
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:10, 2017

1144


Abstract—This paper presents an incremental formal

development of the Wireless Transaction Protocol (WTP) in Event-B.
WTP is part of the Wireless Application Protocol (WAP)
architectures and provides a reliable request-response service. To
model and verify the protocol, we use the formal technique Event-B
which provides an accessible and rigorous development method. This
interaction between modelling and proving reduces the complexity
and helps to eliminate misunderstandings, inconsistencies, and
specification gaps. As result, verification of WTP allows us to find
some deficiencies in the current specification.

Keywords—Event-B, wireless transaction protocol, refinement,
proof obligation, Rodin, ProB.

I. INTRODUCTION

HE WTP is one of the protocols defined by the WAP
Forum [1]. It is a layer of the WAP that provides a reliable

request/response service suited for Web applications from
hand-held devices such as mobile phones.

To ensure the correctness of the WTP, many of formal
methods have been applied such as Petri nets [2] and SPIN
[3]. In this paper, we use Event-B method [4], [5] to model
and verify WTP, focusing on the Class 2 Transaction service
and protocol.

Event-B is a formal modeling method for developing
systems via step-wise refinement [6], based on first-order
logic [7], the modeling process starts with an abstraction of the
system and then during refinement levels, features of the
system are modeled, and the goals are achieved in a detailed
way. The event-B is one of the methods used early to prove
communication protocols [8], [9].

The use of Event-B method allows us to prove properties of
the protocol, and these properties can be automatically (or
interactively) proved through proof obligations [10] generated
from Rodin platform [11] and its plug-in ProB [12], such as
deadlock freeness, order of exchanged messages, and some
business requirements.

The contributions of this paper are divided into three
different areas: create the model, identify functional and non-
functional properties, verification of modeled properties.

From the results of our modeling and verification of WTP,
we identify some deficiencies in the current specification: (1)
the initiator can abort the transaction without the responder
user being notified; (2) when the responder receives the last
acknowledgement, the transaction must not be aborted; and (3)

R. Filali and M. Bouhdadi are with the LMPHE laboratory University of

Mohammed V, Faculty of sciences 4 Street Ibn Batouta, PB 1014 RP, Rabat
Morocco (e-mail: rajaafilali@ gmail.com, bouhdadi@ gmail.com).

when the timer expires (RCR=RCR_MAX), both initiator and
responder must abort the transaction.

The reminder of the paper is organized as follows. Section
II gives a brief overview of Event-B. Section III provides the
requirements of the WTP protocol which are informally
defined. In Section IV, the formal development is presented
using Event-B. Finally, a conclusion is presented to
summarize the main outcomes of this research.

II. EVENT-B MODELING APPROACH
Event-B is a formal method for system-level modelling and

analysis. Key features of Event-B are the use of set theory as a
modelling notation, the use of refinement to represent systems
at different abstraction levels, and the use of mathematical
proof to verify consistency between refinement levels. Event-
B, a variant of B method [13], was designed for developing
distributed systems. In Event-B, the events consist of guarded
actions occurring spontaneously rather than being invoked.
The invariants state the properties that must be satisfied by the
variables and maintained by the activation of the events.

Event-B models are organized in terms of two basic
components: contexts and machines.
 Contexts specify the static part of a model. They made of

a list of distinct carrier sets, constants, axioms and
theorems

 Machines specify the dynamic part of the system. They
may contain variables defining the state of a machine,
invariants constraining that state, and events (describing
possible state changes). Each event is composed of a set
of guards and a set of actions. Guard states the necessary
conditions under which an event may occur, and actions
describe how the state variables evolve when the event
occurs.

From a given model M1, a new model M2 can be built as a
refinement of M1. In this case, model M1 is called an
abstraction of M2, and model M2 is said to be a concrete
version of M1. A concrete model is said to refine its
abstraction. Each event of a concrete machine refines an
abstract event or refines skip. An event that refines skip is
referred to as a new event since it has no counterpart in the
abstract model.

A key concept in Event-B is proof-obligation (PO)
capturing the necessity to prove some internal properties of the
model such as typing, invariant preservation by events, and
correct refinements.

The Rodin is the tool of the Event-B. It allows formal
Event-B models to be created with an editor. It generates proof
obligations that can be discharged either automatically or

Modeling and Analyzing the WAP Class 2 Wireless
Transaction Protocol Using Event-B

Rajaa Filali, Mohamed Bouhdadi

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:10, 2017

1145

interactively. Rodin is modular software, and many extensions
are available. These include alternative editors, document
generators, team support, and extensions (called plug-ins)
some of which include support decomposition and records.

A. Transaction Service

For the Transaction Service, the primitives occur between
the WTP user and the WTP service provider. The sequences of
primitives describe how WTP provides the Transaction
Service. The WTP service primitives and the possible types
are:

TR-Invoke: Initiates a new transaction the type req
(request), ind (indication), res (response), cnf (confirm) are
allowed.

TR-Result: Sends back a result of a previously initiated
transaction. The req, ind, res, and cnf types are allowed.

TR-Abort: Aborts an existing transaction. The only req and
ind are allowed.

B. Transaction Protocol

The transaction protocol defines the procedures for the
initiator PE and responder PE to communicate in order to
provide the transaction service. The messages sent between
peer protocol entities are called Protocol Data Units (PDUs).
There are four primary PDUs used in the Transaction protocol:

Invoke: Sent by the initiator PE to start a transaction.
Result: Sent by the responder PE to return the result.
Ack: Sent by either PE to acknowledge the invoke PDU or

result PDU.
Abort: Sent by either PE to abort the transaction.
Fig. 1 models an example sequence of primitives. This

sequence shows the TR-Init-User making a request (TR-
Invoke.req) which is delivered to the TR-Resp-User (TR-
Invoke.ind). The TR-Resp-User confirms that the request was
received (TR-Invoke.res) which is in turn delivered to the TR-
Init-User (TR-Invoke.cnf). After confirming the receipt of the
request, TR-Resp-User sends the result (TR-Result-req),
which is delivered to the TR-Init-User (TR-Result.ind).
Finally, the TR-Init-User confirms the receipt of the result
(TR-Result.res), resulting in a TR-Result-cnf primitive being
delivered to the TR-Resp-User.

Fig. 1 Example sequence of protocol events for successful transaction

III. FORMAL MODELING OF THE WTP PROTOCOL USING

EVENT-B

A. Initial Model

The initial model is presented as follows:
The context is made of two sets Messages and

PrimitiveTypes. The set “Messages” represents the message
type exchanges between the initiator and responder, whereas
the set “PrimitiveTypes” represents the possible types of the
WTP service primitives.

SETS
PrimitiveType
Messages
AXIOMS
axm1: partition (PrimitiveType, {req}, {ind}, {res}, {cnf})
axm2: partition (Messages, {Invoke}, {Ack}, {Result},

{Abort})
In the machine, we first define some variables:
The variables are called “InitToResp” and “RespToInit”

representing the communication channels from initiator to
responder and from responder to initiator, respectively. These
variables are typed as subset of Messages.

The two variables “InvokePrimitive” and
“ResultPrimitive”: they describe the different primitive types
of the service primitive TR-Invoke and TR-result,
respectively. These two variables are typed as subset of
PrimitiveTypes.

“GenTID” and “SendTID” represent the ID transaction
(TID) to use for the next transaction and the TID value to send
in all PDUs in this transaction, respectively.

GenTID must be incremented by one for every initiated
transaction.

VARIABLES
InitToResp
RespToInit
InvokePrimitive
ResultPrimitive
GenTID
SendTID
INVARIANTS
inv1 : InitToResp ⊆ Messages
inv2 : RespToInit ⊆ Messages
inv3 : ResultPrimitive ∈ PrimitiveType
inv4 : InvokePrimitive ∈ PrimitiveType
inv5 : SendTID ∈ ℕ
inv6 : GenTID ∈ ℕ
Finally, we define the events of our abstract model:
TR-Invoke.req: when the initiator initiates a new

transaction, the invoke message is sent to the Responder.
Rcv-Invoke: the responder receives the message invoke,

and generates the primitive type TR-Invoke.ind.
TR-Invoke.res: The Responder waits for the invoke

message to be processed, the acknowledgement is sent to
prevent the Initiator from re -transmitting the invoke message.

InitRcv_ACK: the initiator receives the acknowledgement
from the responder,

TR-Result.req: The result is sent to the Initiator by the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:10, 2017

1146

responder
Rcv-Result: the initiator receives the message result, and
generates the primitive type TR-result.ind.
TR- Result.res: The Initiator acknowledges the received result
message.
RespRcv_ACK: the responder receives the acknowledgement
from the initiator
RespRcv_ACK: the responder receives the acknowledgement
from the initiator
TR-Invoke-req
WHEN
grd1: Invoke ∉ InitToResp
grd2: Invoke ∉ RespToInit
THEN
act1: InitToResp≔ InitToResp ∪ {Invoke}
act2: SendTID≔GenTID
act3: GenTID≔GenTID+1
act4: InvokePrimitive≔req
END
Rcv-Invoke
WHEN
grd1: Invoke ∈ InitToResp
grd2: InvokePrimitive=req
THEN
act1: InvokePrimitive ≔ ind
act2: InitToResp≔InitToResp ∖ {Invoke}
act3: RespToInit≔RespToInit ∪ {Invoke}
END
TR-Invoke.res
WHEN
grd1: Ack ∉ RespToInit
grd2: InvokePrimitive=ind
THEN
act1: RespToInit≔ RespToInit ∪ {Ack}
act2: InvokePrimitive≔res
END
Rcv_Invoke.ACK
WHEN
grd1: Ack ∈ RespToInit
grd2: InvokePrimitive=res
THEN
act1: InvokePrimitive≔ cnf
act2: RespToInit≔RespToInit ∖ {Ack}
END
TR-Result-req
WHEN
grd1: Result ∉ RespToInit ∧ Result ∉ InitToResp
grd2: InvokePrimitive=cnf ∨ InvokePrimitive=ind
THEN
act1: RespToInit≔ RespToInit ∪ {Result}
act2: ResultPrimitive≔req
END
Rcv-Result
WHEN
grd1 : Result ∈ RespToInit
grd2 : ResultPrimitive=req
THEN
act1 : ResultPrimitive≔ind
act2 : RespToInit≔RespToInit ∖ {Result}
act3 : InitToResp≔InitToResp ∪ {Result}
END
TR-Result.res
WHEN
grd1 : Ack ∉ InitToResp
grd2 : ResultPrimitive = ind

THEN
act1 : InitToResp≔InitToResp ∪ {Ack}
act2 : ResultPrimitive≔res
END
Rcv_Result.ACK
WHEN
grd1 : Ack ∈ InitToResp
grd2 : ResultPrimitive=res
THEN
act2 : ResultPrimitive≔cnf
act3 : RespToInit≔RespToInit ∪ {Ack}
act4 : InitToResp≔InitToResp ∖ {Invoke}
END

B. First Refinement (Re-Transmission until
Acknowledgment)

In this refinement, we introduce the Re-transmission until
Acknowledgement procedure; it is used to guarantee reliable
transfer of data from one WTP provider to another in the event
of packet loss. For this, we define two variables: R as the re-
transmission timer and RCR as the re-transmission counter.
We also add Temp_R as Boolean variable for whether the
timer is hold or not.

The variables R and RCR should not exceed the constants
R_DEFAULT and RCR_MAX, respectively.

When the message (invoke or result) has been sent, the
retransmission timer started and the re-transmission counter is
set to zero (we refine the abstract events “TR-Invoke-req” and
“TR-Result-req” by adding Temp_R=true and RCR=0 as
actions).

If a response (acknowledgement) has not been received
when the retransmission timer expires, the retransmission
counter is incremented by one, the message retransmitted and
the retransmission timer restarted (we add two new events “re-
send_Invoke” and “re-send_Result”). The WTP provider
continues to re-transmit until the number of re-transmissions
has exceeded the maximum re-transmission value

When the acknowledgement has been received, the timer R
must turn off (we refine the abstract events
“Rcv_Invoke.ACK” and “Rcv_Result.ACK” by adding the
action temp B:=FALSE).

We add also a time progression event “Clock_R” activated
when the time R started.

VARIABLES
R
RCR
Temp_R
INVARIANTS
inv1 : R ∈ ℕ
inv2 : RCR ∈ 0‥RCR_MAX
inv3 : Temp_R ∈ BOOL
TR-Invoke-req ≙
REFINES
TR-Invoke-req
Then
act5 : RCR≔0
act6 : Temp_R ≔TRUE
Resend_Invoke ≙
WHEN
grd1 : Invoke ∈ InitToResp
grd6 : R = R_DEFAULT

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:10, 2017

1147

grd5 : RCR< RCR_MAX
THEN
act3 : InitToResp ≔ InitToResp ∪ {Invoke}
act5 : RCR≔RCR+1
act6 : R≔0
END
Resend_result ≙
WHEN
grd1 : Result ∈ RespToInit
grd9 : R=R_DEFAULT
grd4 : RCR < RCR_MAX
THEN
act1 : RespToInit ≔ RespToInit ∪ {Result}
act3 : R≔0
act4 : RCR≔RCR+1
END
TR-Result-req ≙
REFINES
TR-Result-req
When
Then
act5 : RCR≔0
act6 : Temp_R ≔TRUE
Clock_R ≙
WHEN
grd1 : Temp_R=TRUE
THEN
act1 : R≔R+1
END

C. Second Refinement (Transaction Abort)

The transaction abort is an important refinement of this
model. The aborts are symmetric; they can come from either
initiator or responder. Also, when the number of timeouts (and
retransmissions) reaches a maximum value, the transaction is
aborted.

A new variable “AbortPrimitive” represents the different
primitive types of the service primitive TR-Abort.

In this refinement, we also introduce the different states of
the Initiator and Responder. For this, we define two new
variables init_ste and resp_ste:

init_ste denotes the current state of Initiator.
resp_ste denotes the current state of Responder.
They typed by the set states:
partition(states, {null}, {invoke_wait}, {invoke_ready},

{wait_user}, {result_wait}, {result_ready}, {finished},
{aborted})

We are now ready to define our events:
init_Abort-req: the initiator abort the transaction by sending

the “Abort” message, and it enters in “aborted” state.
resp_RcvAbort: the responder receives the abort from the

initiator, and it generates the TR-Abort indication primitive.
resp_Abort-req: the responder initiates the abort by

sending the Abort message to the initiator, and it enters in
“aborted” state.

init_RcvAbort : the abort is received by the initiator, and the
TR-Abort indication primitive is generated.

TimerTO_R: when the number of timeouts reaches a
maximum value, the transaction is aborted and both initiator
and responder enter in aborted state.

init_Abort-req ≙
WHEN
grd1 : init_ste≠null ∧ init_ste≠aborted
THEN
act1 : InitToResp ≔ InitToResp ∪ {Abort}
act2 : AbortPrimitive≔req
act3 : init_ste≔aborted
END
resp_RcvAbort ≙
WHEN
grd1 : AbortPrimitive=req
grd2 : Abort ∈ InitToResp
grd3 : resp_ste ≠null ∧ resp_ste≠ aborted ∧

resp_ste≠finished
THEN
act1 : AbortPrimitive≔ind
act2 : resp_ste≔aborted
END
resp_Abort-req ≙
WHEN
grd1 : resp_ste ≠null ∧ resp_ste≠ aborted ∧ resp_ste≠finished
THEN
act1 : RespToInit ≔ RespToInit ∪ {Abort}
act2 : AbortPrimitive≔req
act3 : resp_ste≔aborted
END
init_RcvAbort ≙
WHEN
grd1 : AbortPrimitive=req
grd2 : Abort ∈ RespToInit
grd3 : init_ste≠null ∧ init_ste≠aborted
THEN
act1 : AbortPrimitive≔ind
act2 : init_ste≔aborted
END
TimerTO_R ≙
WHEN
grd1 : RCR = RCR_MAX
THEN
act1 : AbortPrimitive≔ind
act2 : init_ste≔aborted
act3 : resp_ste≔aborted
END

IV. CONCLUSION

In this paper, we have modeled and proved the WAP Class
2 WTP using Event-B.

We have explained our approach using refinement, which
allows us to achieve a very high degree of automatic proof.
The model was developed to be able to verify protocol
features. We have used the Rodin tool to generate the proof
obligations and to discharge those obligations automatically
and interactively. We have also used the ProB, Rodin plug-in,
for deadlock checking.

From the results of our modeling and verification of WTP,
we have identified some deficiencies in the current
specification.

REFERENCES

[1] WAP Forum. Wireless Application Protocol Wireless Transaction
Protocol Specification. Available via http://www.wapforum.org/, 12 Jul

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:10, 2017

1148

2001.
[2] S. Gordon and J. Billington, Analysing the WAP class 2 wireless

transaction protocol using coloured Petri nets, Springer Berlin
Heidelberg, 2000.

[3] Y. T. He, Verification of the WAP transaction layer using the model
checker SPIN, 2003.

[4] J. R. Abrial, Modeling in Event-B: System and Software Engineering.
Cambridge University Press, 2010.

[5] D. Cansell, and D. Méry, The Event-B Modeling Method: Concepts and
Case Studies. Springer, 2007.

[6] R. J. Back, On the correctness of refinement steps in program
development, Department of Computer Science, University of Helsinki,
1978.

[7] M. Fitting, First-order logic and automated theorem proving, Springer
Science & Business Media, 1996.

[8] R. Filali and M. Bouhdahi, A Mechanically Proved and an Incremental
Development of the Session Initiation Protocol INVITE Transaction.
Journal of Computer Networks and Communications, 2014.

[9] R. Filali, and M. Bouhdadi. Formal verification of the Lowe modified
BAN concrete Andrew Secure RPC protocol. In RFID and Adaptive
Wireless Sensor Networks (RAWSN), Third International Workshop.
IEEE. pp. 18-22. 2015.

[10] S. Hallerstede, On the purpose of Event-B proof obligations, In: Abstract
state machines, B and Z. Springer Berlin Heidelberg, pp. 125-138. 2008.

[11] C. Jones, I. Oliver, A. Romanovsky, and E. Troubitsyna, RODIN
(rigorous open development environment for complex systems),
University of Newcastle.

[12] O. Ligot, J. Bendisposto, and M. Leuschel. Debugging event-b models
using the prob disprover plug-in, Proceedings AFADL 7, 2007.

[13] J. R. Abrial, The B-Book: Assigning Programs to Meanings, Cambridge
University Press, 1996.

