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Fourier Galerkin Approach to Wave Equation with

Absorbing Boundary Conditions
Alexandra Leukauf, Alexander Schirrer, Emir Talic

Abstract—Numerical computation of wave propagation in a large
domain usually requires significant computational effort. Hence, the
considered domain must be truncated to a smaller domain of interest.
In addition, special boundary conditions, which absorb the outward
travelling waves, need to be implemented in order to describe the
system domains correctly. In this work, the linear one dimensional
wave equation is approximated by utilizing the Fourier Galerkin
approach. Furthermore, the artificial boundaries are realized with
absorbing boundary conditions. Within this work, a systematic work
flow for setting up the wave problem, including the absorbing
boundary conditions, is proposed. As a result, a convenient modal
system description with an effective absorbing boundary formulation
is established. Moreover, the truncated model shows high accuracy
compared to the global domain.

Keywords—Absorbing boundary conditions, boundary control,
Fourier Galerkin approach, modal approach, wave equation.

I. INTRODUCTION

F
ROM acoustics to seismology, wave propagation is

significant in many technical areas and its reliable

simulation requires special care. One of the most common

issues one has to deal with are large computational costs.

They emerge when simulating the propagation of waves in

very large domains and it is desirable to keep them to a

minimum. To achieve this objective, it is necessary to truncate

the simulation domain. The artificially generated boundaries

cannot be treated like clamps, because spurious reflections

would be generated, compromizing the interior solution. This

undesirable phenomenon can be explained by the energy of

the wave, bounded by the local domain [1]. In order to enable

this energy to pass through the artificial boundaries, one must

introduce specific boundary conditions, which can be realized

in form of absorbing or transparent boundary conditions.

The need of finding absorbing boundary conditions (ABCs)

for specific wave propagation problems increased quickly in

the last few decades. Even though computing power has

increased rapidly, the complexity of models has risen too,

as well as the need for real-time capable models. Therefore,

the development of highly efficient models is vital to meet

real-time requirements. One example of practical usage can be

found in rail traffic, whereby the complex pantograph/catenary

interaction must be modeled and simulated carefully, even

under real-time requirements. Highly efficient catenary models

are required to enable real-time test bed scenarios with

high fidelity. In [2], the catenary dynamics are modelled by

utilizing the finite element method, using a moving-coordinate
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formulation and implementing wave-absorbing boundary

layers. In [3], Facchinetti and co-authors use the classical

Fourier approach to obtain a real-time capable catenary

model. To minimize the spurious reflection at the boundaries,

Facchinetti introduced a ”forward shifting” approach, whereby

the pantograph and the solution are periodically shifted, so that

the moving pantograph remains sufficiently far away from the

artificial boundaries. In this paper, a combination of ABCs and

the Fourier approach as a basic method for a novel simulation

approach is devised.

Real-time capable simulations and the optimization of

computational costs are fundamental factors that have

encouraged the investigation of boundary conditions for

specific discretization schemes in the recent years. Engquist

and Majda [4] developed perfectly absorbing non-local

boundary conditions, approximated by local ones. In

[1], Clayton and Engquist presented ABCs based on

paraxial approximations and separated the energy of the

outward-moving wave from that of the incoming wave.

Guo and Shao [5] constructed an observer-based feedback

scheme by only utilizing displacement measurements. Another

example is to introduce a damped layer [6], [7], dissipating the

energy of the out-travelling waves. Further approaches [8], [9]

are based on Berengers perfectly-matched layer [10], whereby

a lossy, anisotropic layer is derived at the boundaries to absorb

the out-going waves.

In this work, the linear wave equation is discretized

by utilizing the Fourier Galerkin approach. Unlike spatial

discretization methods, such as the finite-element-method

or the finite-difference-method, which discretize partial

differential equations (PDEs) locally, the Fourier Galerkin

approach discretizes globally via Fourier series. Due to

orthogonality properties of the Fourier series, the PDE of the

wave problem can be decoupled in space and time, which

leads to a system of ordinary differential equations (ODEs),

only depending on time. These ODEs can be efficiently

solved for every eigenmode and the solution only needs to

be transformed back to space-time-description. The accuracy

of the approximated solution increases with the number of

considered eigenmodes. For solving the wave problem with

ABCs, this complex problem with inhomogeneous, dynamic

boundary functions is split into a homogeneous and an

inhomogeneous solution.

The methodology of this paper starts with basic information

about the one-dimensional linear wave equation and

continues with considering the homogeneous sub-problem.

The subsequent part describes how the Fourier Galerkin

approach can be used for modelling the wave problem,

followed by the implementation of the ABCs and an
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assembly of all required equations. As a final step, the

back transformation of the total solution into space and time

is outlined. After the methodology sections, the results for

specific simulation test scenarios are illustrated, whereby the

accuracy of the truncated system’s solution depending on

the initial field’s shortest wavelength and the number of

eigenmodes is studied.

II. METHODOLOGY

A. The One-Dimensional Linear Wave Equation

Regardless of whether one deals with the propagation of

acoustic, electromagnetic or water waves - due to the wave

equation, satisfactory simulation results can be achieved in

many cases. This equation in its linearized form is a very

important and equally one of the simplest second-order PDEs

in physics. The approach developed in this paper is illustrated

by the one dimensional linear scalar wave equation, given by

∂2u(x, t)

∂t2
− c2

∂2u(x, t)

∂x2
= f(x, t). (1)

with the boundary conditions

u(0, t) = u0(t), t ≥ 0 (2)

u(L, t) = uL(t), t ≥ 0 (3)

and the initial conditions

u(x, 0) = g(x) (4)

u̇(x, 0) = f(x). (5)

Here, the parameter c > 0 is the constant wave propagation

speed and f(x, t) is the source function. Derivatives with

respect to time t are denoted by a dot and spatial derivatives

are denoted by a prime. The spatial coordinate x ∈ Ω
is horizontal in direction of the wave propagation and it

is defined in Ω ∈ [ 0, L] . The field u may, for example,

characterize the vertical deflection of a vibrating string,

whereas u0 and uL are the boundary functions at the left

and right boundaries. Equations (1)-(5) define a well-posed

wave-propagation problem, for which a unique solution can be

found. To solve this problem, it is divided into a homogeneous

sub-problem and a boundary term, and the solutions of both

sub-problems are superimposed.

B. The Homogeneous Sub-Problem

The homogeneous wave equation in one dimension can

be illustrated by a vibrating string, which is fixed on

both boundaries. The mathematical description of this

homogeneous problem is given by

∂2uH(x, t)

∂t2
− c2

∂2uH(x, t)

∂x2
= 0 (6)

with the boundary conditions

uH(0, t) = 0 (7)

uH(L, t) = 0, (8)

and the initial conditions

uH(x, 0) = g(x) (9)

u̇H(x, 0) = f(x). (10)

Imagining this string to be plucked, the initial displacement

divides into two waves of the half amplitude, one wave moving

in the left direction, the other one in the right direction. When

an outward moving wave reaches the end of the string, the

wave is reflected and inverted at the homogeneous Dirichlet

boundary conditions (9) and (10).

The wave equation (6) can also be formulated as an operator

factorization ( ∂

∂t
− c

∂

∂x

)( ∂

∂t
+ c

∂

∂x

)
uH = 0, (11)

whose general solution is of the form

u(x, t) = g1(x+ ct) + g2(x − ct). (12)

Thereby, g1 and g2 are two arbitrary, twice differentiable

functions of a single variable [11, p.33-34], where g1 is the

solution of the first term and g2 is the solution of the second

term of (11). Moreover, solutions of either( ∂

∂t
− c

∂

∂x

)
uH = 0 (13)

as ( ∂

∂t
+ c

∂

∂x

)
uH = 0 (14)

are also solutions of (6). The first term g1(x + ct) of (12)

represents wave components travelling to the left, whereas

the second term characterizes the right-moving components.

In order to calculate a satisfying approximation of the exact

solution of the homogeneous wave problem, the Fourier

Galerkin approach is introduced.

C. Fourier Galerkin Approach

The objective of utilizing the Fourier Galerkin approach

here is to approximate (6) by a system of ODEs. Therefore,

uH(x, t) will be approximated by

uH(x, t)
.
=

kmax∑
k=1

uH,k(t) sin (μkx), (15)

where kmax represents the number of considered eigenmodes,

which affects the accuracy of the approximate solution. In

anticipation of the overall problem, the approximation of the

source function f(x, t) should be also mentioned here by

f(x, t)
.
=

kmax∑
k=1

fk(t) sin (μkx). (16)

Due to this approach, the solution is separated into

time-depending and time-invariant parts. As a consequence,

the derivatives with respect to both time and space simplify to

üH(x, t)
.
=

kmax∑
k=1

üH,k(t) sin(μkx) (17)
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u′′

H(x, t)
.
= −

kmax∑
k=1

μ2
kuH,k(t) sin(μkx). (18)

Inserting (17) and (18) into (6) leads to

kmax∑
k=1

[ üH,k(t) + c2μ2
kuH,k(t)] sin (μkx) = 0. (19)

With respect to the homogeneous sub-problem, an equation for

μk that complies with the homogeneous boundary conditions

(7) and (8) is given by

μk =
kπ

L
, (20)

which describes the k-th eigenmode. Using the orthogonality

property of the Fourier series,∫ L

0

sin(
nπ

L
x) sin(

mπ

L
x) dx =

L

2
δnm, (21)

where δnm is the Kronecker delta, (19) can be simplified to

üH,k(t) + c2μ2
kuH,k(t) = 0 (22)

with k = 1, ..., kmax. Finally, the initial conditions are obtained

as

uH,k(0) =
2

L

∫ L

0

g(x) sin(μkx) dx (23)

and

u̇H,k(0) =
2

L

∫ L

0

f(x) sin(μkx) dx. (24)

Thus, the homogeneous solution uH(x, t) can be calculated,

which is the first term of the total solution

u(x, t) = uH(x, t) + u0(t)
(
1−

x

L

)
+ uL(t)

x

L
(25)

of the problem (1)-(5). Due to (25), the behaviour at

the boundaries is taken into account by superposing the

homogeneous solution uH and the solution for the boundaries

u0 and uL.

D. Implementation of Absorbing Boundary Conditions

As illustrated in (11), the wave equation can be described

by an operator factorization, whereas one term models the

wave movement to the right, the other term describes the left

moving wave. First, both bracket terms of (11) are considered

separately.
∂u

∂t
− c

∂u

∂x
= 0

∣∣∣
x=0

(26)

∂u

∂t
+ c

∂u

∂x
= 0

∣∣∣
x=L

(27)

Starting from (25), the derivatives with respect to time

u̇(x, t) =

kmax∑
k=1

u̇H,k(t) sin(μkx) + u̇0(t)
(
1−

x

L

)
+ u̇L(t)

x

L

(28)

ü(x, t) =

kmax∑
k=1

üH,k(t) sin(μkx) + ü0(t)
(
1−

x

L

)
+ üL(t)

x

L

(29)

as well as the spatial derivatives u′ and u′′

u′(x, t) =

kmax∑
k=1

uH,k(t)μk cos(μkx)− u0
1

L
+ uL

1

L
(30)

u′′(x, t) = −

kmax∑
k=1

uH,k(t)μ
2
k sin(μkx) (31)

must be derived for later calculation steps. Inserting (28) and

(30) into (26) and (27) leads to

u̇0 = c
[ kmax∑

k=1

uH,kμk −
1

L
u0 +

1

L
uL

]
(32)

for the left boundary and

u̇L = −c
[ kmax∑

k=1

uH,kμk(−1)k −
1

L
u0 +

1

L
uL

]
(33)

for the right boundary. When merging (29) and (31) with the

wave equation (1), one gets

kmax∑
k=1

üH,k sin(μkx) + ü0

(
1−

x

L

)
+ üL

x

L

+c2
kmax∑
k=1

uH,kμk sin(μkx) =

kmax∑
k=1

fk sin(μkx)

(34)

In (34), the second derivatives of the boundary functions

appear, which can be derived by (32) and (33)

ü0 = c
[ kmax∑

k=1

u̇H,kμk −
1

L
u̇0 +

1

L
u̇L

]
(35)

üL = −c
[ kmax∑

k=1

u̇H,kμk(−1)k −
1

L
u̇0 +

1

L
u̇L

]
(36)

It can be seen that ü0 and üL are in dependence of u̇0

and u̇L. This circumstance leads to the necessity of adding

the variables ü0 and üL to the system of equations and

thus resulting in higher model complexity. To keep the

computational costs to a minimum, u̇0 and u̇L, expressed in

(32) and (33), are inserted into (35) and (36). After some

calculations, the equations can be formulated by

ü0 = c

kmax∑
k=1

u̇H,kμk −
c2

L

kmax∑
k=1

uH,kμk[ 1 + (−1)k]

+
2c2

L2
(u0 − uL)

(37)

üL = −c

kmax∑
k=1

u̇H,kμk(−1)k

+
c2

L

kmax∑
k=1

uH,kμk[ 1 + (−1)k] −
2c2

L2
(u0 − uL).

(38)
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The next step is to build the inner product of (34) with all

considered eigenmodes by

2

L

[ ∫ L

0

üH,k sin(μkx) sin(μkx) dx

+

∫ L

0

ü0(1−
x

L
) sin(μkx) dx+

∫ L

0

üL

x

L
sin(μkx) dx

+c2μ2
k

∫ L

0

uH,k sin(μkx) sin(μkx) dx
]

=
2

L

∫ L

0

fk sin(μkx) sin(μkx) dx.

(39)

After further calculations and simplifications, this leads to

üH,k +
2

kπ
ü0 −

2

kπ
(−1)küL + c2μ2

kuk = fk. (40)

Finally, ü0 and üL of (40) are eliminated by (37) and

(38). Hence, all required equations for both sub-problems are

outlined. Now, the original wave problem, including the ABCs,

is described by

⎡
⎢⎢⎢⎢⎢⎣

u̇H

üH

u̇0

u̇L

⎤
⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎣

0 I 0 0

A B c −c

cμT

k
0
T − c

L
c
L

dT
0
T c

L
− c

L

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
M

⎡
⎢⎢⎢⎢⎢⎣

uH

u̇H

u0

uL

⎤
⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎣

0

fk

0

0

⎤
⎥⎥⎥⎥⎥⎦
, (41)

where the entries of the (2kmax + 2) × (2kmax + 2) square

matrix M are given by

Am,n = (−c2μ2
m)δm,n

+
2c2

mπL
[ 1 + (−1)m]

kmax∑
n=1

μn[ 1 + (−1)n]
(42)

Bm,n = −
2c

mπ

[ kmax∑
n=1

μn + (−1)m
kmax∑
n=1

μn(−1)n
]

(43)

Ck = −
4c2

kπL2
(1 + (−1)k) (44)

Dk = −(−1)jcμk (45)

E. Back Transformation

When the system of equations in (41) is solved by an

appropriate ODE solver, one gets a solution field consisting

of the solution for each eigenmode k at all defined time steps.

After a back transformation due to (15), the total solution (25)

can be calculated. Fig. 1 clarifies the composition of the total

solution u(x, t). The upper plot shows each individual part of

the solution, whereas the bottom plot depicts the total solution

u(x, t).
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Fig. 1 Superposition of the solution components uH (homogeneous
sub-problem), u0 (left boundary contribution) and uL (right boundary

contribution)

III. RESULTS

To compare the Fourier Galerkin approach and other

discretization methods in terms of model fidelity, the following

test function, defined by

y(x, 0) = e−( 1

a
(x−L

2
))2 (46)

is used as the initial function g(x) in (23) in the following

simulation. The domain has total length L = 10, and a is a

factor proportional to the wavelength. At the deflection of 0.5
the initial function has a width of 2a. Fig. 2 shows a plot of the
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2a

spatial coordinate x (in m)

d
efl

ec
ti

o
n

(i
n

m
)

t = 0
t = tend

Fig. 2 Solution fields at times t = 0 and t = tend (after initial components
ideally would have left the domain)

test function prescribed as initial displacement with a = 0.2
and kmax = 100 eigenmodes. The peak in the middle of the

string shows the test function at the beginning, which splits

into a left and right wave peak of half amplitude. At time

t = tend, the wave has travelled through the boundaries and a

small amount of spurious reflections has occurred.

To quantify the absorption accuracy of the setup, the fit is

defined by

fA =
(
1−

‖u(x, t = tend)‖
2
L2

‖u(x, t = 0)‖2L2

)
· 100%, (47)
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utilizing the Euclidean norm

‖u(x)‖2L2
=

∫ L

0

(
u(x)

)2
dx. (48)

Here, the signal under the test function at t = 0 is compared to

the area of the reflection after the test duration tend. The test

duration is chosen such that the wave has completely moved

through the boundaries. Hence, the runtime depends on the

wave propagation speed and the wavelength and is selected as

tend =
1

c

(L
2
+ 3a

)
(49)

whereby c has no influence on the accuracy of the simulation.

Fig. 3 gives some indication about the relations of the fit
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Fig. 3 The fit as an indicator for absorption quality, depending on the
wavelength parameter a and the number of eigenmodes.

with the wavelength and the number of eigenmodes kmax.

The relation between the eigenmodes and the wavelength is

prescribed by

λk =
2π

μk

. (50)

Hence, kmax determines the shortest resolved wavelength.

From this plot one can infer, that the fit increases with more

eigenmodes, as well as with lower frequencies present in the

initial solution. In Fig. 4, the amplitude of the reflected wave is

investigated. Therefore, the ratio hr between the amplitude h

of the test function at t = 0 and the amplitude of the reflections

h(tend) is defined as

hr =
h(tend)

h(t = 0)
· 100% (51)

with

h(t) = ‖u(x, t)‖∞ = max‖u(x, t)‖. (52)

Now, hr in dependence of the initial solution’s wave length

and the number of eigenmodes is plotted in Fig. 4. In the

white area of the plot, the simulated results are unsatisfying,

whereas in the dark grey area reflections of less than 2% of

the initial amplitude can be achieved.

The plot in Fig. 5 can be seen as a vertical cross section

of Fig. 3 for selected values a. Even though the fit tends to
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Fig. 4 The amplitude of reflections in dependence of the wavelength
parameter a and the number of eigenmodes
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Fig. 5 The behaviour of the fit for specific wavelength parameters
a = 0.1, 0.15, 0.2 in dependence of the number of eigenmodes

100% with an increasing number of eigenmodes, the speed of

convergence decreases for a higher fit. As apparent from this

plot, the speed of convergence also decreases with decreasing

wavelength parameter a.

IV. CONCLUSION

This paper illustrates the application of the Fourier Galerkin

approach for modelling the one dimensional wave problem

and solving the general inhomogeneous problem. In addition,

computational costs have been reduced by truncating the

computational domain and introducing absorbing boundary

conditions (ABCs) at the artificial boundaries, formulated

in the Fourier Galerkin approximation. The necessity of

ABCs arises from the fact that a wave cannot pass trough

Dirichlet domain boundaries and thus, the wave is reflected.

To avoid these spurious reflections, highly absorbing boundary

functions have been implemented, which ensure a stable and

accurate model for simulation.

The sections are organised in such a way that this paper

can be used as a direct modus operandi for modelling the
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wave problem with ABCs. First, some basic information

of the wave equation are discussed and the homogeneous

sub-problem is considered. Furthermore, the utilization of the

Fourier Galerkin approach to the wave problem is outlined, as

well as a systematic derivation and the implementation of the

ABCs. Subsequently, the assembly of all necessary equations

to a coupled system of ODEs of first order is shown and

consequently the solution for each eigenmode and time step

can be calculated. Finally, the back transformation to space and

time is illustrated and the superposition of the homogeneous

solution with the absorbing boundary functions is realized.

In order to ensure comprehensible results, a specific test

function is applied, which is used in test simulations. The

results of the test simulations show high accuracy, though the

number of required eigenmodes increases rapidly with smaller

wavelengths. Further research with regard to the optimization

of the computational effort as well as the extension of this

approach to other types of wave equations are planned.

In conclusion, using the Fourier Galerkin approach for the

wave problem leads to an efficient simulation model with high

fidelty for large wavelengths, however, the number of required

eigenmodes and thus computational costs actually increase for

smaller wavelengths.
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