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Sixth-Order Two-Point Efficient Family of
Super-Halley Type Methods

Ramandeep Behl, S. S. Motsa

Abstract—The main focus of this manuscript is to provide a  
highly efficient two-point sixth-order family of super-Halley type 
methods that do not require any second-order derivative evaluation 
for obtaining simple roots of nonlinear equations, numerically. Each 
member of the proposed family requires two evaluations of the given 
function and two evaluations of the first-order derivative per iteration. 
By using Mathematica-9 with its high precision compatibility, a 
variety of concrete numerical experiments and relevant results are 
extensively treated to confirm t he t heoretical d evelopment. From 
their basins of attraction, it has been observed that the proposed 
methods have better stability and robustness as compared to the other 
sixth-order methods available in the literature.

Keywords—Basins of attraction, nonlinear equations, simple roots,
Super-Halley.

I. INTRODUCTION

EFFICIENT solution techniques are required for finding

simple roots of nonlinear equation f(x) = 0, which

partake of scientific, engineering and various other models.

One of the best known one-point optimal method is classical

Newton’s method [1], [2]. With the advancements of computer

algebra, researchers [3]-[8], from the worldwide proposed

three-point sixth-order methods that are known as the

extensions of Newton’s method at the expense of additional

evaluations of functions, derivatives and changes in the points

of iterations.
But, the body structures of these three-point sixth-order

methods are not simple as compared to two-point methods

[9], [10]. Further, it is not easy to find two-point methods

whose order of convergence greater than four [11].
Therefore, our primary aim is to develop a new highly

efficient two-point sixth-order family of super-Halley type

methods, that do not require any second-order derivative. It

is also observed that the body structures of our proposed

methods are simpler than the existing three-point sixth-order

methods. Further, our proposed methods are more effective in

all the tested examples to the existing methods available in the

literature. The dynamic study of our proposed methods which

is given in Section V, to cross verify the theoretical aspects.

II. DEVELOPMENT OF TWO-POINT SIXTH-ORDER

METHODS

In this section, we intend to develop several new families of

sixth-order super-Halley type methods. For this purpose, we
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consider the following well known third-order super-Halley

method [1], [2]

xn+1 = xn − f(xn)

2f ′(xn)

(
2{f ′(xn)}2 − f(xn)f

′′(xn)

{f ′(xn)}2 − f(xn)f ′′(xn)

)
. (1)

Further, we consider yn = xn − f(xn)
f ′(xn)

, a Newton’s iterate.

With the help of Taylor series, we expand the function f(yn)
about a point x = xn as follows:

f ′′(xn) ≈ 2{f ′(xn)}2f(yn)
{f(xn)}2 . (2)

Similarly, expanding the function f ′(yn) =

f ′
(
xn − f(xn)

f ′(xn)

)
about a point x = xn by Taylor series, we

have f ′(yn) ≈ f ′(xn) + f ′′(xn)(yn − xn), which further

yields

f ′′(xn) ≈
f ′(xn)

(
f ′(xn)− f ′(yn)

)
f(xn)

. (3)

From (2) and (3), we have

f ′′(xn) ≈
2{f ′(xn)}2f(yn)

{f(xn)}2 +
f ′(xn)

(
f ′(xn)−f ′(yn)

)
f(xn)

2
. (4)

Using this approximate value of f ′′(xn) in formula (1)

and using the weight function on the second step, we get a

modified family of methods free from second-order derivative

as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

yn =xn −
f(xn)

f′(xn)
,

xn+1 =xn −
f(xn)

2f′(xn)

[
3f(xn)f′(xn) + f(xn)f′(yn) − 2f′(xn)f(yn)

f′(yn)f(xn) + f(xn)f′(xn) − 2f′(xn)f(yn)

]

× Lf (u, v)

(5)

where the weight function Lf is sufficient differential function

in a neighborhood of (1, 0) with u = f ′(xn)
f ′(yn)

= 1+O(en) and

v = f(yn)
f(xn)

= O(en). Theorem III indicates that under what

choices on the weight function which is proposed in (5), the

order of convergence will reach at six without using any more

functional evaluations.

III. ORDER OF CONVERGENCE

Theorem 1: Let a sufficiently smooth function f : D ⊆ R

→ R has a simple zero ξ in the open interval D. Then, the

iterative scheme defined by (5) has sixth-order convergence

when it satisfies the following conditions

L00 = 1, Ł01 =
1

2
, L10 = −1

4
, L02 = −3

2
, L11 =

1

2
, L20 =

3

8
,

L12 = −1

2
− 4L21 − 4L30, L03 = −9 + 12L21 + 16L30,

L04 = −8(9 + L13 + 3L22 + 4L31 + 2L40),
(6)
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where Lij = ∂i+j

∂ui∂vj Lf (u, v)|(u=1, v=0). It satisfies the

following error equation

en+1 = − c2
12

[
4(9 + 2L13 + 24L21 + 12L22 + 48L30 + 24L31

+ 16L40)c
4
2 − 2(L13 + 24L21 + 6L22 + 48L30 + 12L31

+ 8L40 − 12)c22c3 + 3(3 + 2L21 + 4L30)c
2
3 − 12c2c4

]
e6n

+O(e7n).
(7)

Proof: Let ξ be a simple zero of f(x). With the help of

Taylor’s series, we get the following expansion of f(xn) and

f ′(xn) around x = ξ

f(xn) = f ′(ξ)
(
en+c2e

2
n+c3e

3
n+c4e

4
n+e5nc5+e6nc6+O(e7n)

)
, (8)

and

f ′(xn) =f ′(ξ)
(
1 + 2enc2 + 3e2nc3 + 4e3nc4 + 5e4nc5 + 6e5nc6

+ 7e6nc7 +O(e7n)
)
,

(9)

respectively. From (8) and (9), we obtain

yn = c2e
2
n − 2(c22 − c3)e

3
n + (4c32 − 7c2c3 + 3c4)e

4
n

+ (20c22c3 − 8c42 − 6c23 − 10c2c4 + 4c5)e
5
n +O(e6n).

(10)

By using (10) and with the help of Taylor series, we get the

following expansions of f(yn) and f ′(yn) about x = ξ

f(yn) =f ′(ξ)
(
c2e

2
n − 2(c22 − c3)e

3
n + (5c32 − 7c2c3 + 3c4)e

4
n

− 2(6c42 − 12c22c3 + 3c23 + 5c2c4 − 2c5)e
5
n +O(e6n)

)

(11)

and

f ′(yn) =f ′(ξ)
(
1 + 2c22e

2
n − 4(c32 − c2c3)e

3
n + c2(8c

3
2 − 11c2c3

+ 6c4)e
4
n − 4c2(4c

4
2 − 7c22c3 + 5c2c4 − 2c5)e

5
n +O(e6n)

)

(12)

By using (8)-(12), we obtain

h =
f ′(yn)
f ′(xn)

= 1 + 2c2en + (−2c22 + 3c3)e
2
n + (−4c2c3 + 4c4)e

3
n

+ (4c42 − 3c22c3 − 6c2c4 + 5c5)e
4
n +

(
22c32c3

− 8c52 − 4c2(3c
2
3 + 2c5) + 6c6

)
e5n +O(e6n).

(13)

and

k =
f(yn)

f(xn)
= c2en + (−3c22 + 2c3)e

2
n + (8c32 − 10c2c3 + 3c4)e

3
n

+ (−20c42 + 37c22c3 − 8c23 − 14c2c4 + 4c5)e
4
n

+
(
48c52 − 118c32c3 + 51c22c4 − 22c3c4 + c2(55c

2
3

− 18c5) + 5c6
)
e5n +O(e6n).

(14)

Since it is noteworthy from the above mention equations

namely, (13) and (14), u = 1 + p and v = O(en). Then,

from these equations, we get the remainder p = u − 1 and

v are infinitesimal with the same order of en. Therefore, we

can expand weight function Lf (u, v) in the neighborhood of

(1, 0) by Taylor series expansion up to fourth-order terms as

follow

Lf (u, v) =L00 + L10p+ L01v +
1

2!

(
L20p

2 + 2L11pv + L02v
2
)

+
1

3!

(
L30p

3 + 3L21p
2v + 3L12pv

2 + L03v
3
)

+
1

4!

(
L40p

4 + 4L31p
3v + 6L22p

2v2 + 4L13pv
3 + L04v

4
)

+O(e5n).
(15)

Using (8)-(15), in scheme (5), we get

en+1 = (1− L00)en − c2(L01 + 2L10)e
2
n +

6∑
l=3

Mle
l
n, (16)

where Ml = Ml(c2, c3, . . . , c6)Lij , for 0 ≤ i, j ≤ 4.

We will get at least third-order convergence if we insert the

following values of L00 and L01 in (16),

L00 = 1, L01 = −2L10. (17)

Further, using (17) into M3 = 0, we find two independent

relation as follows:

(L02 + 4(2L10 + L11 + L20)) = 0, (1 + 4L10) = 0 (18)

Solving the equations defined in (18) for L11 and L10, we

have

L11 = −1

4
(−2 + L02 + 4L20), L10 = −1

4
(19)

By inserting (17) and (19) into M4 = 0, we obtain

(3+L02 − 4L20) = 0,

(
1 + L02 −

L03

6
− L12 − 4L20 − 2L21 −

4L30

3

)
= 0. (20)

Further, solve the above equation namely, (20) for L02 and

L03, we get

L02 = 4L20−3, L03 = −(12+6L12+12L21+8L30). (21)

By substituting (17), (19) and (21) into M5 = 0, we obtain⎧⎪⎪⎨
⎪⎪⎩

(3− 8L20) = 0,

(−5 + 2L12 + 16L20 + 8L21 + 8L30) = 0,[
L04 + 8(3 + 6L12 + L13 + 24L20 + 24L21 + 3L22

+ 24L30 + 4L31 + 2L40)
]
= 0.

(22)

Solving the above equation for L20, L12 and L04, we

further yield⎧⎪⎪⎪⎨
⎪⎪⎪⎩

L20 =
3

8
,

L12 = −1

2
(1 + 8L21 + 8L30),

L04 = −8(9 + L13 + 3L22 + 4L31 + 2L40).

(23)

We can easily obtain the following error equation, by using

(17), (19), (21) and (23) into (16)

en+1 = − c2
12

[
4(9 + 2L13 + 24L21 + 12L22 + 48L30 + 24L31

+ 16L40)c
4
2 − 2(L13 + 24L21 + 6L22 + 48L30 + 12L31

+ 8L40 − 12)c22c3 + 3(3 + 2L21 + 4L30)c
2
3 − 12c2c4

]
e6n

+O(e7n).
(24)
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This reveals that our proposed scheme (5) has sixth-order of

convergence while using only four functional evaluations (viz

f(xn) f
′(xn) f(yn) and f ′(yn)) per full iteration. Hence, this

completes the proof of above Theorem III.

IV. SPECIAL CASES

In this section, we discuss some interesting special cases of

weight function Lf (u, v), which are defined as follows:

(1) For L21 = 0, L30 = 0, L13 = 0, L22 = 0 and L31 = 0
in (15), we get the following weight function

Lf (u, v) =1− p

4
+

3p2

16
+

L40

24
p4 +

4 + 4p+ 3p2

8
v

− 3 + 7p+ 3p2

4
v2 − 2L40

3
v4,

(25)

where L40 is a free variable and for the sake of simplicity

p = u − 1. With the help of this disposable parameter, we

can easily obtain various different types of weight functions

as well as two-point sixth-order methods.

(2) For L21 = 0, L40 = 0, L13 = 0, L22 = 0 and L31 = 0
in (15), we obtain

Lf (u, v) =1− p

4
+

3p2

16
+

L30

6
p3 +

p+ 1

2
v

− (1 + 8L30)p+ 3

4
v2 +

16L30 − 9(1 + p)

6
v3,

(26)

where L30 is a free variable.

(3) We consider the following weight function, which satisfies

all the conditions defined in theorem III

Lf (u, v) =
1

16u2

(
22u3v − 3u4v + u(6 + 8v)− u2(19v

+ 12v2 + 36v3 − 11)− 1

)
.

(27)

V. NUMERICAL EXPERIMENTS

In this section, we will check the validity and efficiency

of theoretical results. Therefore, we apply our methods for

(L40 = 0 & L40 = 9
16 ) in scheme (25) and for (L30 = 0 &

L30 = 3
16 ) in scheme (26) are denoted by OM1, OM2, OM3,

and OM4, respectively, to solve some nonlinear equations

given in Table I. We compare them with a three-point

sixth-order method proposed by Sharma and Ghua [3], method

(3) for (a = 2) denoted by (SG). In addition, we also compare

our schemes with a method namely, method (5) for (c=0,

d=1, r=0) called (WM) which is given by Wang and Liu

in [5]. Finally, we will also compare them with a two-point

family of sixth-order methods that is very recently proposed

by Guem et al. [11], between them we will choose their best

expression (3.8 and 3.12) denoted by (KM1 and KM2),

respectively. For better comparisons of our proposed methods,

we have given three comparison tables in each example: one is

corresponding to absolute error in Table II, the second one is

with respect to number of iterations in Table III and third one

is regarding their computational order of convergence in Table

IV respectively. All computations have been performed using

the programming package Mathematica 9 with multiple

precision arithmetic. The meaning of a(−b) is a × 10−b in

Table II. We use ε = 10−34 as a tolerance error. The following

stopping criteria are used for computer programs:

(i)|xn+1 − xn| < ε and (ii)|f(xn+1)| < ε.

VI. ATTRACTOR BASINS IN THE COMPLEX PLANE

Here, we further investigate the comparison of the attained

simple root finders in the complex plane using basins of

attraction. It is known that the corresponding fractal of an

iterative root-finding method is a boundary set in the complex

plane, which is characterized by the iterative method applied

to a fixed polynomial p(z) ∈ C, see e.g. [12], [13]. The

aim herein is to use basin of attraction as another way for

comparing the iteration algorithms.

From the dynamical point of view, we consider a rectangle

D = [−3, 3] × [−3, 3] ∈ C with a 400 × 400 grid, and we

assign a color to each point z0 ∈ D according to the simple

root at which the corresponding iterative method starting from

z0 converges, and we mark the point as black if the method

does not converge. In this section, we consider the stopping

criterion for convergence to be less than 10−4 wherein the

maximum number of full cycles for each method is considered

to be 200. In this way, we distinguish the attraction basins by

their colors for different methods.

Test problem 1. Let p1(z) = (z4 + 1), having

simple zeros {−0.707107 − 0.707107i, −0.707107 +
0.707107i, 0.707107 − 0.707107i, 0.707107 + 0.707107i}.

It is straight forward to see from Figs. 1 and 2 that our

methods namely, OM1 and OM3 contain lesser number of

non convergent points in comparison to the methods, namely

SG, WM KM1 and KM2. Further our methods they have

larger and brighter basin of attraction in comparison to the

mentioned methods.

Test Problem 2. Let p2(z) = (z3+z+1), having simple zeros

{−0.682328, 0.341164−1.16154i, 0.341164+1.16154i}. We

can easily note from Figs. 3 and 4 that our proposed methods

namely, OM1 and OM3 have less number of non convergent

points and have larger and brighter basin of attraction in

comparison to methods WM , KM1.

VII. CONCLUSIONS

In this paper, we contributed further to the development

of the theory of iteration processes and proposed several

second-derivative free two-point sixth-order family of

super-Halley type methods based on weight function and

arithmetic means of second-order derivative. By assigning

particular values to the disposable parameters namely, (L40)

and (L30) in schemes (25) and (26), respectively, we can

obtain several new weight functions as well as new two-point

sixth-order methods. By considering different type of weight

functions, we further yield so many new two-point sixth-order

methods. Finally, on accounts of the results obtained, it can

be concluded that our proposed methods are highly efficient

as compared to the existing methods. From their basins of

attraction, it has been observed that the proposed methods

have better stability and robustness as compared to the other

sixth-order methods available in the literature.
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TABLE I
TEST PROBLEMS

f(x) Root(r)

f1(x) = xex
2 − sinx2 + 3 cosx+ 5 −1.2015761120922993992523943629089366

f2(x) = e−x + sinx 3.1830630119333635919391869956363946
f3(x) = (x− 2)2 − log x− 33x 36.989473582944669865344734734912736
f4(x) = cosx− x 0.73908513321516064165531208767387340
f5(x) = tan−1(x2 − x) 1.0000000000000000000000000000000000

f6(x) = e−x2+x+2 − 1 2.0000000000000000000000000000000000

TABLE II
COMPARISON OF DIFFERENT SIXTH-ORDER METHODS WITH THE SAME TOTAL NUMBER OF FUNCTIONAL EVALUATIONS (TNFE=12)

f(x) I.G. SG WM KM1 KM2 OM1 OM2 OM3 OM4
1. −2 9.2−18 1.7−9 2.6−9 4.8−9 4.0−17 9.0−24 4.1−22 6.4−21

−1.6 1.0−65 1.2−43 8.9−43 7.1−42 1.7−63 2.3−80 1.2−75 1.2−97
2. 2.5 1.0−131 2.0−130 8.9−146 8.9−146 1.3−138 1.3−136 4.9−157 6.9−144

4.0 3.8−79 2.5−61 8.7−82 1.3−86 2.7−109 5.4−91 1.9−101 4.2−108
3. 34 3.3−188 8.3−172 1.5−169 1.5−169 4.9−203 6.8−249 4.9−203 4.8−247

39 1.8−207 2.8−232 6.6−230 6.6−230 3.7−256 2.6−315 3.8−256 3.6−312
4. 1.5 1.7−150 3.0−151 3.6−164 1.3−165 3.7−167 9.2−165 6.7−175 2.5−171

1.6 1.3−144 6.5−146 1.4−162 4.7−174 1.4−156 6.2−155 9.0−162 9.2−161
5 0.85 2.0−115 1.7−93 3.9−95 1.1−95 5.1−137 8.8−140 7.8−135 5.0−143

1.6 2.6−74 3.2−72 1.7−107 2.5−63 7.6−77 2.9−81 9.2−112 1.7−117
6 1.0 2.7−49 5.1−57 3.8−63 5.7−85 2.8−43 3.1−41 7.2−49 3.0−42

1.2 3.4−49 1.2−47 1.1−50 9.5−53 1.3−83 1.4−94 1.6−73 1.2−105
2.25 5.8−66 7.5−24 1.2−30 8.9−29 1.4−79 1.1−66 1.0−91 1.4−67

TABLE III
COMPARISON OF DIFFERENT SIXTH-ORDER METHODS WITH RESPECT TO NUMBER OF ITERATIONS

f(x) I.G. SG WM KM1 KM2 OM1 OM2 OM3 OM4
1. −2 5 5 5 5 5 5 5 5

−1.6 4 4 4 4 4 4 4 4
2. 2.5 4 4 4 4 4 4 4 4

4.0 4 4 4 4 4 4 4 4
3. 34 4 4 4 4 4 4 4 4

39 4 4 4 4 4 4 4 4
4. 1.5 4 4 4 4 4 4 4 4

1.6 4 4 4 4 4 4 4 4
5 0.85 4 4 4 4 4 4 4 4

1.6 4 4 4 4 4 4 4 4
6 1.0 4 4 4 4 4 4 4 4

1.2 4 4 4 4 4 4 4 4
2.25 4 4 5 5 4 4 4 4

TABLE IV
COMPUTATIONAL ORDER OF CONVERGENCE OF DIFFERENT SIXTH-ORDER METHODS

f(x) I.G. SG WM KM1 KM2 OM1 OM2 OM3 OM4
1. −2 6.000 5.997 5.997 5.996 6.000 6.000 6.000 6.000

−1.6 5.999 6.000 5.989 5.988 5.999 6.000 5.996 6.000
2. 2.5 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000

4.0 5.990 5.931 5.958 5.995 6.001 6.003 5.999 6.001
3. 34 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000

39 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000
4. 1.5 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000

1.6 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000
5 0.85 6.000 5.999 5.999 5.999 6.000 6.000 6.000 6.000

1.6 6.000 6.003 6.000 5.993 6.000 6.000 6.000 6.000
6 1.0 5.989 5.993 5.996 6.001 6.019 6.061 6.010 6.052

1.2 5.988 5.984 5.988 5.990 5.999 5.999 6.001 6.000
2.25 5.997 6.000 6.000 6.000 5.999 6.008 5.999 6.007
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Fig. 1 The methods SG, WM , KM1 and KM2, respectively for test problem 1

Fig. 2 Our methods OM1, OM2, OM3 and OM4, respectively for test problem 1

Fig. 3 The methods SG, WM , KM1 and KM2, respectively for test problem 2

Fig. 4 Our methods OM1, OM2, OM3 and OM4, respectively for test problem 2
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methods for solving nonlinear equations, Academic Press, 2012.

[3] J. R. Sharma, R. K. Guha, A family of modified Ostrowski methods with
accelerated sixth-order convergence, Appl. Math. Comput. 190 (2007),
111–115.

[4] C. Chun, Some improvements of Jarratt’s method with sixth-order
convergence, Appl. Math. Comput. 190 (2007), 1432–1437.

[5] X. Wang, L. Liu, Two new families of sixth-order methods for solving
non-linear equations, Appl. Math. Comput. 213 (2009), 73–78.

[6] Changbum Chun, YoonMee Ham, Some sixth-order variants of Ostrowski
root-finding methods, Appl. Math. Comput. 193 (2007), 389–394

[7] Xiuhua Wang, Jisheng Kou, Yitian Li, A variant of Jarratt method with
sixth-order convergence, Appl. Math. Comput. 204 (2008) 14–19.

[8] S.K. Parhi, D. K. Gupta, A sixth order method for nonlinear equations,
Appl. Math. Comput. 203 (2008), 50–55.

[9] V. Kanwar, R. Behl, Kapil K. Sharma, Simply constructed family of a
Ostrowski’s method with optimal order of convergence, Comput. Math.
Appl. 62 (2011), 4021–4027.

[10] R. Behl, V. Kanwar, K. K. Sharma, Optimal equi-scaled families of
Jarratt’s method, Int. J. Comput. Math. 90 (2013), 408–422.

[11] Y. H. Geum, Y. I. Kim, B. Neta, On developing a higher-order family of
double-Newton methods with a bivariate weighting function Appl. Math.



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:9, No:9, 2015

587

Comput. 254 (2015), 277–290.
[12] B. Neta, M. Scot, C. Chun, Basins of attraction for several methods

to find simple roots of nonlinear equations, Appl. Math. Comput. 218
(2012), 10548–10556. 2012.

[13] R. Behl and S. S. Motsa, Geometric Construction of Eighth-Order
Optimal Families of Ostrowskis Method, Sci. Wor. J. Article ID 614612.


