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Abstract—This paper focuses on using Six Sigma methodologies 

to improve the surface roughness of a manufactured part produced by 
the CNC milling machine. It presents a case study where the surface 
roughness of milled aluminum is required to reduce or eliminate 
defects and to improve the process capability index Cp and Cpk for a 
CNC milling process. The six sigma methodology, DMAIC (design, 
measure, analyze, improve, and control) approach, was applied in this 
study to improve the process, reduce defects, and ultimately reduce 
costs. The Taguchi-based six sigma approach was applied to identify 
the optimized processing parameters that led to the targeted surface 
roughness specified by our customer. A L9 orthogonal array was 
applied in the Taguchi experimental design, with four controllable 
factors and one non-controllable/noise factor. The four controllable 
factors identified consist of feed rate, depth of cut, spindle speed, and 
surface roughness. The noise factor is the difference between the old 
cutting tool and the new cutting tool. The confirmation run with the 
optimal parameters confirmed that the new parameter settings are 
correct. The new settings also improved the process capability index. 
The purpose of this study is that the Taguchi–based six sigma 
approach can be efficiently used to phase out defects and improve the 
process capability index of the CNC milling process. 
 

Keywords— CNC machining, Six Sigma, Surface roughness, 
Taguchi methodology.  

I. INTRODUCTION 

ACHINING can be used to create a variety of features 
including holes, slots, pockets, flat surfaces, and even 

complex surface contours [1]. Usually machined parts are 
metal, but almost any material can be machined, including 
plastics, composites, and wood. Because of its versatility, 
machining is often considered the most common and widely 
used of all manufacturing processes [1]. Throughout the years, 
machine tool manufacturers have created machines capable of 
maximizing the utility of all types of cutting tools, while 
lubricant manufacturers have developed new coolants and 
lubricants to allow increased rates of metal removal.  

Accompanying the improvements of machines, the 
invention of the computer allowed for the development of 
computer numerically controlled (CNC) machines which 
greatly improved the manufacturing industry by vastly 
increasing output per employee. CNC machining allows 
employees to setup cutting parameters easily and change tools 
quickly. Out of all the machining processes, milling is the 
most common form of machining [1]. Milling is a machining 
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process that rotates the cutting tool at high speeds to remove 
material from a workpiece. Milling is generally used to 
manufacture parts that are not situated on the same axis and 
have several different features, such as holes, slots, pockets, 
and surface contours. Milling is also commonly used as a 
secondary process to continue or perfect features on parts that 
were produced using a different manufacturing process [1]. 
Although milling can be done to raw materials, because of the 
high tolerances and surface finishes that it can offer, it is the 
best process for adding precise features to a part whose main 
shape has already been formed [1].  

Even with all the improvements made with milling 
machines, the problem of maintaining surface roughness 
within specifications still exist [2]. The surface inconsistencies 
of a material can be affected by a wide range of factors such as 
vibration during machining, the quality of the tool used, and 
the quality of the machined material. It can also be affected by 
cutting parameters as spindle speed, feed rate, depth of cut and 
types of coolant used [3]. These surface inconsistencies have a 
major impact on the quality and on the performance of the end 
product, regardless of shape and size [2]. Therefore, the 
management of these surface inconsistencies is necessary to 
maintain high product performance [3].  

Along with improving the process, finding the optimum 
parameters to eliminate the most waste is very important [6]. 
To do this, a number of statistical models have been developed 
for the analysis and optimization of machining parameters 
such as response surface methodology (RSM), regression 
techniques, analysis of variance (ANOVA), and the Taguchi 
method [6]. The Taguchi-based optimization technique has 
produced a unique and powerful optimization discipline that 
differs from traditional practices. The Taguchi methods 
provide an effective and standardized way to optimize designs 
for overall performance and quality, as well as cost [6]. 
Typical experimental design methods are usually very difficult 
to use because of the extensive amount of experimental works 
that have to be performed when the number of the process 
parameters increase [3]. In order to deal with this problem, the 
Taguchi method has developed a specific design of orthogonal 
arrays to study all the process parameters with only a small 
number of experimental works. 

II. PROBLEM STATEMENT 

In this case study, our customer has tightened the surface 
roughness specifications in order to improve overall part 
quality. Our products had no problem meeting the old surface 
roughness specifications of 50 ± 20 µin. However, with the 
new specifications of 45 ± 15µin, most of our products have 
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become defective parts. The process capability Cp and process 
capability index Cpk are .34 and .25 respectively. The goal of 
this case study is to make the Cp greater than 1.33 and Cpk 
greater than 1. To achieve this goal, we need to revise the 
milling process to produce parts with improved surface 

roughness quality. Therefore, we will be implementing the 
DMAIC approach coupled with the Taguchi method. Fig. 1 
shows the flowchart that illustrates the whole process of this 
case study. 

 

 

Fig. 1 Six Sigma process flowchart for milling 
 

 

Fig. 2 Creo model of specimen part and dimensions 

III. EXPERIMENTAL PROCEDURE 

In order to obtain required surface roughness while 
reducing cost, finding the best fit process improvement 
methodology is essential. Among some of the methods include 
Six Sigma, Re-engineering, Total Quality Management 
(TQM), Just-In-Time (JIT), and Poka-Yoke [4]. Re-
engineering, JIT, and poka-yoke are all tools that can be used 
within TQM or Six Sigma. Six Sigma includes all tools and 
philosophies of TQM but also has more advanced statistical 
tools and incorporating these tools creates the opportunities 
for bigger and better improvements, and improvements that 

Customer requirement with surface roughness of 45 ± 15µin 

Define CTQ/CTP, SIPOC, C&E Matrix, and FMEA 

Choose measurement system and perform Gauge R&R 

Produce samples using baseline parameters 

Calculate process capability and performance 

Measure surface roughness 

Choose control factors and noise factors 

Design Taguchi orthogonal array 

Perform experimental run and measure surface roughness 

T-test to know the 
effect of tool wear 

Closest 
to 15µin

New tool is used for 
confirmation run 

Old tool is used for 
confirmation run 

Find optimum parameters for confirmation run 
based on Taguchi experiment 

Perform confirmation run with optimum parameters 

H0: μ Old Cutting Tool = μ New Cutting Tool 
H1: μ Old Cutting Tool ≠ μ New Cutting Tool 

 

Conclude the optimum parameters that meet customer 
requirements and design a control chart 
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might not have been found with just TQM [4]. The goal of the 
Six Sigma methodology is to improve part quality by 
identifying and removing the causes of defects and 
minimizing variability in manufacturing processes [5]. Six 
Sigma projects follow the DMAIC approach. We first define 
the problem, measure the performance, analyze and identify 
root causes. Then we improve the results based on analysis 
and control the improved process. 

A. Define 

The define stage is the first stage of this project. In this 
stage, the six sigma team made a 3D model in Creo Parametric 
2.0, shown in Fig. 2, of the required part based on the 
customer’s specification of a 1 in cube with 0.75 in wide and 
0.2 in depth cut. This includes a surface roughness within the 
tolerance of 45+/-15µin on the machined surface. After this, 
we brainstormed root causes with a fishbone diagram and then 
we use a CT (critical to) Tree to further identify the problem 
and the processes that need to be improved in this case study. 

The key parameters that could affect the surface roughness 
were listed and analyzed using the fishbone diagram, the 
potential failure modes were also determined. Fig. 3 shows a 
fishbone diagram developed based on the various processes 
involved. It was classified into six classifications: People, 
Method, Measurement, Machine, Environment, and Materials 
and a total of 17 possible root causes that might be related to 
getting a high surface roughness of the machined surface.  

With the potential causes identified, we can use a CT 
(critical to) tree to convert customer needs to measureable 
performance requirements. A CT tree is a tool that relates the 
needs that are considered important by the customer into the 
product and service characteristics and links these 
characteristics to organizational processes [8]. These help in 
knowing what our customers are looking for and the steps to 
take to ensure product quality. Key characteristics and 
important product parameters are defined in terms of quality, 
customer, and process and rated against each other. Table I 
shows the characteristics against each other. The CTQ (critical 
to quality) vs. CTP (critical to process) were compared to the 
process by a ranking following scale 1, 4 and 9. If a particular 
process has a high impact on quality, it was ranked 9, the 

medium impact was ranked with 4, the insignificant impact 
was ranked 1, and the ones with no impact was left blank.  

B. Measure 

In the measure phase, the focus was on the measurement 
system and gathering root causes of the high surface 
roughness of the manufactured part. We decided to use the 
Zegage 3D optical profiler to measure our surface roughness 
because the Zegage machine provides fast and accurate 
surface roughness readings without contacting the part. With 
our measurement system determined, we can conduct our gage 
R&R study. A gage repeatability and reproducibility (gage 
R&R) study was conducted by measuring the surface 
roughness of nine parts cut from the baseline parameters. The 
gage R&R study was performed using three appraisers and 
three trials for each of the nine parts, and the value were 
recorded. The results show the surface roughness average of 
the nine parts to be 53.09 µin with an equipment variation 
70.66 percent and an appraiser variation of -44.50 percent 
resulting in an overall 83.50 percent gage R&R. This value of 
83.50 percent is high as compared with the acceptable range of 
30 percent, and this indicates there is a need for improvement 
of the process; therefore, we need to determine our key 
parameter input variables.  

 
TABLE I 

CRITICAL TO PROCESS VS CRITICAL TO QUALITY TREE 

 
Surface 

roughness
Delivery  

date 
Manufacturing 

 cost 
Quantity & 

right product
Selling 
price 

Product design 9 4 9 9 

Material cost 9 9 9 

Processing cost 4 9 1 9 

Delivery cost 9 9 1 9 

Packaging 9 9 9 9 

Order processing 9 9 

Order check 9 9 

Inventory 4 9 9 

Feed rate 9 9 9 

Spindle speed 9 9 4 4 

Coolant 9 9 4 1 

Depth of cut 9 9 4 

 
TABLE II 

FAILURE MODE AND EFFECT ANALYSIS TABLE OF THE MILLING PROCESS 

Process 
Step/Input 

Potential Failure Mode 
Potential Failure 

Effects 
SEV Potential Causes OCC Current Controls DET RPN 

Milling 
Operation 

Wrong depth of cut Wrong product 7 Wrong program 4 Inspection and quality checks 9 252 

Wrong feed rate Wrong product 7 Wrong program 4 Inspection and quality checks 9 252 

Wrong spindle speed High lead time 5 Wrong program 4 Inspection and quality checks 9 180 
Wrong parameters for 

finish cuts 
Wrong product 7 Wrong program 4 Inspection and quality checks 9 252 

Part 
measurement 

Wrong program Wrong specifications 8 Programmer mistake 3 Proper SOP at machine tables 8 192 

Wrong units Wrong specifications 8 Operator mistake 3 Training 8 192 

Human error Wrong specifications 8 Noise, vibrations 4 Clean and quite room 6 192 

Mother nature Wrong specifications 8 Unpredictable 1 None 10 80 
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Fig. 3 Fishbone Diagram 
 

A cause-and-effect (C&E) matrix helps us identify which 
factors affect the outcomes of surface roughness. In the C&E 
matrix, we multiply the customer importance with rankings 
and final output number is ranked. With these relationships 
visible and quantified, we can identify the most influential 
inputs as key parameters input variables (KPIV). From the 
C&E matrix, the cutting tool, feed rate (ipm), depth of cut (in), 
and spindle speed (rpm) are defined as KPIV. The C&E 
Matrix also provides the initial input to the failure mode and 
effect analysis. 

The next step is to conduct the failure mode and effect 
analysis (FMEA). The main idea of FMEA is to determine the 
potential failure modes in the process, as well as their causes 
and effects. The FMEA of the milling process is shown in 
Table II. This was done to help identify potential failure 
modes that could affect the milling process of the aluminum 
block and the effect of such failures, the risk to customers if 
these processes fail and how to control them to ensure a better 
quality product. An FMEA uses three criteria to assess a 
problem; how severe the problem is, the frequency of the 
problem, and the detection rate of the problem [9]. The 
severity is ranked from 1-10 with a low number and high 
number translating to low impact and high impact 
respectively. The occurrence is also ranked from 1-10 with a 
low number meaning that it is not likely to occur and a high 
number meaning that it is more likely to occur. The detection 

is ranked from 1-10 with a high number meaning hard 
detection and a low number meaning easy detection.  

 
TABLE III 

MAIN AND NOISE FACTORS TABLE 

   Levels 

Designation Variable Unit 1 2 3 

A Feed Rate Ipm 16 18 20 

B Spindle speed Rpm 1750 2000 2250

C Depth of Cut In 0.04 0.05 0.06 

D Coolant On On Off 

Non- Controllable Factors 

1 Old Cutting Tool 

2 New cutting tool 

Output Variable Surface roughness 

C. Analyze 

A Taguchi experiment was conducted to identify the 
optimal parameter for the process [7]. This is important 
because it determines the optimal combination to meet 
customer specifications. The experimentation will follow 
Taguchi L9 orthogonal array to analyze all four parameters. 
Shown in Table III, the L9 Taguchi combinations of four main 
factors, three levels, and one noise factor were used. Our four 
controllable factors are feed rate (ipm), spindle speed (rpm), 
finish cut (in), and coolant on or off. Our one uncontrollable 
factor, or noise factor, is the tool wear. This is represented 
with an old cutting tool and a new cutting tool. 

 
TABLE IV 

TAGUCHI L9 ORTHOGONAL ARRAY 

Factor Noise factors   

N A(Feed) B(Speed) C(DOCF) D(Coolant) Old cutting tool New cutting tool  S/N Ratio 

1 1(16) 1(1750) 1(0.04) 1-On 63.98 48.21 56.09 14.03 

2 1(16) 2(2000) 2(0.05) 2-On 46.50 42.78 44.64 24.58 

3 1(16) 3(2250) 3(0.06) 3-Off 23.60 66.53 45.07 3.43 

4 2(18) 1(1750) 2(0.05) 3-Off 25.98 59.18 42.58 5.17 

5 2(18) 2(2000) 3(0.06) 1-On 41.76 63.74 52.75 10.61 

6 2(18) 3(2250) 1(0.04) 2-On 49.84 49.85 49.84 73.84 

7 3(20) 1(1750) 3(0.06) 2-On 57.26 61.63 59.44 25.69 

8 3(20) 2(2000) 1(0.04) 3-Off 12.67 58.98 35.83 0.78 

9 3(20) 3(2250) 2(0.05) 1-On 51.76 59.62 55.69 20.01 

 
Equation (1), the nominal the better equation, is used to 

calculate the signal-to-noise ratio. Where η is the response,  
is the average of the surface roughness measurements, and s2 
is the variance of the surface roughness data. 

 

Tool Wear 

 Maintenance 

           NC code 

   Off set 
roblems 

Feed Rate 

Spindle Speed 

   Type of coolant 

            Depth of cut

Inexperienced Operator 
 
Improper behavior at work 

ZeGage Program 
 
Calibration 

             Noise 
 
Vibrations 

      Consistency  

    Cutting tool  

Composition 

Man Machine Method

Measurement Mother Nature Material

Surface Roughness 
not within customer 
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A L9 orthogonal array shown in Table IV is used to 

organize the parameters affecting the process and the levels at 
which they are varied. 

For the surface roughness, the value in each column that is 
close to 45 is chosen. For the signal-to-noise (S/N) ratio, the 
largest value in each column is chosen. The predicted surface 
roughness, based on the formula YPredictted = A2 + B3 + C1 + 

D2) - 3 all, from the first set of parameters A2B2C1D3 is 33.9 
µin. The predicted surface roughness from the second set of 
parameters A2B3C1D2 is 49.8 µin. Since our customer requires 
surface roughness to be closest to 45 µin, we choose 
A2B3C1D2 as the optimal setting shown in Table V. 

 
TABLE V 

RESPONSE TABLE 

 A B C D 

Surface roughness     

Level 1 48.60 52.71 47.25 54.84 

Level 2 48.39 44.41 47.64 51.31 

Level 3 50.32 50.20 52.42 41.16 

S/N ratio     

Level 1 14.02 14.96 29.55 14.89 

Level 2 29.87 11.99 16.59 41.37 

Level 3 15.49 32.43 13.24 3.13 

 
After finding our optimal settings, we have to conduct 

hypothesis testing. The hypothesis testing is conducted to see 
if the tool wear has a significant effect on the surface 
roughness. A t test is conducted as we compare two means 
from two sample groups. The hypothesis is shown where μ Old 

Cutting Tool represents the mean of the old cutting and μ New Cutting 

Tool represents the mean of the new cutting tool.  
 

H0: μ Old Cutting Tool = μ New Cutting Tool 
H1: μ Old Cutting Tool ≠ μ New Cutting Tool 

 
The calculations for the t-test were calculated using (2). 

Where ̅  represents the old cutting tool and ̅  represents the 
new cutting tool. S² is the pooled sample variance and n1 and 

n2 are the sample size [10]. 
 

t
̅ ̅

          (2) 

 
Using 99% confidence interval and a degree of freedom of 

16, the t-test value was calculated, and the result was 2.42, 
with a critical region of -2.58. From the t-test calculations, the 
test statistic value -2.42 does not fall in the critical region 
value -2.58, so we fail to reject the null hypothesis. This tells 
us that there is no significant difference between the old 
cutting tool and the new cutting tool. Therefore, the new 
cutting tool will be used to carry out the confirmation runs. 

D. Improve 

From the Taguchi experimentation, the optimal parameters 
have been established. Now we can perform a confirmation 
run to determine if the new parts really have a lower surface 
roughness than the baseline parts. Eleven parts were cut using 
the optimal parameters. The confirmation cuts were then 
measured using the Zegage machine to measure the surface 
roughness of all the pieces. The results of the confirmation 
runs are recorded in Table VI.  

From the confirmation runs, we can find confidence interval 
of the process with (3). Where ̅ is the average of the 
conformations runs, t is a critical region, σ is the standard 
deviation, n is the sample size. By using (3) and considering 
α=0.01, the experiment is 99% confident the surface 
roughness will between 42.425 and 47.095 µin. 

 

C. I. x 	 	t ∗
√

        (3) 

 
The average surface roughness for the confirmation cut is 

44.76 µin and a standard deviation of 2.44 µin, which is very 
close to the nominal value 45 µin. We calculated the new Cp 
and Cpk of the process and also plotted a new capability 
analysis graph in Fig. 4 to see if the process has truly been 
improved. The new Cp and Cpk were calculated to be 2.11 and 
2.08 respectively with a standard deviation of 2.44. 

 

 

Fig. 4 Process capability graph of optimal parameters 
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E. Control 

Now that we have the optimal parameters confirmed; it is 
important to keep the process in control. An SPC (statistical 
process control) chart has been created for the process to 
ensure no part goes out of the specification limits. The upper 
control limit (UCL) for X-bar equals 47.7 µin and the lower 
control limit (LCL) for X-bar equals 41.8 µin. The UCL for R 

equals 12.4 µin and the LCL equals 0 µin. The process has 
been improved and is now capable of making the parts meet 
the customer’s desired surface roughness value. It is important 
to keep this process improved and ensure it doesn’t go out of 
control, to do this a control chart for the X-bar and R-bar was 
created and is shown in Fig. 5. The UCL, CL, and LCL are 
shown in blue, red, and green, respectively. 

 
TABLE VI 

CONFIRMATION RUNS WITH OPTIMAL PARAMETER SETTINGS 

Trial # 1 2 3 4 5 6 7 8 9 10 11 Average 

Surface Roughness (µin) 49.53 44.50 46.85 44.81 43.33 40.06 43.52 47.01 43.90 45.07 43.78 44.76 

 

 

 

Fig. 5 Statistical process control chart for milling process 
 

IV. CONCLUSION 

In this project, we investigated the significance of feed rate, 
depth of cut, spindle speed, and coolant on the surface 
roughness. Using the Taguchi experiment the optimal 
parameter values are calculated as feed rate 18 ipm, spindle 
speed 2250 rpm, depth of cut 0.04 in, and coolant on. From 
the hypothesis testing conducted, we can conclude that the 
type of cutting tool doesn’t affect the surface roughness. Using 
these parameters, we produced aluminum parts with an 
average surface roughness of 44.76µin, which is within the 
specified limits of 45±15µin. The implemented six sigma 
methodologies helped in improving the Cp value from 0.34 to 
2.11 and increased the Cpk value from 0.25 to 2.08. This case 
study indicates that the DMAIC approach is very effective in 
improving the process so that it can manufacture parts within 
customer specifications and the customer can even tighten 
their specifications.  
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