
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:11, No:9, 2017

401

The Communication Library DIALOG for iFDAQ
of the COMPASS Experiment

Y. Bai, M. Bodlak, V. Frolov, S. Huber, V. Jary, I. Konorov, D. Levit, J. Novy, D. Steffen, O. Subrt, M. Virius

Abstract—Modern experiments in high energy physics impose
great demands on the reliability, the efficiency, and the data rate
of Data Acquisition Systems (DAQ). This contribution focuses on
the development and deployment of the new communication library
DIALOG for the intelligent, FPGA-based Data Acquisition System
(iFDAQ) of the COMPASS experiment at CERN. The iFDAQ
utilizing a hardware event builder is designed to be able to readout
data at the maximum rate of the experiment. The DIALOG library is a
communication system both for distributed and mixed environments,
it provides a network transparent inter-process communication layer.
Using the high-performance and modern C++ framework Qt and its
Qt Network API, the DIALOG library presents an alternative to
the previously used DIM library. The DIALOG library was fully
incorporated to all processes in the iFDAQ during the run 2016.
From the software point of view, it might be considered as a
significant improvement of iFDAQ in comparison with the previous
run. To extend the possibilities of debugging, the online monitoring
of communication among processes via DIALOG GUI is a desirable
feature. In the paper, we present the DIALOG library from several
insights and discuss it in a detailed way. Moreover, the efficiency
measurement and comparison with the DIM library with respect to
the iFDAQ requirements is provided.

Keywords—Data acquisition system, DIALOG library, DIM
library, FPGA, Qt framework, TCP/IP.

I. INTRODUCTION

THIS paper presents development, deployment and

performance of the communication library DIALOG for

the intelligent, FPGA-based Data Acquisition System (iFDAQ)

of the COMPASS experiment at CERN.

COMPASS (COmmon Muon Proton Apparatus for

Structure and Spectroscopy) [1] is a high-energy particle

physics experiment with fixed-target situated on the M2

beamline of the Super Proton Synchrotron (SPS) particle

accelerator at CERN laboratory in Geneva, Switzerland.

The scientific program of the COMPASS experiment was

approved in 1997. The goal was to study the structure of

gluons and quarks and the spectroscopy of hadrons using

high intensity muon and hadron beams. By the year 2010

the experiment entered it’s second phase COMPASS-II [2].

O. Subrt is with the Czech Technical University, Department of Software
Engineering, Prague, Czech Republic and the European Organization for
Nuclear Research – CERN, Switzerland and is the corresponding author
(e-mail: ondrej.subrt@cern.ch).

M. Bodlak, V. Jary, J. Novy and M. Virius are with the Czech Technical
University, Department of Software Engineering, Prague, Czech Republic.

D. Steffen is with the Technische Universität München, Physik-Department,
Munich, Germany and the European Organization for Nuclear Research –
CERN, Switzerland.

Y. Bai, S. Huber, I. Konorov and D. Levit are with the Technische
Universität München, Physik-Department, Munich, Germany.

V. Frolov is with the Joint Institute for Nuclear Research, Dubna, Moscow
region, Russia.

The COMPASS-II program started with a physics run for the

study of the polarized Drell-Yan (DY) process in the years

2014 and 2015 followed by a run dedicated to Deeply Virtual

Compton Scattering (DVCS).

The DIALOG library is designed and implemented to meet

all necessary requirements, especially on high-performance,

reliability and robustness. It was fully incorporated to all

processes in the iFDAQ during the run 2016 and improved

the stability of iFDAQ significantly.

The paper is organized as follows. The description of

iFDAQ is stated in Section II. A very detailed overview of the

iFDAQ from the hardware and software point of view is given,

followed by a figure of the COMPASS iFDAQ topology which

put all views together. Finally, the motivation for development

of a new communication library is given, which concludes the

iFDAQ part of the paper.

Section III deals with the design of the DIM library. It gives

a description and deeper insight into the DIM library.

Section IV is concerned with the implementation of

the DIALOG library. It presents all requirements, gives

description, integration, robustness and implementation

domains. The important subsection is Scenarios discussing

all exemplary situations.

In Section V, the online monitoring of communication

among processes via DIALOG GUI is stated. The DIALOG

GUI allows the visualization of the processes involved in the

application.

The final section, Section VI, presents the efficiency

measurement and performance of the DIM and DIALOG

library.

II. IFDAQ ARCHITECTURE

The COMPASS iFDAQ is currently undergoing a major

hardware and complete software replacement, the first part of

which was finished in 2014, and the second part of which is

planned to be completed in 2017.

A. Hardware Part

The iFDAQ of the COMPASS experiment consists of

several layers [9], [7], [8]. The frontend electronics that form

the lowest layer continuously preprocess and digitize analogue

data from the detectors. There are approximately 300 000

detector channels; trigger rate can rise up to 50 kHz with

36 kB average event size. SPS accelerator operates in cycles

that consist of 10 second long period with beam (called spill)

followed by approximately 40 second period without beam.

Data from multiple channels are readout and assembled by

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:11, No:9, 2017

402

CASTOR

HGeSiCA
modules

HGeSiCA
modules

DHCsw

64-120x Slinks

(8-15 Slinks
per card x 8 cards)

CO
M

PA
SS

 in
ne

r n
et

w
or

k
CATCH
modules

CATCH
modules

Gandalf
modules

Gandalf
modules

......

8x SLink

8x SLink

~1000 links

Co
nt

ro
l n

et
w

or
k

IPBus

DHCmx
IPBus

DHCmx
IPBus

DHCmx
IPBus

DHCmx
IPBus

DHCmx
IPBus

DHCmx
IPBus

DHCmx
IPBus

DHCmx
IPBus

Gateway

IPBus

Slave Slave

IPBus

Slave

IPBusIPBus

SlaveSlave

IPBus

Slave Slave Slave

IPBus IPBus IPBus

10Gb/s router

Slink
multiplexers
2-4 SLinks

Slink
multiplexers
2-4 SLinks

TIGER VXS data
concentrators

 (up to 18 links)

~250 Modules
28 VME crates......

......

Frontend cards (~300k channels)

............

8 readout
computers
~60 TB disk

pool

Fig. 1 The COMPASS iFDAQ topology

the concentrator modules called CATCH [13], HGeSiCA [15],

and GANDALF [14]. These modules receive signals from the

time and trigger system; when the trigger signal arrives, the

readout is performed and data are sent over optical connection

S-Link [17] to the following layer that is based on special

FPGA DHC (Data Handling Card) cards. It is further divided

into two layers and is responsible for building of complete

events. It comprises eight FPGA (MUXs) and handles another

level of multiplexing. S-Links are also used to connect the first

sublayer to the second sublayer, which is made up of a single

DHC with switch firmware (SWITCH) – this layer handles

event building.

This newly designed event building part allows usage of

more compact control system. The hardware event builder

performs online verification of data consistency. The last layer

of the system consists of eight readout engine computers

equipped with spillbuffer cards that readout assembled events

and transfer them to the CERN permanent storage (CASTOR)

[12].

That is a theoretical description of the iFDAQ full setup. In

Fig. 1, the current state – used in the run 2016 and 2017 –

is given. It consists of only six FPGA cards (MUXs) on the

level of multiplexing and four readout engine computers.

B. Software Part

The iFDAQ software [8] is deployed on the readout engine,

the individual computers of which run the Scientific Linux

CERN 6 (SLC6) operating system [16]. The software is based

on C++ and uses the Qt Framework not only for its GUI,

but also for its threading. Furthermore, Qt data types and a

variety of non-GUI classes are also used in the software. The

Qt version used in the iFDAQ software is 5.5.1. Python and

Bash script also find use in the iFDAQ, their scripts being

particularly useful for starting processes remotely using SSH.

Finally, XML is used to describe the hardware configuration

of the iFDAQ in XML structure files and the IPBus [11]

configuration in XML connection files and address files.

Six main functions are provided by the iFDAQ software:

configuration of the hardware, monitoring of the data

taking process, remote control of the hardware, data flow

control, logging of information and errors and log browsing.

The iFDAQ software also includes a connection to an

MySQL database. The database is used to store, among

others: configuration information of the iFDAQ’s hardware,

information logs and error logs.

There are six types of processes fulfilling these six functions

in the iFDAQ [6]: Master, Slave-control, Slave-readout,

Runcontrol GUI, MessageLogger, and MessageBrowser. The

Master process is responsible for control of the system by

retranslation of messages from user to slaves according to

configuration loaded from database. It has access to all

slaves through DIALOG services and direct access to MySQL

database. It also has integrated error recovery functions to

cope with problems caused by misbehaving slave processes.

The Slave-control process supervises connected FPGA card

by accessing registers via IPBus. The full scale system will

contain 17 Slave-control processes which will be distributed

over the readout computers. The Slave-readout process is

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:11, No:9, 2017

403

the most complex and demands most of CPU resources

in the iFDAQ. It is a multi-threaded process that monitors

readout activities and checks consistency of accepted data.

A Spillbuffer card is used as the data source. The data

are transferred between threads via signal-slot connections

mechanism of Qt by blocks of about 512 events. Events

are distributed to 10 processing threads before final checks

and preparation of the final data format. Portion of data

is, simultaneously with storing on the HDD, distributed to

monitoring outputs. The main graphical user interface is

implemented in Qt framework. It has been designed and

developed with emphasis on ergonomy and flexibility. It

provides iFDAQ status information for expert and nonexpert

users. It runs in one of two modes: runcontrol and monitoring.

There is only one runcontrol GUI allowed in the system; it

controls and monitors state of system. The number of running

monitoring GUIs is not limited, as they are used only for

monitoring. MessageLogger and MessageBrowser ar the last

two processes to be discussed. The MessageLogger receives

messages from all parts of the system and stores them in

the database. The MessageBrowser is a visualization tool for

browsing through these messages. The master process and

slave processes are based on state machines.

The original iFDAQ system of the COMPASS was based on

the Data Acquisition and Test Environment (DATE) software

[10], originally developed for the ALICE experiment at

CERN for control of the hardware, therefore many user

programs expect that data files are in the DATE data format.

Transformation of read out data to DATE data format is needed

because of this limitation.

C. The Motivation for the DIALOG Library Implementation

The DIM library was fully incorporated to all processes

for the runs 2014 and 2015. The iFDAQ had to face several

problems connected to the DIM library during that time.

Messages were sometimes delivered truncated with length

multiple 4 B. The iFDAQ solved that by adding artificial

spaces to the end of messages. The next problem is more

serious, the messages were sometimes not delivered at all.

However, the decision to implement a new communication

library came with the last issue. Processes crashed without

any obvious reason. Especially, Master process met this issue

quite often. The debugging attempts sometimes terminated in

the DIM library.

Unfortunately, the DIM library is a large package and to

understand the source code is not a trivial task. The iFDAQ

group made a decision to implement their own communication

library.

Last but not least, the advantage of understanding the own

library also played a key role in the decision making.

III. DIM LIBRARY

DELPHI [5] was one of the largest physics experiments in

the world, it’s online control system was composed of many

different components distributed over many machines. In order

to allow for efficient communication among machines and

processes a communication system – DIM – was developed.

The processes involved in the DELPHI Online System

needed to communicate efficiently and reliably across the

different machines. The Online System was responsible

for Data Acquisition, Trigger, Control, Monitoring,

User Interfacing, etc. The DIM (Distributed Information

Management) [4] system was proposed and implemented in

order to provide the required communication layer.
A generic design and implementation of the DIM offers a

wide usage in other platforms and for other applications. For

this reason, it provides an opportunity to use it also in other

experiments at CERN, e.g., L3, L3 Cosmics and NA50 and

by BaBar at SLAC [3].

A. Design Requirements
All different types of activities in a system define

different demands on a communication system. From the

Data Acquisition System point of view, transfer speed,

reliability, handling of large amounts of data and access

to all the information available in the experiment are the

most important aspects [3]. In order to accomplish the

above-mentioned demands the DIM was designed meeting

following requirements [3]:

• Efficient Communication Mechanism – A communication

system should provide with an asynchronous behavior

in a message exchange among processes to offer a

communication in a most efficient way. Once a message is

available for sending, the sending procedure is processed.

Similar approach should be implemented for the receiving

procedure in a process.

• Uniformity – All processes should use the same

communication mechanism in order to be able to

exchange all information within a system. Then the

implementation and support of such system is more

manageable.

• Transparency – To satisfy the system independence,

a distributed communication system must fulfil

transparency. Any running process should be able

to communicate with any other process in the system

regardless of their current running location.

• Reliability and Robustness – In a system with many

processes running on many machines connected by

network links, it might happen that a process, a machine

or a network itself breaks down. The application should

be able to deal with the loss of one of these components,

i.e., providing for system recovery in a self-recoverable

manner from error situations or the migration of processes

from one machine to another.

IV. DIALOG LIBRARY

The name DIALOG represents conversation or interview in

English, both connected to communication. Moreover, each

letter is a first letter of a word characterizing somehow the

library itself (distributed, inter-process, asynchronous, library,

open, general). DIALOG library is designed in order to meet

the following requirements:

• Any process should be able to access any information

it needs in order to perform its processing or display

activities.

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:11, No:9, 2017

404

• The integration to running system requires interface for

an easy use.

• The information gathered should be consistent over all

processes running at a given moment.

• Any process should be able to move from one machine

to another.

• The communication system should be very robust. Any

process dying should not disturb the rest system.

A. Description

In order to provide an easy recovery mechanism from

crashes and migrate processes to another machine if necessary

and satisfy the requirement for transparency, i.e., a client does

not need to know where a server is running, the Control Server

was introduced.

Information inside the DIALOG library is handled as named

services. A service is a set of data with a name. The data inside

a service can be of any type and size, since they are transferred

as bytes. The Control Server keeps an up-to-date directory of

all the processes and services available in the system.

To control particular process, commands are introduced.

They are declared by specifying a name for the command

and command with the same name can be registered by

more processes. Once the command is delivered to process,

generally, some action is taken.

The DIALOG library uses a client/server mechanism. A

provider (server) is a process that has information to publish.

It sends the list of services it provides to the Control Server at

startup. A subscriber (client) is any process that uses a service.

When requiring a service the subscriber asks the Control

Server which provider provides that service and from then

on contacts directly the provider. The Control Server knows

at any time which services are available in the system and

who provides them.

A recovery procedure is started whenever one of the

processes (any process or even the Control Server itself)

in the system crashes or dies. It includes the notification

to remaining processes connected to it about the crashed

process and reconnection as soon as a spare process will be

available again. Moreover, this feature provides the possibility

of balancing the machine load of the different workstations.

By stopping a process in the first machine and starting it in

the second one, a process can be easily migrated.

B. Integration

The DIALOG library is designed bearing in mind that it

has to be integrated in a running system, so it has to be made

as easy to use as possible. The library takes care of all the

communications with the Control Server and with the other

processes.

It gives all the DIALOG functionality to an existing

process just by inserting one or two lines of code. This is

possible because the system is completely asynchronous. Then

all messages are sent from the OutgoingThread object and

delivered to the IncomingThread object. According to the

message header, one can recognize the message type easily.

C. Robustness

The DIALOG library has become the most important means

of communication between processes in the iFDAQ, so a

very special care has been taken on the recovery from error

situations.

The establishment of a communication channel between

processes is independent of the order in which they are

started. The Control Server keeps track of the subscribers

for “non-available” services and contacts them as soon as

the providers start up. More generally when any provider or

subscriber dies its partners will reconnect as soon as it comes

back up.

When the Control Server starts all the providers will

re-register their services. And the subscribers will re-request

the services they need.

In order to make sure that the processes are in a good state,

each process sends a heartbeat to the Control Server, this way

the Control Server can disconnect from a process or kill it if

its behaviour is anomalous.

The communication between providers and subscribers once

established is independent unless the Control Server dies. If the

Control Server dies, the processes delete all information about

other processes and try to reconnect to the new spare Control

Server. Otherwise the behavior of the whole communication

system would become unpredictable without any heartbeat

check. Once the Control Server is on again, services are

registered and subscribed as in a fresh start.

D. Implementation

1) Providers: Providers are processes that have information

to provide. A process becomes a provider by declaring any

services it can provide and any commands it is willing to

accept. It sends this information to the Control Server.

A service is declared by specifying a name for the service,

which is unique in the DIALOG system scope. A command

is declared by specifying a name for the command and a

command with the same name can be registered by more

processes. Once the command is sent, it is forwarded by the

Control Sever to all provider processes that registered it.

2) Subscribers: Subscribers are processes that need the

available information in order to accomplish their tasks, that

being display, monitoring or processing. In order to become

a subscriber a process has to specify the service name it is

interested in and requesting for it.

From then on the subscriber can go on with its work, any

service message will automatically be processed whenever

a service is received. At any time, a process can send a

command to a provider by specifying the command name and

the command message.

Any process can be a provider and a subscriber at the same

time.

3) The Control Server: The Control Server keeps an

up-to-date list of all the servers and services in the system,

it receives registration messages from providers and service

requests from subscribers. All processes send heartbeats at

regular intervals so that the Control Server can be assured

that they are functioning. If a process fails sending heartbeats

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:11, No:9, 2017

405

Main Thread Server Thread

Server

Process

From
Process

To Process

Outgoing
Thread

Incoming
Thread

Sender Thread

Sender
Thread #1

Thread #2

Thread #n

Receiver Thread

Receiver
...

Thread #1

Thread #2

Thread #m

...
Fig. 2 The DIALOG process threads diagram

the Control Server marks its services as not available, send

the information concerning the crashed process to processes

providing something to it and subscribing something from

it. Once a spare process is started, it overtakes the same

functionality as the crashed one.

The service uniqueness based on their names is a basic

requirement for the system reliability. Any process trying to

register a service being already registered is killed by a kill

signal from the Control Server.

If the Control Server dies, the processes delete all

information about other processes and try to reconnect to the

new spare Control Server. Otherwise the behavior of the whole

communication system would become unpredictable without

any heartbeat check. When it comes back up all providers

re-register all their services (they have been trying at regular

intervals) and all the subscribers re-request the services they

are waiting for and all connections are then established.

E. Scenarios

In the following section, we present the most typical

scenarios the DIALOG library is dealing with. Each scenario

is displayed in a particular data flow diagram followed by

discussion.

Control Server

Process 1 Process 2

Connect to
Control Server

Connect to
Control Server

Connected
successfuly

Connected
successfuly

Fig. 3 The DIALOG connection to the Control Server diagram

In Fig. 3, data flow diagram shows the connection

mechanism to Control Server for each process. Once the

connection procedure is successful, the Control Server notifies

to the particular process. The messages from processes, which

are not connected to the Control Sever, are ignored. It

prevents the misleading or malicious behavior of processes

not belonging to the DIALOG at all.

If the process is not connected to the Control Server,

nevertheless it is still sending messages to the Control Server,

the Control Server sends the message to the process, that it is

not connected and probably it would like to connect.

Control Server

Process 1 Process 2

Heartbeat Heartbeat

Lost Process 2

Fig. 4 The DIALOG heartbeats diagram

The heartbeat procedure is stated in Fig. 4. All connected

processes are sending heartbeats to the Control Server at

regular intervals. The Control Server is checking whether the

hearbeat is received in a given checking interval for each

process. In Fig. 4, the red color indicates a process which

did not deliver its hearbeat in time. The process could fail

or be stuck. Regardless of the real reason of the undelivered

heartbeat, the Control Server considers the Process 2 as a lost

one and notifies to all remaining processes.

Control Server

Process 1 Process 2

Register command

Send commandForward command

Fig. 5 The DIALOG command diagram

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:11, No:9, 2017

406

Sender

Receiver

Socket

Server

Process 1 Process 2

Sender

Receiver
Socket

Server

From
Process

To
Process

Thread #1

Thread #2

Thread #n

...
Thread #1

Thread #2

Thread #m

...

Fig. 6 The DIALOG communication between processes diagram

The commands are significant part of the DIALOG library.

In Fig. 5, the data flow diagram for commands is shown.

Process 2 is sending a command with the command name and

the command message. The command is sent from Process 2

to the Control Server, which knows all processes registering

the command. The Control Server forwards the command to

these processes and each process takes some action after the

command delivery.

Control Server

Process 1 Process 2

Register service
Request service

Subscribe service

Service data

Service info

Fig. 7 The DIALOG service diagram

In Fig. 7, data flow diagram shows the control and data

flow among the basic components of the DIALOG, the Control

Server receives service registration messages from providers

and service requests from subscribers. Once a subscriber

obtains the “Service Info”, i.e. the service co-ordinates

(hostname and port), from the Control Server it can then

subscribe to services provided by provider process. If a

subscriber sends a “Request Service” for a service that is not

(yet) known to the Control Server a not-yet-provided “Service

Info” is sent back to the subscriber but the request stays queued

in the Control Server and when the service is made available

a new “Service Info” is then sent to the subscriber and the

subscriber proceeds to connecting to the provider.

In last two diagrams, we look deeper inside process and the

DIALOG integration. In Fig. 2, the threads and communication

among them are described. We can divide the diagram into two

parts. The first part is sending part, the second part is receiving

one.
The Sender, running in the SenderThread, is taken care

of dispatching messages among n ∈ N threads and load

balancing. These n threads are establishing connections to

other processes, writing data to sockets and keeping sockets

open until timeout. The socket is not closed immediately. It

remains open for next messages to the particular process. If

no message is sent to the particular process for some time, the

socket is closed by timeout. That means, there is always one

or no open socket from one process to the other. If the socket

is already closed and new message must be delivered to the

particular process, the socket is re-established again.
The message consists of two parts – from message header

and message data. It is handling by pointers to them. Once the

message is created, it is leaving the process as soon as possible.

All these aspects – open socket, pointers to messages, sending

as soon as possible – speed up the performance and reduce

the latency significantly.
According to the message header, we distinguish

message types and how to deal with them. Messages

with header CONNECT TO CONTROL SERVER,

REGISTER SERVICE, REQUEST SERVICE,

REGISTER COMMAND, SERVICE MESSAGE

and COMMAND MESSAGE are coming from the

OutgoingThread to the SenderThread, to one of n threads and

leaving the process. Messages with header HEARTBEAT and

SUBSCRIBE SERVICE are coming from the ServerThread

to the SenderThread, to one of n threads and leaving the

process.
There are also message headers being sent only from

the Control Server, e.g. SUCCESSFULY CONNECTED,

CONNECTION LOST, INFO SERVICE, LOST SENDER

or LOST RECEIVER.
All these message headers are created only once and used

until the process terminates.
The second part is the receiving one. Once the Receiver,

running in the ReceiverThread, receives a new socket

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:11, No:9, 2017

407

Fig. 8 The DIALOG GUI

descriptor, the socket descriptor is dispatched to one of m ∈ N
threads and the socket is created and opened. The Receiver is

taking care of the new sockets only. The already established

ones are keeping open until they are closed by sender process.

These m threads are responsible for reading data out from

sockets. Once a new message is read out, based on its

message header, it is sent either to the ServerThread or to

the IncomingThread.

The messages with message header

CONNECT TO CONTROL SERVER, HEARTBEAT,

SUCCESSFULY CONNECTED, REGISTER SERVICE,

REQUEST SERVICE, REGISTER COMMAND,

INFO SERVICE, CONNECTION LOST, LOST SENDER

or LOST RECEIVER are sent to the ServerThread. Only

SERVICE MESSAGE and COMMAND MESSAGE are

heading to the IncomingThread directly.

We have not discussed the establishment of communication

between two process in a precise way yet. In Fig. 6, the

establishment of communication between two processes is

presented. Process 1 is on left and Process 2 is on the right.

Process 1 is trying to send a message to Process 2.

Process 1 sends message to the Sender dispatching it one of

n threads. If the connection is not yet established, the object

socket is created and opened in Process 1. In Process 2, if the

connection between these two processes is not established yet,

the Receiver receives the socket descriptor trying to connect

to Process 2. The socket descriptor is dispatched to one of

m ∈ N threads and object socket is created and opened. Based

on the message header, then the message is sent either to the

ServerThread or to the IncomingThread.

Socket objects live on both sides until either Process 1 closes

it because of timeout, or one of the processes crashes or one of

the processes terminates in a correct way. Once the connection

is established, Process 2 can write to socket as much as it needs

and Process 2 receives and reads out all these messages. If the

connection terminates, sockets are deleted on both sides.

The established socket is used only for one direction

connection. To send a message in an opposite direction from

Process 2 to Process 1, the new socket must be established.

That means there are either two open sockets, or only one

open socket or no open socket at all between two processes

at one point.

V. DIALOG ONLINE MONITORING

The behavior of complex distributed applications can be

very difficult to understand without the help of a dedicated

tool for online monitoring. The DIALOG GUI allows the

visualization of the processes involved in the application as

shown in Fig. 8.

The DIALOG GUI provides information on the processes

connected to the Control Server. It shows which services and

commands are provided and which services are subscribed

for each process. The online monitoring offers the possibility

to listen to services and commands in a real time. There is

also the functionality of sending commands from the DIALOG

GUI directly.

If the DIALOG system contains many processes, a user

appreciates the filter in the DIALOG GUI for an easy

searching.

VI. TESTS

Several tests have been conducted to validate system

components. The performance of the DIALOG and DIM

library has been measured. The system consists of

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:11, No:9, 2017

408

Message size [B]
210 310 410 510 610

M

es
sa

ge
s

410

510

610 DIALOG

DIM

Fig. 9 Number of messages

8 Slave-control processes for 8 MUXs (8 FPGA), 1

Slave-control process for SWITCH (1 FPGA), 8 Slave-control

processes for Spillbuffer, and 8 Slave-readout processes

(total 25 slaves processes). All slaves are sending messages

concerning their status. There is also one Master process

incorporated in this test. The Master is receiving all messages

from all slaves concerning their status. This setup simulates

the behavior of the iFDAQ full setup.

The test measures how many messages can be delivered

to one single process in 1 second. The test is conducted for

different message sizes and for each message size is conducted

five times to obtain the sufficient statistics. Firstly, the test is

using the DIALOG library. Afterwards, the test is performed

also with the DIM library.

Before the start of the test, we have to pay attention

to spreading of slaves among machines. Since on machines

operating with Linux, if the Master process and slave are

running on the same machine, the message is sent directly

from slave to the Master process and it is not running through

the network at all. If we had not considered that fact, the test

results would have been even above the network bandwidth.

In the test, the Master process is running on its own machine

and nothing else is running there.

For the test, the network bandwidth is 10 Gbps. Based

on the bandwidth, we can expect the maximum data rate

∼ 1.2 GB/s (throughput). Moreover, the network bandwidth

is not saturated by anything else and is exclusively at test’s

disposal.

In Fig. 9, the number of received messages for the particular

message size is given. As we can see, the DIALOG library is

significantly more efficient for messages with the message size

up to 10 KB. In particular with small messages, it is capable

to receive approximately five times more messages than DIM

library. Unfortunately based on the plot, we can not draw any

conclusion concerning the performance for the messages with

message size over 10 KB.

To overcome the drawback of the plot in Fig. 9, we focus on

Fig. 10 now. In Fig. 10, the data flow for the particular message

size is given. As we can see from the plot, in particular, the

DIALOG library is more efficient at the beginning with small

message sizes. If we look deeper, the biggest difference in data

flow is for messages with message size from 100 B to 1 KB.

At these points, the DIALOG data flow is approximately five

times bigger than the DIM data flow. Both DIALOG and DIM

curves saturate the network bandwidth eventually. Moreover,

the DIALOG saturation of the network bandwidth occurs

even with smaller message size than the DIM saturation. The

DIALOG saturate reaches the maximum network bandwidth

already with message size 2 KB. In comparison to DIM, it

is much sooner. The DIM library is starting to occupy the

whole bandwidth with message size 10 KB. At this moment,

it is worth of mentioning the most frequent message size is

between 1 KB and 2 KB in the iFDAQ.

Both libraries stand at the maximum network bandwidth

with message size from 10 KB to 100 KB. Then the data flow

of both libraries changes again. While the DIALOG data flow

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:11, No:9, 2017

409

Message size [B]
210 310 410 510 610

D
at

a
flo

w
 [k

B/
s]

510

610

DIALOG

DIM

Fig. 10 Data flow

stands at the level of the maximum network bandwidth and

saturates it regardless the message size until the end, the DIM

efficiency starts to decrease. At the level of 100 KB message

size, the DIM data flow starts to decline until the end markedly.

From a global perspective, based on both plots in figures, we

can draw a final conclusion. The performance of the DIALOG

library is significantly better than the DIM library.

VII. CONCLUSION

The iFDAQ was successfully deployed and commissioned in

2014, allowed to successfully take data for nominal Drell-Yan

conditions during the run 2015 and followed by a run

dedicated to DVCS in 2016.

The DIALOG library is a new communication library

for iFDAQ of the COMPASS experiment at CERN. It is

a replacement for the DIM library. The DIALOG library

provides efficient and reliable inter-process communications

across different platforms. It’s communication mechanism

is based on the publish/subscribe method and allows for

asynchronous communications, task parallelism and multiple

destination updates. It’s characteristics of efficiency and

reliability have considerably improved the performance and

robustness of the complete iFDAQ. It was fully incorporated

to all processes in the run 2016.

The DIALOG is responsible for basically all

communications inside the iFDAQ, in this environment

it makes available around 100 services provided by 30

servers.

The DIALOG GUI is found to be very useful not only for

monitoring the state of the system but also to find out which

services are available at a a given time.

Moreover, the efficiency measurement shows the

performance of the DIALOG library is significantly better

than the DIM library. It uses and saturates the network

bandwidth in a more efficient way.

Due to iFDAQ versatility and scalability, the iFDAQ is also

suitable for other high-energy physics experiments. Recently,

it has been chosen by a second experiment at the SPS which

is searching for light dark matter.

Nowadays, the COMPASS typical data rate is 1500 MB/s

during spill which is collected from more than 100

front-end modules. The maximum aggregated throughput of

the designed system is 1.5 GB/s, but taking into account

accelerator duty cycle and significant local memory resources,

it has a safety margin of 200-300% and possibility of

future improvements, thus it fulfilled initial demands and its

development continues.

REFERENCES

[1] P. Abbon, et al.(the COMPASS collaboration): The COMPASS
experiment at CERN. In: Nucl. Instrum. Methods Phys. Res., A 577,
3 (2007) pp. 455518.

[2] V. Y. Alexakhin, et al. (the COMPASS Collaboration): COMPASS-II
Proposal. CERN-SPSC-2010-014, SPSC-P-340. May 2010.

[3] C. Gaspar, M. Dönszelmann, Ph. Charpentier: DIM, a Portable,
Light Weight Package for Information Publishing, Data Transfer and
Inter-process Communication. International Conference on Computing

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:11, No:9, 2017

410

in High Energy and Nuclear Physics, Padova, Italy, 1-11th February
2000.

[4] C. Gaspar, M. Dönszelmann: DIM – A Distributed Information
Management System for the DELPHI Experiment at CERN. Proceedings
of the 8th Conference on Real-Time Computer applications in Nuclear,
Particle and Plasma Physics, Vancouver, Canada, June 1993.

[5] C. Gaspar, J. J. Schwarz: A Highly Distributed Control System for a
Large Scale Experiment. 13th IFAC workshop on Distributed Computer
Control Systems – DCCS’95, Toulouse, France, 27-29th September
1995.

[6] M. Bodlak, et al.: Development of new data acquisition system for
COMPASS experiment. Nuclear and Particle Physics Proceedings, 37th
International Conference on High Energy Physics (ICHEP). AprilJune
2016, vol. 273275, pp. 976981. Available at: http://dx.doi.org/10.1016/
j.nuclphysbps.2015.09.153.

[7] M. Bodlak, et al.: FPGA based data acquisition system for COMPASS
experiment. Journal of Physics: Conference Series. 2014-06-11, vol.
513, issue 1, s. 012029-. DOI: 10.1088/1742-6596/513/1/012029.
Available at: http://stacks.iop.org/1742-6596/513/i=1/a=012029?key=
crossref.78788d23de2b4a6a34d127c361123b8c.

[8] M. Bodlak, et al.: New data acquisition system for the COMPASS
experiment. Journal of Instrumentation. 2013-02-01, vol. 8, issue 02,
C02009-C02009. DOI: 10.1088/1748-0221/8/02/C02009. Available
at: http://stacks.iop.org/1748-0221/8/i=02/a=C02009?key=crossref.
a76044facdf29d0fb21f9eefe3305aa5.

[9] M. Bodlak, et al.: Developing Control and Monitoring Software for the
Data Acquisition System of the COMPASS Experiment at CERN. Acta
polytechnica: Scientific Journal of the Czech Technical University in
Prague. Prague, CTU, 2013, issue 4. Available at: http://ctn.cvut.cz/ap/.

[10] T. Anticic, et al. (ALICE DAQ Project): ALICE DAQ and ECS User’s
Guide CERN, EDMS 616039, January 2006.

[11] C. Ghabrous Larrea, et al.: IPbus: a flexible Ethernet-based
control system for xTCA hardware, 2015 JINST 10 C02019.
doi:10.1088/1748-0221/10/02/C02019.

[12] CASTOR – CERN Advanced Storage manager. Available at: http:
//castor.web.cern.ch. (Accessed: 2017-05-01).

[13] Electronic developments for COMPASS at Freiburg. Available at: http:
//hpfr02.physik.uni-freiburg.de/projects/compass/electronics/catch.html.
(Accessed: 2017-05-01).

[14] The GANDALF Module. (online). Available at: http://hpfr03.physik.
uni-freiburg.de/gandalf/pages/information/about-gandalf.php?lang=EN.
(Accessed: 2017-05-01).

[15] iMUX/HGESICA module. (online). Available at: https://twiki.cern.ch/
twiki/pub/Compass/Detectors/FrontEndElectronics/imux\ manual.pdf.
(Accessed: 2017-05-01).

[16] Linux at CERN. (online). Available at: http://linux.web.cern.ch/linux/
scientific6/. (Accessed: 2017-05-01).

[17] S-Link – High Speed Interconnect. (online). Available at: http://hsi.web.
cern.ch/HSI/s-link/. (Accessed: 2017-05-01).

