target is to predict the HS image on a 
prediction date with 15 m spatial resolution from a prior date. 
Meanwhile, we chose the sub-urban area of Beijing, China as 
our test region, which involves both distinct phenological and 
land cover type changes. All the test data are exempted from 
atmospheric correction because the PAN images are involved 
in the image fusion procedure, which are the 
Top-Of-Atmosphere (TOA) radiance images. In addition, all of 
the experimental images were projected to the UTM projection 
under the WGS-84 datum. Meanwhile, all of the test images 
were up-sampled to 15 m spatial resolution by using the 
bi-cubic interpolation method for the afterwards image fusion. 
Small spatial offsets may exist among them after the 
re-projection and re-sampling, hence, these images were 
geometrically co-registered by applying an optimal offset [14]. 

A. Landsat-8 OLI Data 

Landsat-8 OLI captures 8 multi-spectral (MS) bands with 30 
m spatial resolution and 1 PAN image with 15 m spatial 
resolution every 16 days. Hence, 6 MS bands that have 
counterparts among the MODIS sensor bands are selected out, 
i.e., blue, green, red, near-infrared (NIR), short wave infrared 1 
(SWIR1), and short wave infrared 2 (SWIR2). The PAN and 
MS images captured on May 25, 2015 are adopted as prior 
images, which has the image size of 672 × 256 pixels for 15 m 
spatial resolution. Fig. 1 shows the OLI PAN and MS (3D 
spectral cube) images, it should be noted that the MS image is 
displayed with NIR, red, and green bands as RGB composite 
images.  

 

  

(a)                           (b) 

Fig. 1 OLI images captured on May 25, 2015 (a) PAN image, (b) MS 
image 

B. MODIS Data 

The MODIS images in this study were aggregated from the 
corresponding OLI images because the radiometric and 
geometric inconsistencies can negatively affect the accuracy of 

spatiotemporal image fusion results [14], [15]. Using simulated 
MODIS images can exclude these negative factors’ 
interference and can demonstrate the effects of the 
spatiotemporal image fusion explicitly. The NIR and red bands 
were aggregated to 250 m, and the other four bands were 
aggregated to 500 m to simulate the spatial resolution of 
MODIS sensor. Beside the base date (T1) of the OLI data, i.e. 
May 25, 2015, another time point on February 21, 2016 is 
adopted as the prediction date (T2) in the spatiotemporal image 
fusion module. These two dates located in the end of spring and 
winter, respectively. During that time period, distinct 
phenological changes and land cover type changes existed 
simultaneously. Fig. 2 shows the MODIS (3D spectral cube) 
images on the base and prediction dates, and they are both 
displayed with NIR, red, and green bands as RGB composite 
images.  

 

  

(a)                            (b) 

Fig. 2 Simulated MODIS images (a) May 25, 2015, (b) February 21, 
2016 

C. Hyperion Data 

Because the temporal resolution (200 days) of Hyperion is 
too low to obtain their counterpart images with MODIS sensor, 
we adopted the rare available Hyperion images that were 
obtained on May 20, 2015 and February 26, 2016 to act as the 
corresponding counterparts with the simulated MODIS images. 
Since their capture dates are very close, it is reasonable to use 
the Hyperion images on these two dates as substitutes. The 
Hyperion sensor captures 242 bands that are located in the 
spectral range from 0.4 μm to 2.5 μm with a 30 m spatial 
resolution. Because of the calibration absence, noise 
disturbance, water vapor absorption, and vertical stripes 
effects, subsets of 146 good-quality bands out of 242 bands 
were selected for our study, see Table I. 

During the algorithm experiments, the Hyperion image on 
May 20, 2015 will be used as prior HS image; the one on 
February 26, 2016 will be employed as spectral reference 
image to demonstrate the spectral fidelity of the fused image. 
The two Hyperion image cubes are shown in Fig. 3, it should be 
noted that the Hyperion image is displayed with the selected 
band index 38, 20, and 10 (corresponding to the NIR, red, and 
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green bands of OLI) as RGB composite images. 
 

TABLE I 
SELECTED HYPERION BAND SEQUENCE 

Selected band index Original band index Spectral range (nm) 

1-47 11-57 457-925 

48-66 79-97 932-1114 

67-85 101-119 1154-1336 

86-115 135-164 1497-1790 

116-146 188-218 2032-2335 

 

  

(a)                                              (b) 

Fig. 3 Hyperion images. (a) May 20, 2015, (b) February 26, 2016 
 
The overall fusion process that uses the three data sources 

mentioned above is shown in Fig. 4. 
 

 

Fig. 4 The fusion of STSR from multi-source sensors 

III. METHODOLOGY 

The hybrid image fusion workflow is shown in Fig. 5, which 
comprises three image fusion modules: (1) spatial-spectral 
image fusion to blend OLI-PAN and OLI-MS/Hyperion images 
for the following steps; (2) spatial-temporal image fusion to 
predict the 15 m MS image on the prediction date; (3) 
temporal-spectral image fusion to produce the 15 m HS image 

on the prediction date. In the end, the precision of the hybrid 
image fusion model is evaluated based on the fused 15 m HS 
image on the prediction date from step 1. 

A. Spatial-Spectral Image Fusion 

Spatial-spectral image fusion usually includes PAN/MS 
fusion, PAN/HS fusion, MS/HS fusion [11], this study mainly 
focuses on PAN/MS and PAN/HS fusion, which can be also 
called as pan-sharpening. An Enhanced Synthetic Variable 
Ratio (ESVR) algorithm is developed to obtain high spatial 
resolution OLI-MS and Hyperion images at T1, which is based 
on the Synthetic Variable Ratio (SVR) pan-sharpening method 
[16]. The SVR method is formulated as: 

 
ܯ	݀݁ݏݑܨ ௜ܵ ൌ ܯ ௜ܵ ൈ ሺܲܰܣ ܣܲ ௌܰ௬௡⁄ ሻ (1) 
 
where i is the MS band index, PAN and MS are the input 
panchromatic and multi-spectral images, Fused MS is the 
pan-sharpened multi-spectral image, and PANSyn is a synthetic 
panchromatic image that has the same spatial resolution with 
the input multi-spectral image, which is produced by: 
  
ܣܲ ௌܰ௬௡ ൌ ∑߮௜ܯ ௜ܵ (2) 
 
The coefficient ߮௜ is calculated by, 
 
ܰܣܲ ൌ ∑߮௜ܯ ௜ܵ (3) 
 
which adopts a multiple linear regression between the input 
panchromatic and multi-spectral images. In addition, there is a 
histogram standardization process before the image fusion 
steps stated in (1), (2), and (3) to reduce spectral distortion in 
spatial-spectral fusion result, which conduct a histogram 
transformation upon the input PAN and MS images to make 
them have the same mean and standard deviation (Stdev). 
However, since the common mean and Stdev are determined by 
human subjectively, the histogram standardization will affect 
the fused image’s mean and Stdev, which may have large bias 
with the real mean and Stdev. On that account, a histogram 
de-standardization is performed on the SVR fusion result, 
which uses predicted Stdev values of the high spatial resolution 
MS bands and mean values of the input MS bands to conduct an 
inverse process of the previous histogram standardization to 
make the fused bands have proper mean and Stedv values. The 
reason why we adopt the input MS bands’ mean values directly 
but predict the Stdev values is that the MS bands with different 
spatial resolution have nearly the same mean but different 
Stdev values. 

As to the prediction of the Stdev values of high spatial 
resolution MS image bands, it is achieved by a multi-order 
polynomial fitting method. An iteration process is used to 
determine the optimal fitting order between 1 and 5. We 
down-sample the input MS image into an image series with a 
series of diminishing spatial resolution, see the examples in Fig. 
6, and the down-sampled scales and its corresponding Stdev 
values are employed as independent and dependent variables 
respectively in the polynomial fitting process. After the 
relationship between the spatial resolution and the 
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corresponding Stdev of the MS image series is obtained, we can 
predict the Stdev of the MS image with higher spatial resolution 
than the input MS image. It should be noted that the PAN/MS 
and PAN/HS fusion are both achieved by ESVR method in this 
study. Furthermore, the MS or HS bands that are used in (2) and 
(3) are selected based on the spectral range of OLI-PAN image, 
which means that the spectral ranges of the MS or HS bands in 
(2) and (3) are covered by the panchromatic spectral range of 
OLI. 

 

 

Fig. 5 Workflow of the HSTSFM 
 

 

Fig. 6 Down-sampled image series with diminishing spatial resolution 
 

 

Fig. 7 One-pair image learning spatiotemporal fusion process 

B. Spatial-Temporal Image Fusion 

Considering that there exist both phenological and land 
cover type changes between the two MODIS images, and there 
is only one prior date’s MODIS and OLI images available, the 
one-pair image dictionary learning method (one-pair image 
learning) [9] is adopted to obtain high spatial resolution 

OLI-MS image at T2 based on the fused 15 m OLI-MS image at 
T1 and the two MODIS images in Fig. 2. The spatiotemporal 
fusion process is shown in Fig. 7, Dlow and Dhigh represent the 
low- and high- spatial resolution dictionaries, respectively. For 
more details about the one-pair learning spatiotemporal image 
fusion method, we refer the readers to [9]. 

C. Temporal-Spectral Image Fusion 

After the 15 m OLI-MS and Hyperion images at T1 are 
obtained by the ESVR method, the 15 m OLI-MS image at T2 is 
predicted by the one-pair image learning method. The prior HS 
image at T1 has the same spatial resolution with the two prior 
MS images, hence temporal-spectral image fusion is conducted 
here to produce the 15 m Hyperion image at T2. The Color 
Resolution Improvement Software Package (CRISP) algorithm 
[6] is modified in this study to obtain the 15 m Hyperion image 
at T2, i.e. the final predicted high STSR image. Since there is no 
spatial resolution difference among these input images, the 
image sharpening process based on Butterworth filter in the 
original CRISP can be removed in this circumstance. 
Additionally, we assume that the spectral relationship between 
the MS and HS image at T1 can be applied to T2, hence the 15 m 
Hyperion image at T2 can be calculated by, 

 

෢ܵܪ
మ்
ൌ ܩ ൈܵܯ

మ்
 (4) 

 

where ܪ෢ܵ మ்  is the final fused image with 15 m spatial 
resolution and 146 spectral bands at T2, ܵܯ మ் is the predicted 
15 m OLI-MS image at T2, and the spectral transformation 
matrix G is derived by a least square regression as, 
 

ܩ ൌ ܵܪ భ் ൈ ܵܯ భ்
் ൈ ൫ܵܯ భ் ൈ ܵܯ భ்

்൯
ିଵ

 (5) 
 
where ܵܪ భ்  and ܵܯ భ்  are the 15 m OLI-MS and Hyperion 
images respectively at T1. The framework of the temporal- 
spectral image fusion is shown in Fig. 8. 

IV. EXPERIMENTAL RESULTS AND ANALYSIS 

To demonstrate the effect of the proposed HSTSFM, we 
compared the final fused image with the fused 15 m Hyperion 
image at T2 visually and quantitatively, which is obtained by 
ESVR using the actual PAN and Hyperion images at T2 
because there is no such image at T2. The predicted and actual 
15 m Hyperion image at T2 are both shown in Fig. 9, which are 
displayed with the selected band index 38, 20, and 10 as RGB 
composite images. It can be seen that both phenological and 
land cover type changes are captured, and the hyper-spectral 
information of the predicted image is also quite close to the 
reference image. Additionally, the spatial details from the 
OLI-PAN image are injected into the fusion result precisely. 
Meanwhile, a quantitative evaluation in terms of Correlation 
Coefficient (CC), Root Mean Square Error (RMSE), and 
Structure Similarity index (SSIM) between the two images in 
Fig. 9 is also performed. The evaluation criteria are: (1) the 
closer the CC or SSIM to one, the better; (2) the smaller and 
closer the RMSE to zero, the better. In this study, because there 
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is a temporal gap between the two acquisition dates of the input 
OLI and Hyperion images, we use the correlation between the 
pan-sharpened 15 m Hyperion image at T1 with the reference 
image at T2 as a baseline to demonstrate the effect of the hybrid 
image fusion model. Considering that the HS image in our 
study has up to 146 bands, the quantitative indices of these 
bands are averaged to be shown in Table II. It can be seen that 
the correlation is improved significantly after the fusion, which 
means that the proposed hybrid image fusion model can blend 
the high STSR from multi-sensors’ imagery well.  
 

 

Fig. 8 Temporal-spectral image fusion process 
 

  

(a)                                              (b) 

Fig. 9 The predicted (a) and actual (b) 15 m Hyperion images at T2 

 
 

TABLE II 
QUANTITATIVE INDEX COMPARISON WITH REFERENCE HS IMAGE 

Subject HS image Mean of CC Mean of RMSE Mean of SSIM 

Input T1 0.5458 16.7321 0.3861 

Predicted T2 0.9063 9.1097 0. 6425 

V. CONCLUSIONS 

This study presents a HSTSFM to fuse high STSR from 
multi-source satellite imagery, which can generate high STSR 
images. Not only the HSTSFM can inject high resolution 
spatial details from PAN image into MS or HS image, but also 
it can capture the phenological and land cover type changes 
simultaneously. In addition, the temporal-spectral image fusion 
module in HSTSFM can enhance the spectral resolution of a 
MS image on a prediction date based on the prior MS-HS 
image pair on a base date. Meanwhile, HSTSFM is of relatively 
low computing complexity, which has significant practical 
application potential to be employed by remote sensing 
applications that need high STSR satellite imagery. 
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