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On the Free-Surface Generated by the Flow over an
Obstacle in a Hydraulic Channel
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Abstract—The aim of this paper is to report the different
experimental studies, conducted in the laboratory, dealing with the
flow in the presence of an obstacle lying in a rectangular hydraulic
channel. Both subcritical and supercritical regimes are considered.
Generally, when considering the theoretical problem of the free-
surface flow, in a fluid domain of finite depth, due to the presence of
an obstacle, we suppose that the water is an inviscid fluid, which means
that there is no sheared velocity profile, but constant upstream. In a
hydraulic channel, it is impossible to satisfy this condition. Indeed,
water is a viscous fluid and its velocity is null at the bottom. The two
configurations are presented, i.e. a flow over an obstacle and a towed
obstacle in a resting fluid.

Keywords—Experiments, free-surface flow, hydraulic channel,
subcritical regime, supercritical flow.

[. INTRODUCTION

HEN a partially or completely immersed solid moves in
a liquid, such as water, it undergoes a force which is a
resistance to advance. This resistance is also called the
hydrodynamic drag. The objective of the researchers working
on hydrodynamics is, from immemorial time, to reduce this
force so that the water slips better on the immersed bodies.
The problem of the flow above an uneven bottom is not in
theoretically obvious. Indeed, the free-surface is unknown and
analytical calculations, in particular for arbitrary forms of
obstacles, are not easy. Thus, the analytical modeling of the
free-surface is limited to thin obstacles, in linear theory. Besides
the work of Lamb [1], we cite, without being exhaustive,
Boutros et al., [2], Zitoun and Bouhadef [3] and Bouzelha et al.
[4]. The first one shows that the analytical solution is expressed
in series form. The subcritical free-surface aspect led to a local
depression above the obstacle, followed by a downstream
stationary wave train. Research of an adequate solution led
many researchers to the development of various numerical
processes such as Liapidevskii and Xu [5], Bouinoun et al. [6].
For the analysis of the resistance of vagueness, within the
framework of the linear theory, Gadzar [7] used the method of
the singularities; Euvrard [8] and Cherifi et al. [9] used the
finite difference method. The finite element method was also
used by Bai [10] and Forbes [11]. The results of the various
studies showed that, contrary to the wavelength, the amplitudes
are underestimated by the linear theory. The effect of the
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nonlinearities on the free-surface also was the subject of many
works. It should however be noted that all the studies
undertaken by Forbes and Schwartz [12], Cahouet and Lenoir
[13], King and Bloor [14] and Bouhadef [15] are confronted
with a problem of the choice of the adequate boundary
condition making it possible to reveal the waves. Except for
Bouhadef [15] and Amara and Bouhadef [16], the authors use
the linear solution at a given stage of the calculation.

For the modeling of the supercritical flow (Fr> 1) above
obstacle, in nonlinear theory, the most mainly adapted methods
are the finite volume method and the finite element method. For
this configuration, let us recall, among others, the work of King
and Bloor [14], Ghaleb and Hefni [17], Bukreev [18], Bouhadef
[15], Bouzelha-Hammoum et al. [ 19]. For example, Teniou [20]
showed mathematically that the flow in presence of an obstacle
lying on a flat bottom, in a hydraulic channel, generates
necessarily a non-horizontal free-surface.

Unfortunately, few experimental works dealing with the free-
surface flow in a hydraulic channel are available.

1I. MATHEMATICAL FORMULATION

A. Governing Equations

Let us consider the two-dimensional free-surface flow of an
inviscid incompressible fluid over an obstacle lying on the
bottom of a hydraulic channel (Fig. 1). We note h the fluid depth
far upstream where the flow is uniform with constant velocity
U. We introduce the stream functiony.

Iy

Fig. 1 Schematic geometry of the domain
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F=U/4/gh is the Froude number, Q is the fluid domain, I';,

I'p and T'y the left, down and free-surface boundaries
respectively.

Following Bouhadef et al. [21], the 2D problem, in
dimensionless variables, is to find the stream function
ysatisfying the Laplace equation and the following boundary
conditions, where yy is the free-surface position:

Ay =0 in Q (1)
v=0 onIp 2)
y=y on Iy 3)
oy/ox =0 on I 4)
oy / 2
E— 1+§(1—}'0) Oan (5)
y=1 onlvy (6)

On the downstream boundary 'k of the domain Q, one should
note that there is no natural boundary condition.

B. Mathematical Resolution

1. Finite Element Method Approach

To determine the unknown free-surface yo(x), we consider a
sub-domain Q’ delimited by that free-surface, a part of the
bottom I'p and the vertical columns I-1 and I+1.

I+1

Fig. 2 Schematic computational domain

For each summit j of the column I (Fig. 2), we use the Green-
Riemann identity to write:

[ Vy.Vnpido= | nI~a—st=
J J on
(9} I

[ mgjyC1-C, yo ds
Tl uT
[ MgjCi-C, o ds ™

j%\u.emj do =
Q Tl uT

where C, = 2/F>and C | = 1+ C,. yj is then determined by
solving (7) which is written for j = n:

[Vy.Vnpm do - [ 4/C1-Cy yg ds=0 (®)
Q' Tl uT

As explained in [16], this method allows to determine, step
by step, the free-surface elevation. A highly nonlinear
configurationis shown,for a sinusoidal obstacle (the ratiob/h is
not small), in Fig. 3.
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Fig. 3 Computed waveless free-surface

Numerical modeling of wavy free-surface flow for a
subcritical regime is rather difficult because of, as already
mentioned, the non-existence of an obvious boundary condition
downstream of the obstacle. Several authors, such as Cahouet
and Lenoir [13] use the boundary condition derived from the
linear theory. The original method, based on the geometrical
configuration described in Fig. 2, leads to a reasonable solution
but, however, the wavelength is overestimated in relation to that
which really exists.

In the case of a supercritical regime (F > 1), the downstream
boundary condition is simpler to express, since the free-surface
level tends to reach that of the undisturbed flow, andit can be
expressed by:

oy/ox =0 on I'r 9)

Recall that the iterative process consists on taking into
account all the boundary conditions except the kinematic
condition (6). This one is satisfied as [22]:

1-y(M)
Y(N) —y(M)

1-y(N)
(M) —y(N)

y(M’) = y(N) + y(M)

where M is the point on the vertical located at the free-surface.
N is the point situated just below M in the grid and M’ the new
point satisfying the condition ¥ = 1.

We give below the results obtained for a non-symmetrical
obstacle and a highly non-linear configuration. The lower free-
surface corresponds to the higher Froude number.
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Fig. 4 Computed free-surface (F>1)

2. Finite Volume Method Approach

When using the finite volume method, the formulation is put
in the form:

82_‘1’+div[1?(w)]=sw (10)

¢ = 1 for unsteady problems, F () is the total flux vector,
Sy is a source term. For our steady problem, (10) is simplified
because of the absence of a source term:

div[F ()] =0 (11)

The function  being harmonic (Ay = 0), the vector F is
thus related to y by:

F = grad v (12)

For a domain Qg of boundary occupied by the cell K, and
using the Green's theorem, (10) can be written:

Ire Fiids =0 (13)

Let us consider a cell K(i,j) which has two borders (i-1), (i+1)
along x and two others (j-1) ), (j+1) along y. The boundary I'k
in (13) is then the union of these four boundaries and the vector

F is related to vy by (12), at the centre of the cell.
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Fig. 5 Computed free-surface (F<1, Lmax=5)
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Fig. 6 Computed free-surface (F<1, Lmax=13)

For a wavy subcritical regime, the numerical process leads,
of course, to waves but they are located only above the obstacle,
as shown in Fig. 5.

When the computational domain is long enough (Fig. 6), the
level of the free surface joins that of the upstream.

As already mentioned by Euvrard [8], the boundary
conditions upstream and downstream are almost identical,
giving rise to a mainly similar free-surface far upstream and far
downstream. To create the waves, one must take into account
the physical phenomenon. It is known that, contrary to capillary
waves, the group velocity of gravity waves is positive, which
implies that the direction of propagation must appear under the
boundary conditions. These are too symmetrical, which results
in a similar behavior of the free-surface upstream and
downstream. Cherifietal. [9] use the velocity potential
formulation for the resolution of the problem. The undulated
free-surface  obtained is symmetrical. The physical
phenomenon usually observed is devoid of waves upstream for
a subcritical regime at low Froude numbers; they exist only
downstream. In the digital process, the waves should be damped
only upstream. Such as Euvrard [8], an artificial viscosity is
introduced, but only upstream. Namely, one replaces the free-
surface boundary condition

f%%+@f0 (14)

by:

S0y + b 8 G =0 (15)

U
where g is the acceleration due to gravity and U the uniform
upstream velocity.

The obtained free-surface, for two values of the artificial
viscosity ¢, is given below (Fig. 7).

Amara and Bouhadef [16], using a finite element method,
with a Neumann boundary condition far downstream, obtain the
shape shown on Fig. 7, which is an almost symmetrical
waveless free-surface, between the upstream and the
downstream side.
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Fig. 7 The influence of the artificial viscosity €
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Fig. 8 Aspect of the computed free-surface

3. Analytical Approach

Let us consider the free-surface generated by two or many
coupled obstacles lying on the bottom and pulled at a velocity
U in a hydraulic channel where the water is otherwise at rest
(Fig. 7). To easily carry out analytical formulation, in linear
theory, the obstacle shape is chosen triangular. The function
f(x) describing it is thus given by:

0 forx <0
X tgy for 0<x<L/2
fix) =
-xtgy+2b for L/2<x<L
0 for x>L

with tgy= % , where b and L are respectively the height and

the length of the obstacle.

AL LSS LSS LSS S

Fig. 9 Physical formulation

Using the Lamb’s method, Ouatiki et al. [23] give the
equation of the free-surface elevation yo(x):

2 _
b L|, 2F°b 1= cos L
05— -5 -2 Bl (el
L(F%-1) 2 L n=Fr® cos B, -1
2 n= L
3 (X-L-X-L)-ﬂZ%(e'y""_f-e'yﬂ"‘_L‘Vr
L(F?-1) 2 L h=F? cos “By, -1
2F%bcha | . ) ) L. . L
> 5 sino X +sin o |x|-sino(x -—) —sinax - — | +
Lo (F? ch?a—1) 2 2
2F% beha

[sina(x-L)+sina‘x-L -sin(x(x-%)—sina

L
x -2
|

where F is the Froude number.candf, are respectively the
solutions of the equations tanha. = F? o and tan B, = F?B,.If d is
the distance which separates two identical triangles, the free-
surface wave amplitude is given by:

La(F2chZo-1)

. L
A= 8F2bcha 029, g L+d
ziiLcosaf sin o (X - )
Fch2a-1 & 2 2
4

The distance between the obstacles can thus substantially
modulate,for a given obstacle length, the free-surface wave
amplitude.

4. Gravity-Capillarity Waves

Let us first recall that in the theoretical studies mentioned
above, the fluid is assumed inviscid and the capillarity is not
taken into account. Otherwise, the Navier-Stokes equations
must be used with the appropriate boundary conditions, such as
the no slip condition, the cinematic condition and the existence
of the surface tension at the free-surface.

Following Bouhadef [24], Younsi et al. [25], the governing
differential equation of the pressure P and the boundary
conditions associated can be written, in dimensionless
variables, as:

2F
FU-B

Pn _

P'U-&P=0(5.1)
P'(0)=0(5.2)

o EB-Fu]’
Py = SR R()

wheref is the phase velocity, B is the Bound number, U(y) is
the dimensionless velocity profile, U' its first derivative. The

. . . h . .
determination of the dimensionless wave number € = 2n x (his

the mean water depth) leads tothe resolution of an eigenvalues
problem.

The addition of a condition related to the amplitude of the
wave and the disturbance discharge,such as in Bouhadef [24],
allows the pressure calculation.

1+¢2 B

P(l)= ———
p-FU®D

1259



International Journal of Mechanical, Industrial and Aerospace Sciences
ISSN: 2517-9950
Vol:11, No:6, 2017

The main results that the authors have shown can be
summarized, according to the Fig. 10, by:
— the velocity profile shape plays a non-negligible role in the
variation of the standing waves of gravity and capillarity.
— the free surface velocity mainly determines the wavelength
of the capillary waves.

[II. EXPERIMENTAL STUDY

A. Apparatus

The basic device is a hydraulic channel, with variable slope,
consisting of juxtaposed glazed elements over a length of ten
meters, of uniform rectangular cross-section. This channel was
arranged so as to retain a quantity of water at rest at a given
height. A system consisting of pulleys, a drum, and wire, is
positioned in the channel so as to move an obstacle in otherwise
resting water. The free-surface is then the seat of standing
gravity waves (Fig. 11).

0.50 1/¢
0.40 linear

parabolic

constant
0.30
0.20

B=6.10*
0.10
F
0.00
0.00 0.10 0.20 0.30 0.40 0.50

Fig. 10 Wavelength versus Froude number

Fig. 11 Free-surface standing gravity waves

As soon as the carriage moves, the rod flushing the surface
of the water generates capillary waves upstream of that rod (Fig.
12).

For the supercritical regime, the experimental study was
carried out in a Plexiglas hydraulic channel of uniform
rectangular cross-section of width b = 7.5 cm and length 6 m.
The channel is fed in a closed circuit by a pump. In order to
obtain high velocity flows, a convergent (Fig. 12) has been
added at the entrance to the channel.

Thus, by choosing a suitable height H at the output of the
nozzle, we can reach values of the Froude number F that are
clearly greater than 1, for different flow rates Q. The flowmeter
is previously calibrated and the relationship between the real
flow rate and the indicated one is given by:

Q = 1.0522Q, — 0.0001 where Q, (m’/s) corresponds to the
value read and Q the effective discharge.

Fig. 13 Nozzle upstream for a supercritical regime

B. Results

1. Supercritical Regime
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Fig. 14 Supercritical regime over a step

If b is the dimensionless height of the obstacle lying on the
bottom of the channel, relatively to the water depth, the
asymmetrical free-surface measured, by way of example, has
the shape given above. Recall that, as we had previously
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mentioned it, in the theoretical part dealing with the boundary
conditions, the free-surface, in the supercritical configuration,
is practically horizontal far upstream and downstream of the
obstacle (Fig. 13).

2. Subcritical Regime

As it is shown below, the free-surface may be the seat of
standing waves.

If two obstacles move at the bottom of a hydraulic channel at
a moderate velocity, the free-surface (Fig. 15) depends not only
on the Froude number calculated with that traction speed, but
also on the distance d between the obstacles.

Fig. 15 Standing free-surface waves

Fig. 16 Free-surface waves over two obstacles

3. Capillarity Waves

Depending on the Froude number value, the dimensionless
wavelength of the standing free-surface waves varies. On the
Fig. 16, we represent the obtained experimental results for the
capillary waves with the same water depth hy = 18 cm,
compared to those given by the numerical method. Even for the
standing gravity waves, the agreement is reasonably good, as
already mentioned by Younsi et al. [25] and shown on the Fig.
17.

IV. CONCLUSION

As it was already mentioned, in Bougamouza et al. [26], for
example, one shows, through the experimental study carried out
in a hydraulic channel, that one can establish the supercritical
mode by only adding a convergent at the entry of the channel.

In order to satisfy, as much as possible, the boundary

conditions due to the assumed inviscid fluid hypothesis, one
must consider experimentally the flow generated by the
movement of an obstacle in a fluid otherwise at rest. Indeed, in
the case of the flow of a fluid above a submerged obstacle, the
velocity profile is necessarily sheared and cannot be uniform
upstream.

0.020 —
1/e
0.016 —|
0.012 —|
0.008 —|
0.004 — N
F
0:000 \ \ \ \
0.00 0.10 0.20 0.30 0.40
Fig. 17 Capillary wavelength versus Froude number
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Fig. 18 Theoretical and experimental wavelength evolution
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