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Forecasting the Volatility of Geophysical Time
Series with Stochastic Volatility Models
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Abstract—This work is devoted to the study of modeling
geophysical time series. A stochastic technique with time-varying
parameters is used to forecast the volatility of data arising in
geophysics. In this study, the volatility is defined as a logarithmic
first-order autoregressive process. We observe that the inclusion of
log-volatility into the time-varying parameter estimation significantly
improves forecasting which is facilitated via maximum likelihood
estimation. This allows us to conclude that the estimation algorithm
for the corresponding one-step-ahead suggested volatility (with ±2
standard prediction errors) is very feasible since it possesses good
convergence properties.
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I. INTRODUCTION

T IME series forecasting and its parameter estimation

constitute an important area of research in which many

scholars have shown an increasing interest in recent times.

The development of forecasting methodologies in geophysics

yields a good estimation of the type of source that generates

a recorded seismic signal, and this methodology is important

in many other fields, for example, the science of meteorology,

and the safety of power system [1]. So, a reliable technique

of volatility forecasting, including the time-varying parameters

based on the seismic signals generated, is imperative to

mitigate some seismic hazards of a region.

In the present study, we develop a forecasting method

for inference and prediction in a volatility model in

which the logarithm of the conditional volatility follows an

autoregressive time series model. One of the common volatility

models is the autoregressive conditional heteroskedasticity

(ARCH) model by Engle [2], which was later modified

into generalized autoregressive conditional heteroskedasticity

(GARCH) by Bollerslev [3]. According to the GARCH,

the volatility system is driven by the observed values in a

pre-deterministic fashion. The GARCH model differs from the

stochastic volatility (SV) model in the sense that, unlike the SV

model, it does not have any stochastic noise. The SV model is

identified by the fact that it invariably contains its probability
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density function. Moreover, the maximum likelihood method

is applied to estimate the parameters of latent volatility in

order to obtain a good estimation.

It is now widely believed that the time and measurements

of a sequence of geophysical time series may be stochastically

dependent. In other words, there is a correlation among

the numbers of data points in successive time intervals.

In [4], the authors used stochastic models to describe a

unique type of dependence in geophysical time series. It has

been observed that the geophysical data may follow different

behaviors over time, for instance, the mean reversion and

fluctuation of power spectrum. Such observations would justify

a rather fundamental difference from the classical modeling

foundations. But the concept of time-dependent seismicity

suggests that the current seismicity needs to be evaluated on

the basis of its past behavior [5]. This behavior of seismogram

makes it possible to do good volatility forecasting and to

obtain some stylized facts of the geophysical data, namely,

time-varying volatility, persistence, and clustering.

The deterministic models are extensively used due to its

ability to represent the stylized facts of time series and ease

of identification based on maximum likelihood estimation

(MLE). However, this deterministic nature does not allow for

a full statistical description of volatility [6]. In order to get the

statistical description of geophysical time series, we propose to

apply the stochastic volatility model and filtering technique as

a way to estimate parameters. We therefore study a sequence

of mining explosions and a large number of aftershocks of the

magnitude M=5.2 earthquake to forecast the volatility by using

estimated parameters. The adequacy of the data is determined

by computing the estimated standard error.

The main difficulty of SV model is to fit it into the

data (with higher accuracy in a stochastic process), since

their likelihood estimations involve numerical integration

over higher dimensional intractable integrals [7], whose

maximization seems to be complicated. Our paper provides

promising results regarding the application of the SV model

in geophysical time series. It also provides a continuous

time-dependent process that exhibits the long-memory feature

of volatilities. The presence of long-memory behavior suggests

that there is a close correlation between current information

and past information at different time intervals, and this

enables us to make prediction. The methodology used in this

work can be applied to other disciplines such as statistics,

mathematics, and finance.

The paper is organized as follows: in Section II, we

present a brief overview of the stochastic volatility model with

time-varying parameters. Section III includes the estimation
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procedure that has been followed to forecast the parameters

with standard prediction errors. Section IV is devoted to a

brief description of our data and a motivation to use the

SV model in geophysics. We then analyze the stationarity

and application of volatility technique to the seismograms

containing the seismic waves generated by the earthquakes and

the explosions. Finally, in Section V, we provide a conclusion

that recapitulates the main points.

II. STOCHASTIC VOLATILITY MODEL

In this section, we briefly describe the stochastic volatility

(SV) model used in this study. The stochastic volatility

technique incorporated into our model implies that the

volatility is driven by an innovation sequence, that is,

independent of observations [8]. It causes the volatility through

an unobservable process that allows it (volatility) to vary

stochastically. The observations yt of the time series used in

this paper may be represented as:

yt = σtηt, (1)

where σt is the volatility of the observations, and {ηt}t∈N

(which is independent of {σt}t∈N and {yt}t∈N) is a Gaussian

white noise sequence.
To develop the SV model, we use the log-squared

observations of the time series in (1):

logy2t = logσ2
t + logη2t

which can be rewritten as:

mt = st + logη2t , (2)

where mt = logy2t and st = logσ2
t . Thus the observations

mt are generated by two components namely, the unobserved

volatility st and the unobserved noise logη2t . Considering the

autoregression, the first term on the right hand side of (2) i.e.

st can be expressed as:

st = υ0 + υ1st−1 + ωt, (3)

where ωt is a white Gaussian noise with the variance σ2
ω .

Equations (2) and (3) constitute the stochastic volatility model

by Taylor [9]. To compute the observation noise, we take into

account the mixtures of two Normal distributions with one

centered at zero. Thus, we have:

yt = β + st + γt, (4)

where β is the mean of log-squared observations and γt =
Btzt0 − (Bt − 1)zt1, which fulfills the following conditions:

zt0 ∼ i.i.d N(0, σ2
0),

zt1 ∼ i.i.d N(μ1, σ
2
1),

and Bt ∼ i.i.d Bernoulli (p),

where p is an unknown mixing probability and i.i.d means

independently and identically distributed. We therefore define

the time-varying probabilities Pr{Bt = 0} = p0 and Pr{Bt =
1} = p1, where p0 + p1 = 1. In this study, our approach is to

estimate the parameters υ0, υ1, σω, σ0, and σ1 from the given

data sets and to analyze their forecasting behavior.

III. ESTIMATION PROCEDURE

This section describes the estimation of time-varying

parameters of the time series arising in geophysics. First, we

briefly discuss some techniques that will be used to estimate

the parameters of the proposed model.

A. Filtering Approach

The state space model is defined by a relation between

the m-dimensional observed time series, yt, and the

n-dimensional state vector (possibly unobserved), xt [10].

An observed equation is driven by the stochastic process as

follows:

yt = Atxt +wt, (5)

where At is a m × n observation matrix, xt is a vector of

n× 1, and wt is a Gaussian error term (wt ∼ N(0, δt)).
The unobservable vector xt is generated from the transition

equation which is defined as:

xt = Φxt−1 + vt, (6)

where Φ is a n×n transition matrix and vt ∼ i.i.d N(0, ψt).
We assume that the process starts with a Normal vector x0.

From Eqs. (5) and (6), we make estimation for the underlying

unobserved data xt from the given data Ym = {y1, . . . , ym}.

When m = t, the process is called filtering.

B. Likelihood Approximation

Let α denote the parameters of the state space model, which

are embedded in the system matrices At,Φ, δt, and ψt. These

parameters are typically unknown, but estimated from the data

Y = y1, . . . , ym.

The likelihood L(α
∣∣Y ) is a function that assigns a value

to each point in the parameter space Δ which suggests the

likelihood of each value in generating the data. However, the

likelihood is proportional to the joint probability distribution

of the data as a function of the unknown parameters. The

maximum likelihood estimation means the estimation of the

value of α ∈ Δ that is most likely to generate the vector of

the observed data yt [11]. We may represent this as:

α̂MLE = max
α∈Δ

L(α
∣∣Y ) = max

α∈Δ
LY (α)

= max
α∈Δ

m∏
t=1

f(yt
∣∣yt−1;α), (7)

where α̂ is the maximum likelihood estimator of α. Since the

natural logarithm function increases on (0,∞), the maximum

value of the likelihood function, if it exists, occurs at the

same points as the maximum value of the logarithm of the

likelihood function. In this paper, we propose to work with

the log-likelihood function which is defined as:

α̂MLE = max
α∈Δ

lnL(α
∣∣Y ) = max

α∈Δ
lnLY (α)

= max
α∈Δ

m∑
t=1

lnf(yt
∣∣yt−1;α). (8)

Since this is a highly non-linear and complicated function

of the unknown parameters, we first consider the initial
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state vector x0 and develop a set of recursions for the

log-likelihood function with its first two derivatives [12]. We

then use Newton-Raphson algorithm [13] successively until

the negative of the log-likelihood is minimized to obtain the

MLE.

C. Parameter Estimation

In order to estimate the time-varying parameters, we use

the filtering technique that is followed by three steps namely,

forecasting, updating, and parameter estimation. In the first

step, we forecast the unobserved state vector st on time series

observations as follows:

stt+1 = υ0 + υ1s
t−1
t +

1∑
j=0

ptjKtjηtj , (9)

where the predicted state estimators st−1
t =

E(st|y1, . . . , yt−1). The corresponding error covariance

matrix is defined as:

M t
t+1 = υ2

1M
t−1
t + σ2

ω −
1∑

j=0

ptjK
2
tj

∑
tj
. (10)

At this point, the innovation covariances are given as:
∑
t0

= M t−1
t + σ2

0

and
∑
t1

= M t−1
t + σ2

1 ,

where M t−1
t = ΦM t−1

t−1Φ
T + V , M0

0 =
∑

0,
∑

t = var(ηt),
and V = var(wt). Furthermore, we use Kalman filter [14] to

measure the estimates precision, which may be shown as:

Kt0 = υ1M
t−1
t /(M t−1

t + σ2
0)

and Kt1 = υ1M
t−1
t /(M t−1

t + σ2
1). (11)

The second step deals with updating results while we have

a new observation of yt at time t. The prediction errors of the

likelihood function are computed using the following relations:

ηt0 = yt − β − st−1
t

and ηt1 = yt − β − st−1
t − μ1. (12)

For estimating the parameters, we complete the updating

step by assessing the time-varying probabilities (for t =
1, . . . ,m):

pt1 =
p1d1(t|t− 1)

p0d0(t|t− 1) + p1d1(t|t− 1)

and pt0 = 1− pt1,

where dj(t|t − 1) is considered to be the conditional density

of yt, given the previous observations y1, . . . , yt−1.

Since the observation noise of this model is not fully

Gaussian, it is computationally difficult to obtain the exact

values of dj(t|t− 1). Hence, we use a good approximation of

dj(t|t− 1) that provides Normal density which is: N(st−1
t +

μj ,
∑

tj), for j = 0, 1 and μ0 = 0.

Finally, we estimate the parameters (Θ = (υ0, υ1, σw, β,

σ0, μ1, σ1)
′) by maximizing the expected likelihood, where

the MLE is represented as:

lnLY (Θ) =
m∑
t=1

ln
( 1∑
j=0

pjdj(t|t− 1)
)
. (13)

IV. APPLICATION OF THE STOCHASTIC VOLATILITY TO

GEOPHYSICAL DATA

A. Background of Data
The earthquakes used in this study correspond to a set of

M=3.0-3.3 aftershocks of a recent M=5.2 intraplate earthquake

which occurred on June 26, 2014. These earthquakes

were located near the town of Clifton, Arizona, where a

large surface copper mine previously triggered off several

explosions due to quarry blasts activities. We selected

some explosions cataloged with similar magnitude as the

earthquakes (M=3.0-3.3) and located in the same region

within a radius of 10 km [15]. We collected the seismograms

containing the seismic waves from two nearby seismic

stations, IU.TUC and IU.ANMO (see Fig. 1), located at an

average distance from the epicenters of 161 km and 357

km respectively. The data contains information about the

date, time, longitude, latitude, the average distance to seismic

events, average azimuth, and the magnitude of each seismic

event in the region (see Tables I and II).
We downloaded the broadband vertical components

(Z-component) seismograms from the Incorporated Research

Institutions for Seismology Data Management Centers (IRIS

DMC). We used the Seismic Analysis Code (SAC) software

to remove the instrument’s response of the seismometer. We

cut the seismograms to contain 0− 200 s with respect to the

event time origin in order to capture the main seismic waves

train [15]. The sampling rate for both recording stations is 20

samples per second. Thus, the resulting seismograms represent

the time series of the vertical displacement of the ground (in

nm) caused by the passing of the seismic waves generated by

the explosions and earthquakes.

B. Motivation
In this subsection, we study the nature of time series

regarding geophysics. Indeed, it is the dynamic behavior of

the data that encourages us to apply our methodology in this

paper.
In Figs. 2 and 3, we notice that the frequency components

change from one interval to another in earthquake or explosion

as long as it lasts. The mean of the series appears to be

stable with an average magnitude of approximately zero,

which reflects both the time-varying nature and the mean

reversion characteristics of the data. We observe that the

volatility changes at a short interval and that the periods

of high volatility tend to be correlated. This shows that the

volatility itself is very volatile. The fluctuations of magnitudes

typically exhibit the volatility clustering i.e. small changes in

the seismogram tend to be followed by small changes, and

large changes by large ones. This volatile nature of the data

justifies the use of volatility model to fit the data for studying

their physical dynamic behavior.
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TABLE I
STATIONS INFORMATION

Station Network Latitude Longitude Avg.
distance (km)

Avg.
Azimuth (deg)

TUC IU 32.3◦ −110.8◦ 161 76
ANMO IU 34.9◦ −106.5◦ 357 224

TABLE II
EVENTS INFORMATION

Events Magnitude Date Time (UTC) Latitude Longitude
Earthquake 3.0 7/12/14 7:12:53 32.58◦ −109.08◦
Explosion 3.2 12/23/99 21:15:48 32.65◦ −109.08◦

Fig. 1 The map shows the location of the seismic stations IU.TUC and
IU.ANMO ([15]) used in this study (yellow color triangles). Red open circle
represents the area within which the earthquakes and explosions used in this

study are located
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(b) Explosion (IU.TUC)

Fig. 2 The vertical ground displacement in nanometers of earthquake (a)
and explosion (b) in Table II as recorded by station TUC
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(b) Explosion (IU.ANMO)

Fig. 3 The vertical ground displacement in nanometers of earthquake (a)
and explosion (b) in Table II as recorded by station ANMO

C. Results and Discussion

We begin this subsection by testing for a unit root in the

seismic waves generated by the earthquake and explosion time

series using the Augmented Dickey Fuller Test (ADF) tests.

The ADF is a very powerful test that can handle more complex

models. It tests the null hypothesis that a time series yt is a

unit root against the alternative that it is stationary, assuming

that the dynamics in the data have an ARMA structure [16].

First, we test the stationarity for all the earthquake and

explosion time series used in this paper by using the ADF
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test. The summary statistics for the results of this test for the

TUC and ANMO stations are displayed in Tables III and IV,

respectively.

TABLE III
AUGMENTED DICKEY FULLER T-STATISTIC TEST FOR TUC STATION

Events Test statistic p-value
Earthquake -39.088 0.01
Explosion -40.298 0.01

TABLE IV
AUGMENTED DICKEY FULLER T-STATISTIC TEST FOR ANMO STATION

Events Test statistic p-value
Earthquake -32.313 0.01
Explosion -37.264 0.01

Test interpretation:

H0 : There is a unit root for the time series.

Ha : There is no unit root for the time series. This series is

stationary.

As the computed p-value is lower than the significance level

α = 0.05, we reject the null hypothesis H0 in all four events,

and accept the alternative hypothesis Ha. Thus, the events

under study are all stationary time series. We also observed

that the explosions are more stationary than earthquake. This

is because for the ADF test, the more negative value of test

statistic, the stronger the rejection of hypothesis that there is

a unit root for the time series at some level of confidence.

The dynamics of the series changes with time and we

forecast the time series by using volatility technique. As

we see in Fig. 4, the histograms of 6016 observations of

geophysical time series are well represented. The thin red

line in the diagram shows the theoretical probability density

function of Normal distribution with the same mean and

standard deviation as geophysical data. We therefore consider

the ARCH Normality assumption on the basis of volatility

ηt. The time-varying parameters and the fixed parameter (β)
were initialized in order to observe the performance of the

SV algorithms during a set of magnitudes for each seismic

event. We assumed the initial parameters to be υ0 = 0, υ1 =
0.96, σω = 0.3, σ0 = 1, μ1 = −4, σ1 = 3, and β = the

mean of the observations. In order to maximize Eq. (13),

the innovation processes for (3) and (4) were fitted to the

data by considering this time-varying probability (p1 = 0.5).

This analysis was performed by a module obtained through R

statistical software.

Tables V-VIII summarize the estimation of parameters

(υ0, υ1, σw, β, σ0, μ1, and σ1). The estimated error in these

tables makes two things evident: firstly, the estimates are

close to the true parameters; secondly, the algorithm of the

SV model is consistent with the results obtained by using

the geophysical data. The variance σ2
w of the log-volatility

process measures the uncertainty about the future volatility of

data. If the value of σ2
w is zero, it is not possible to identify

the SV model. The parameter υ1 is considered as a measure

of the persistence of shocks to the volatility. Tables V-VIII

indicate that υ1 is less than 1, which suggests that the latent

volatility process and yt are stationary. In these tables, we

notice that υ1 is near to unity and σ2
w is different from 0,

(a) Earthquake (TUC station)

(b) Explosion (TUC station)

(c) Earthquake (ANMO station)

(d) Explosion (ANMO station)

Fig. 4 The histograms of geophysical time series and the fitted Normal
density
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which means that the evolution of volatility is not smooth over

time. This also suggests that the geophysical time series could

be heteroscedastic by nature, that is, there is a non-constant

volatility over time. So, it is very useful to control the risk

or to mitigate the effect of hazards. For example, if there

are two seismic time series having the same mean but with

different variances, we would then consider the series with

lower variance, because it is less risky.

TABLE V
SUMMARY STATISTICS FOR EARTHQUAKE DATA FROM TUC STATION

Parameter Estimate Standard Error
υ0 -0.0005 0.0093
υ1 0.9994 0.14E-04
σω 0.6127 0.0749
β -7.1967 0.5468
σ0 0.4723 0.0913
μ1 -2.3616 0.0898
σ1 2.4418 0.0566

TABLE VI
SUMMARY STATISTICS FOR EXPLOSION DATA FROM TUC STATION

Parameter Estimate Standard Error
υ0 0.0176 0.0514
υ1 0.9942 0.0019
σω 0.5253 0.0466
β -0.5354 8.5901
σ0 0.5555 0.0544
μ1 -2.4134 0.0884
σ1 2.4086 0.0531

TABLE VII
SUMMARY STATISTICS FOR EARTHQUAKE DATA FROM ANMO STATION

Parameter Estimate Standard Error
υ0 0.1653 0.1192
υ1 0.9814 0.0032
σω 0.7283 0.0180
β -8.8430 5.7360
σ0 0.0001 0.0643
μ1 -2.3918 0.0761
σ1 2.1528 0.0475

TABLE VIII
SUMMARY STATISTICS FOR EXPLOSION DATA FROM ANMO STATION

Parameter Estimate Standard Error
υ0 0.1261 0.1000
υ1 0.9848 0.0029
σω 0.7154 0.0168
β -7.9347 5.9560
σ0 0.99E-05 0.0790
μ1 -2.3382 0.0769
σ1 2.2432 0.0494

V. CONCLUSION

In this study, we have implemented a technique that

incorporates time-varying parameters, which are used to

forecast the volatility of a geophysical time series.

We estimated these parameters based on recent and

large datasets of magnitudes from earthquakes and mining

explosions. Since the data reflects stochastic behavior of most

measurements over time, we therefore use the SV model to fit

the data, which is strictly recursive. The filtering technique of

this model is based on three continuous steps i.e. forecasting,

updating, and parameter estimation. Thus, the fitted model

allows us to capture the evolution of volatility that is the

physical and long-memory behavior of the data. With the use

of squared logarithm of observations, we succeeded in making

a good prediction despite the variation of the observational

noise from a Normal mixture distribution, because the data

regarding geophysics studied is not fully Gaussian (see the

histograms in Fig. 4).

The adequate choice of maximum likelihood computation

suggests that our proposed model aligns with the geophysical

time series since the one-step-ahead predictions were made

on the basis of the MLE algorithm indicated. It is evident

that the estimates obtained are stable around the true value

(see Tables V-VIII). In order to facilitate the understanding

of the forecasting concepts, we superimposed the plot of

one-step-ahead predicted volatility and ±2 standard prediction

errors in Figs. 5-8. The predicted log-volatility with ±2σ̂t is

displayed as a dashed line surrounding the original output. It

visually shows how the values of predicted volatility differ

over time.

Predicted log-volatility of Earthquake datag y q

1000 1020 1040 1060 1080 1100

8
10

12
14

16
18

Fig. 5 One-step-ahead predicted log-volatility, with ±2 standard prediction
errors for one hundred observations of earthquake data from TUC station

Predicted log-volatility of Explosion datag y p

1000 1020 1040 1060 1080 1100

2
4

6
8

10
12

14

Fig. 6 One-step-ahead predicted log-volatility, with ±2 standard prediction
errors for one hundred observations of explosion data from TUC station

In these figures, we notice that the predicted volatility

of explosions changes very smoothly in comparison to

the earthquakes. This suggests that the persistence in the

explosives volatility is higher than that of the earthquakes.

Furthermore, Tables III and IV indicate that the explosion time
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Predicted log-volatility of Earthquake datag y q
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Fig. 7 One-step-ahead predicted log-volatility, with ±2 standard prediction
errors for one hundred observations of earthquake data from ANMO station

Predicted log-volatility of Explosion datag y p
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Fig. 8 One-step-ahead predicted log-volatility, with ±2 standard prediction
errors for one hundred observations of explosion data from ANMO station

series is more stationary than the earthquake time series. Thus

we conclude that the more stationary time series data have

higher volatility persistence with time in comparison to the

less stationary data.
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